[go: up one dir, main page]

JP3426160B2 - Flow control valve - Google Patents

Flow control valve

Info

Publication number
JP3426160B2
JP3426160B2 JP17153799A JP17153799A JP3426160B2 JP 3426160 B2 JP3426160 B2 JP 3426160B2 JP 17153799 A JP17153799 A JP 17153799A JP 17153799 A JP17153799 A JP 17153799A JP 3426160 B2 JP3426160 B2 JP 3426160B2
Authority
JP
Japan
Prior art keywords
magnet
driven
electromagnets
valve
stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17153799A
Other languages
Japanese (ja)
Other versions
JP2001006928A (en
Inventor
時夫 杉
邦夫 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP17153799A priority Critical patent/JP3426160B2/en
Publication of JP2001006928A publication Critical patent/JP2001006928A/en
Application granted granted Critical
Publication of JP3426160B2 publication Critical patent/JP3426160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は新規な駆動装置を備
える流量調節弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow control valve having a novel drive device.

【0002】[0002]

【従来技術とその問題点】コイルに電流を供給して磁力
を発生させ、この磁力を磁性体からなる従動体に作用さ
せて可動部を駆動するいわゆる電磁式駆動装置がさまざ
まな用途に利用されており、その代表的な例にソレノイ
ド(電磁石)がある。
2. Description of the Related Art A so-called electromagnetic drive device that supplies a current to a coil to generate a magnetic force and causes the magnetic force to act on a driven member to drive a movable part is used for various purposes. A typical example is a solenoid (electromagnet).

【0003】ソレノイドは、図12のようにコイル5
4、鉄心(ヨーク)51、被駆動体52および復帰バネ
(リターンスプリング)53によって構成され、コイル
54に直流電流を流すと鉄心51に磁力が発生し、磁性
体で作られた被駆動体52が磁気吸引力によって駆動さ
れる。コイル54の直流電流をOFFにすると鉄心51
の磁力が無くなり、被駆動体52は復帰バネ53の復元
力によって元の位置に戻る。
The solenoid has a coil 5 as shown in FIG.
4, an iron core (yoke) 51, a driven body 52, and a return spring (return spring) 53. When a direct current is passed through the coil 54, a magnetic force is generated in the iron core 51, and the driven body 52 made of a magnetic body. Are driven by magnetic attraction. When the direct current of the coil 54 is turned off, the iron core 51
, The driven body 52 returns to its original position by the restoring force of the return spring 53.

【0004】通常のソレノイドの被駆動体は、コイルに
電流が流れているとき、流れていないときの二つの安定
位置の何れかで静止するように作られ、被駆動体の位置
を連続的に制御することはできないが、鉄心が発生する
磁力と復帰バネの復元力を釣り合わせることによって、
被駆動体の位置を限られた範囲内において連続的に制御
することも可能である。
The driven body of a normal solenoid is made to stand still in one of two stable positions when current is flowing through the coil, so that the position of the driven body is continuously changed. Although it cannot be controlled, by balancing the magnetic force generated by the iron core and the restoring force of the return spring,
It is also possible to continuously control the position of the driven body within a limited range.

【0005】図13はこの連続的に位置制御のできるソ
レノイドの適用例で、コイル54の電流値を増減させる
ことによってバルブ55の流路の間隙を変え、通過する
流体の流量を制御する流量調節弁である。
FIG. 13 is an application example of the solenoid capable of continuously controlling the position. The flow rate is adjusted by changing the current value of the coil 54 to change the gap of the flow path of the valve 55 and controlling the flow rate of the fluid passing therethrough. It is a valve.

【0006】同図において、コイル54に電流を流さな
いときには、被駆動体である弁棒56の弁体57は皿バ
ネ(ダイヤフラム)58の力で流路を塞いでおり、流量
は0であるが、コイルに電流を流すとコイルと鉄心51
よりなるソレノイドの吸引力によって弁体57に上向き
の力が作用し、弁体が上方に変位して弁坐59と弁体の
間が開き、流体が流れる。このときの流量は弁体の変位
が大きくなるにつれて増加する。一方、弁体57が上方
に変位すると、弁体には皿バネ58による下向きの復元
力が働き、この復元力は弁体の変位量にほぼ比例して大
きくなる。
In the figure, when no current is applied to the coil 54, the valve body 57 of the valve rod 56, which is the driven body, blocks the flow passage by the force of the disc spring (diaphragm) 58, and the flow rate is zero. However, when an electric current is applied to the coil, the coil and the iron core 51
An upward force acts on the valve body 57 by the suction force of the solenoid, and the valve body is displaced upward, the space between the valve seat 59 and the valve body is opened, and the fluid flows. The flow rate at this time increases as the displacement of the valve body increases. On the other hand, when the valve body 57 is displaced upward, the disc spring 58 exerts a downward restoring force on the valve body, and the restoring force increases substantially in proportion to the displacement amount of the valve body.

【0007】したがって弁体57はソレノイドの吸引力
と皿バネ58の復元力が釣り合う位置で静止し、コイル
54の電流が大きくなるにつれて弁体57の変位は大き
くなり、弁坐59と弁体57の間を流れる流体の流量も
コイル54の電流とともに増加する。したがってコイル
54の電流を調節することによって流量を制御すること
ができる。
Therefore, the valve body 57 is stationary at a position where the attraction force of the solenoid and the restoring force of the disc spring 58 are balanced, the displacement of the valve body 57 increases as the current of the coil 54 increases, and the valve seat 59 and the valve body 57 are increased. The flow rate of fluid flowing between them also increases with the current in the coil 54. Therefore, the flow rate can be controlled by adjusting the current of the coil 54.

【0008】しかしながら、ソレノイドの吸引力が図1
4に示されるように吸引される磁性体(被駆動体)との
距離の二乗に反比例するのに対し、皿バネの復元力は変
位の一乗に比例するので、両者が安定的に釣合う弁体の
位置は狭い範囲に限定され、弁体の可動範囲(ストロー
ク)の大きい流量調節弁を実現することは困難である。
However, the attraction force of the solenoid is
As shown in FIG. 4, the disc spring is inversely proportional to the square of the distance to the attracted magnetic body (driven body), whereas the restoring force of the disc spring is proportional to the first square of the displacement. The position of the body is limited to a narrow range, and it is difficult to realize a flow rate control valve having a large movable range (stroke) of the valve body.

【0009】一般にストロークの小さい流量調節弁にお
いては、流体が弁坐と弁体の間を流れる際に生じる圧力
損失が大きく、流量調節弁に流入する流体の圧力(供給
圧)が十分高くないと必要な流量を得ることができな
い。通常圧力損失は流量の二乗に比例して増大するの
で、圧力損失が供給圧に達すると、それ以上の流量を得
ることは物理的に不可能になるからである。
Generally, in a flow control valve having a small stroke, the pressure loss generated when the fluid flows between the valve seat and the valve body is large, and the pressure (supply pressure) of the fluid flowing into the flow control valve is not sufficiently high. The required flow rate cannot be obtained. Since the pressure loss usually increases in proportion to the square of the flow rate, when the pressure loss reaches the supply pressure, it is physically impossible to obtain a higher flow rate.

【0010】このことは流体が気体の場合よりも、圧縮
性がなく、供給圧を高くしにくい液体の場合に特に問題
となる。前述のソレノイドを用いた流量調節弁も、実用
例の殆どは気体用であり、液体に使用されているケース
は極めて少ない。
This is particularly problematic in the case of a liquid which is less compressible than the case of a gas and which makes it difficult to increase the supply pressure. Most of the practical examples of the flow rate control valve using the solenoid described above are for gas, and very few cases are used for liquid.

【0011】ストロークの大きい流量調節弁を実現する
手段の代表例には図15のようなモータ式がある。同図
はモータMでネジ軸60を回転させてめねじ体61を上
下動させ、ねめじ体と一体に設けた弁棒62の下端弁体
63を上下に駆動する方式で、平板を上下させるゲート
弁や円錐状のニードル弁などに適用される。また、貫通
孔のある球を回転させるいわゆるボール弁には回転式の
駆動装置が使用されるなど、各種の弁がモータと組合わ
されて流量調節弁として実用に供せられている。
A motor type as shown in FIG. 15 is a typical example of means for realizing a flow control valve having a large stroke. In the figure, the screw shaft 60 is rotated by the motor M to move the female screw body 61 up and down, and the lower end valve body 63 of the valve rod 62 integrally provided with the ratchet body is driven up and down to raise and lower the flat plate. It is applied to gate valves and conical needle valves. Further, a rotary drive device is used for a so-called ball valve that rotates a ball having a through hole, and various types of valves have been put into practical use as flow rate control valves in combination with a motor.

【0012】モータ式は十分なストロークが得られる
が、前述のソレノイド式と比較すると弁の開度を変える
のに時間がかかるため、流量制御に使用する場合は応答
が遅いという問題があり、また、一般に構造が複雑でコ
ストも高く、耐用年数も比較的短い。
Although the motor type can obtain a sufficient stroke, compared to the solenoid type described above, it takes a long time to change the opening degree of the valve, so that there is a problem that the response is slow when used for flow rate control. Generally, the structure is complicated, the cost is high, and the service life is relatively short.

【0013】これらの他に、図16のような空心コイル
・アンド・マグネット式も小流量用の流量調節弁に使用
されている。この方式は鉄心のないコイル(空心コイ
ル)64の内部に、長さ方向に着磁されたマグネット6
5を内蔵する弁棒66を長さ方向に可動に支持し、コイ
ルに電流を流してマグネットに駆動力を与え、弁棒66
を上下動させて、弁体67と弁坐68間を流れる流体の
流量を制御するもので、 (a) 全長の長いコイルを用いればマグネットのストロー
クを大きくできる (b) 応答が速く、かつ構造が簡単でコストが安い (c) 電流にほぼ比例した駆動力が得られるため板バネと
の組合せによる位置制御が易しい など多くの長所を備えている。
In addition to these, an air-core coil-and-magnet type as shown in FIG. 16 is also used as a flow rate control valve for a small flow rate. In this method, a magnet 6 magnetized in the length direction is provided inside a coil (air-core coil) 64 without an iron core.
The valve rod 66 containing 5 is movably supported in the length direction, and a current is passed through the coil to give a driving force to the magnet.
Is controlled to control the flow rate of the fluid flowing between the valve body 67 and the valve seat 68 by (a) using a coil with a long overall length, the stroke of the magnet can be increased (b) quick response and structure However, it has a number of advantages such as easy position control by combination with a leaf spring because a driving force almost proportional to the current can be obtained.

【0014】しかし、ソレノイドに比べて同じ駆動力を
得るのに要する電流が著しく大きく、用途は駆動力の小
さい小流量用の流量調節弁に限られるというデメリット
がある。
However, there is a demerit that the current required to obtain the same driving force is much larger than that of the solenoid, and the application is limited to a flow rate control valve for a small flow rate with a small driving force.

【0015】以上のような現状において、特に液体の流
量調節用として、ソレノイド式に比べて大きなストロー
クが得られ、モータ式に比べて応答が速く、かつ構造が
簡単でコストが安く、空心コイル・アンド・マグネット
式に比べて駆動力が大きい流量調節弁の実現が望まれて
いる。
Under the above circumstances, especially for liquid flow rate adjustment, a larger stroke can be obtained as compared with the solenoid type, the response is faster than the motor type, the structure is simple and the cost is low, and the air-core coil It is desired to realize a flow control valve that has a larger driving force than the AND-magnet type.

【0016】[0016]

【本発明の目的】本発明の目的とするところは、ソレノ
イド式に比べて大きなストロークが得られ、モータ式に
比べて応答が速く、かつ構造が簡単でコストが安く、空
心コイル・アンド・マグネット式に比べて駆動力が大き
い新規な直線駆動装置により流量の制御範囲が大で、大
流量用にも使用でき、応答が速くて、流量の高速制御が
でき、弁体を駆動する力は小なる電流で強力に得ること
ができ、したがって省エネルギー化に資することがで
き、かつ、構造が簡単で製造コストの低減を期せる流量
調節弁を提供することにある。
The object of the present invention is to provide a large stroke as compared with a solenoid type, a quick response as compared with a motor type, a simple structure and low cost, and an air-core coil and magnet. With a new linear drive that has a larger driving force than the equation, it can be used for a large flow rate, can be used for a large flow rate, has a quick response, can control the flow rate at high speed, and has a small force to drive the valve element. Another object of the present invention is to provide a flow rate control valve which can be strongly obtained with a large electric current, which can contribute to energy saving, and which has a simple structure and can reduce the manufacturing cost.

【0017】[0017]

【本発明の構成】本発明に係る流量調節弁は、或る間隔
で対峙する第1電磁石と第2電磁石の相対する側に
向する面どうしが異極となるよう着磁された第1不動磁
第2不動磁石を設け、前記第1、第2電磁石の中心
部及び第1、第2不動磁石の中心部を通る軸線部をフリ
移動できる被駆動体たる弁棒の第1、第2不動磁石
間に当たる部位に、第1、第2の不動磁石と相対する面
がそれぞれ各不動磁石の対向面と同極となるよう着磁さ
れた従動磁石を固定してなり、前記第1及び第2の電磁
石に電流を供給していないときには従動磁石に第1、第
2の不動磁石からの磁気的反発力が作用して従動磁石が
可動範囲の中間位置に保持されるが、第1及び第2の電
磁石もしくは一方の電磁石へ任意の極性及び強さの直流
電流を供給すると、従動磁石に第1、第2の電磁石から
の磁力が作用して前記弁棒が従動磁石とともに軸線方向
に所要量正逆移動させられて、弁棒と一体をなす弁体に
よって流路の一部の流路面積が設定されるようにしてあ
る。
The flow control valve according to the present invention is a first flow control valve which is magnetized on opposite sides of a first electromagnet and a second electromagnet facing each other at a certain interval so that opposing surfaces have different polarities. immobility magnet and second stationary magnets provided, the first, central portion of the second electromagnet and the first, the first valve rod serving driven body an axis portion which passes through the center portion of the second stationary magnets can be moved to the free, a site which corresponds to between the second stationary magnet, first, be it surface facing the second immovable magnet fixed to the driven magnets magnetized such that a pair facing surfaces and homopolar of each stationary magnet respectively, said first 1st and 2nd electromagnetic
When the stone is not supplied with electric current, the driven magnet is
The magnetic repulsive force from the 2 immovable magnet acts and the driven magnet becomes
Although it is held at an intermediate position in the movable range, when a direct current of arbitrary polarity and strength is supplied to the first and second electromagnets or one of the electromagnets , the driven magnets are driven by the first and second electromagnets.
The valve rod is moved forward and backward by the required amount in the axial direction together with the driven magnet so that the flow passage area of a part of the flow passage is set by the valve body integrated with the valve rod. is there.

【0018】その実施態様の一例は、両端部に第1電磁
石、第2電磁石を備える支持体の両端部内側に、互いに
相対する面が異極となるよう着磁された第1不動磁石
第2不動磁石を設け、前記第1、第2電磁石の中心部及
び第1、第2不動磁石の中心部のガイド孔にフリーに挿
通した被駆動体たる弁棒の第1、第2不動磁石間に当た
る部位に、第1、第2の不動磁石と相対する面がそれぞ
各不動磁石の対向面と同極となるよう着磁された従動
磁石を固定してなり、前記第1及び第2の電磁石に電流
を供給していないときには従動磁石に第1、第2の不動
磁石からの磁気的反発力が作用して従動磁石が可動範囲
の中間位置に保持されるが、第1及び第2の電磁石もし
くは一方の電磁石へ任意の極性及び強さの直流電流を供
給すると、従動磁石に第1、第2の電磁石からの磁力が
作用して前記弁棒が従動磁石とともに軸線方向に所要量
正逆移動させられて、弁棒と一体をなす弁体によって流
路の一部の流路面積が設定される構成のものとしてあ
る。
An example of the embodiment is a first immovable magnet which is magnetized inside the both ends of a support having a first electromagnet and a second electromagnet at both ends so that the surfaces facing each other have different polarities. A second stationary magnet is provided, and first and second valve rods, which are driven bodies, are freely inserted through the central portions of the first and second electromagnets and the guide holes in the central portions of the first and second stationary magnets. a site which corresponds to between 2 stationary magnet, first, be it surface facing the second immovable magnet fixed to the driven magnets magnetized so that the opposed surface and the same poles of the stationary magnets, respectively, the first and Current to the second electromagnet
When the magnet is not supplied, the first and second immovable magnets
Magnetic repulsive force from the magnet acts and the driven magnet moves
However, when a direct current of arbitrary polarity and strength is supplied to the first and second electromagnets or one of the electromagnets, the magnetic force from the first and second electromagnets is applied to the driven magnet.
By acting, the valve rod is moved forward and backward by the required amount in the axial direction together with the driven magnet , and a part of the flow passage area of the flow passage is set by the valve body integrated with the valve rod.

【0019】また、他の実施態様の一例は、弁箱の両端
部に流入管と流出管とが接続され、流入管の周りに第1
電磁石及び第1不動磁石を、流出管の周りに第2電磁石
及び第2不動磁石を、それぞれ第1と第2の不動磁石の
互いに相対する面が異極となるように設け、弁箱内に、
前記第1、第2の不動磁石と相対する面がそれぞれ各不
動磁石の対向面と同極となるよう着磁された従動磁石を
設け、前記第1及び第2の電磁石に電流を供給していな
いときには従動磁石に第1、第2の不動磁石からの磁気
的反発力が作用して従動磁石が可動範囲の中間位置に保
持されるが、第1及び第2の電磁石もしくは一方の電磁
石へ任意の極性及び強さの直流電流を供給すると、従動
磁石に第1、第2の電磁石からの磁力が作用して前記
体が流入管・流出管の軸線方向に所要量正逆移動させら
れて、弁体によって流路の一部の流路面積が設定される
構成のものとしてある。
According to another example of the embodiment, the inflow pipe and the outflow pipe are connected to both ends of the valve box, and the first pipe is provided around the inflow pipe.
The electromagnet and the first immovable magnet, the second electromagnet and the second immovable magnet around the outflow pipe , respectively of the first and second immovable magnets.
Provided so that the surfaces facing each other have different polarities, and in the valve box,
The first, the opposing surfaces and the second stationary magnets respectively not
A driven magnet magnetized so as to have the same pole as the facing surface of the moving magnet is provided, and no current is supplied to the first and second electromagnets.
When it is not, the magnets from the first and second stationary magnets are applied to the driven magnet.
Repulsive force acts to keep the driven magnet in the middle position of the movable range.
Holds, but when a direct current of arbitrary polarity and strength is supplied to the first and second electromagnets or one of the electromagnets, they are driven.
The magnetic force from the first and second electromagnets acts on the magnet to move the valve body forward and backward by a required amount in the axial direction of the inflow pipe / outflow pipe, and the flow passage area of a part of the flow passage by the valve body. Is set.

【0020】[0020]

【実施例】以下、本発明の流量調節弁を図1〜11に示
す実施例により説明する。図1において符号9は本発明
に係る流量調節弁の駆動部たる直線駆動装置を示す。同
駆動装置は、上下両端部にフランジ1a、1bを有する
筒状等の支持体1の前記上下のフランジ1a、1bに、
中心にそれぞれ縦ガイド孔3a、3bを有する空心ヨー
ク(鉄心)3A、3Bのまわりにコイル2A、2Bを有
する上下一対の第1電磁石4Aと第2電磁石4Bを設け
てある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The flow control valve of the present invention will be described below with reference to the embodiments shown in FIGS. In FIG. 1, reference numeral 9 indicates a linear drive device that is a drive portion of the flow rate control valve according to the present invention. The drive device is provided with the upper and lower flanges 1a and 1b of a tubular support body 1 having flanges 1a and 1b at both upper and lower ends.
A pair of upper and lower first electromagnets 4A and 4B having coils 2A and 2B are provided around air-core yokes (iron cores) 3A and 3B having vertical guide holes 3a and 3b respectively at the centers.

【0021】支持体1の上下両端部の内側には、前記空
心ヨークの縦ガイド孔3a、3bと一致する縦ガイド孔
5a、5bをそれぞれ中心に有し、各縦ガイド孔を通る
軸線方向に着磁された上下一対の第1不動磁石5Aと第
2不動磁石5Bを異極どうしが相対するように固定して
ある。
Inside the upper and lower end portions of the support body 1, vertical guide holes 5a and 5b, which coincide with the vertical guide holes 3a and 3b of the air-core yoke, are provided in the center, respectively, and are arranged in the axial direction passing through the vertical guide holes. A pair of upper and lower magnetized first stationary magnets 5A and second stationary magnets 5B are fixed so that the different poles face each other.

【0022】しかして上下の電磁石のヨークのガイド
孔、上下の第1、第2不動磁石のガイド孔へ被駆動体た
る弁棒6をフリーに挿通し、この弁棒6には上下の第
1、第2不動磁石の間に位置する箇所に従動磁石5Cを
固定してあり、しかも従動磁石5Cは上下の第1、第2
不動磁石と相反発するよう上下の第1、第2不動磁石と
互いに同極が向き合うように着磁されて弁棒に固定され
ていて、従動磁石5Cが上下の第1、第2不動磁石間の
中点部付近の部位に保持されるようにしてある。
Then, the valve rod 6 as a driven body is freely inserted into the guide holes of the upper and lower electromagnet yokes and the guide holes of the upper and lower first and second immovable magnets, and the valve rod 6 has the upper and lower first magnets. , The driven magnet 5C is fixed between the second stationary magnets, and the driven magnet 5C is located above and below the first and the second stationary magnets.
The upper and lower first and second immovable magnets are magnetized so that the same poles face each other so as to repel each other and are fixed to the valve stem, and the driven magnet 5C is located between the upper and lower first and second immovable magnets. It is designed to be held at a site near the midpoint.

【0023】このように構成された駆動装置の第1、第
2の電磁石の各コイルに、図3に示すように正逆の切替
えが可能な直流電源7A、7Bを接続して適当な電流を
供給することにより、被駆動体たる弁棒6に以下のよう
な動作をさせることができる。
As shown in FIG. 3, direct current power supplies 7A and 7B capable of switching between forward and reverse are connected to the respective coils of the first and second electromagnets of the driving device constructed as described above to generate an appropriate current. By supplying, the valve rod 6 as a driven body can be operated as follows.

【0024】まず、電流を全く流さないときには、従動
磁石5Cには第1、第2の不動磁石5A、5Bからの反
発力が作用し、図2のように従動磁石5Cは可動範囲の
中間の位置に保持される。
First, when no current is applied, the repulsive force from the first and second stationary magnets 5A and 5B acts on the driven magnet 5C, and the driven magnet 5C is in the middle of the movable range as shown in FIG. Held in position.

【0025】つぎに一方の第1電磁石4Aのコイル2A
に従動磁石5Cと反発する磁力を発生する電流を、他方
の第2電磁石4Bのコイル2Bに従動磁石5Cと吸引し
合う磁力を発生する電流を同時に供給すると、従動磁石
5Cには下向きの力が働き、第2不動磁石5Bの反発力
に打ち勝って従動磁石5Cは図3のように可動範囲の下
方に移動する。
Next, the coil 2A of one of the first electromagnets 4A
When a current that generates a magnetic force that repels the driven magnet 5C and a current that generates a magnetic force that attracts the driven magnet 5C of the other second electromagnet 4B are simultaneously supplied, a downward force is applied to the driven magnet 5C. The driven magnet 5C works to overcome the repulsive force of the second stationary magnet 5B, and the driven magnet 5C moves below the movable range as shown in FIG.

【0026】このときの第2不動磁石5Bの反発力は従
動磁石5Cが下方に移動するにつれて大きくなるので、
2つのコイル2A、2Bの電流の大きさを加減すること
によって従動磁石5Cが下方に移動する量を調節するこ
とができる。なお、以上の動作は磁石の反発、吸引力に
よるものであるから、応答速度はソレノイドと同様に高
速である。
Since the repulsive force of the second stationary magnet 5B at this time becomes larger as the driven magnet 5C moves downward,
By adjusting the magnitudes of the currents of the two coils 2A and 2B, the amount by which the driven magnet 5C moves downward can be adjusted. Since the above operation is due to the repulsion and attraction of the magnet, the response speed is as high as that of the solenoid.

【0027】電流の向きを逆にし、第1電磁石4Aのコ
イル2Aには従動磁石5Cと吸引し合う磁力を発生さ
せ、第2電磁石4Bのコイル2Bには従動磁石5Cと反
発する磁力を発生させると、従動磁石5Cには上向きの
力が働き、第1不動磁石5Aの反発力に打ち勝って従動
磁石5Cは図4のように可動範囲の上方に移動する。こ
の場合も電流の大きさを加減することによって従動磁石
5Cが上方に移動する量を調節することができる。
By reversing the direction of the current, a magnetic force that attracts the driven magnet 5C is generated in the coil 2A of the first electromagnet 4A, and a magnetic force that repels the driven magnet 5C is generated in the coil 2B of the second electromagnet 4B. Then, an upward force acts on the driven magnet 5C, overcoming the repulsive force of the first stationary magnet 5A, and the driven magnet 5C moves above the movable range as shown in FIG. Also in this case, the amount of the driven magnet 5C moving upward can be adjusted by adjusting the magnitude of the current.

【0028】第1、第2の電磁石に上記のような互いに
逆向きの磁力を発生させるには、2個の電源を用い、電
磁石4A、4Bにそれぞれ独立に電流を供給すればよい
が、図5のように電磁石4A、4Bのコイル2A、2B
を磁力が互いに逆向きになるように直列に接続し、切換
スイッチ8を有する一個の電源7で上記の動作をさせる
ことも可能である。
In order to generate the opposite magnetic forces in the first and second electromagnets as described above, two power supplies may be used and currents may be independently supplied to the electromagnets 4A and 4B. As in 5, coils 2A, 2B of electromagnets 4A, 4B
It is also possible to connect in series so that the magnetic forces are opposite to each other, and to perform the above-mentioned operation with a single power supply 7 having a changeover switch 8.

【0029】但しこの場合はコストは安くなるが、2個
のコイルを流れる電流の強さは常に等しく、それぞれの
コイルに互いに強さの異なる電流を流すことはできない
ので、使用条件に応じた最適な制御を行う上では制約が
多い。
However, in this case, the cost is low, but the strengths of the currents flowing through the two coils are always the same, and it is not possible to flow currents having different strengths to the respective coils. There are many restrictions in performing various controls.

【0030】なお、従動磁石5Cと電磁石のヨークの間
に働く吸引力によって従動磁石5Cと不動磁石5A、5
Bが密着状態にならないように、不動磁石にはこの吸引
力より大きい反発力を発生するものを使用する。
The attraction force acting between the driven magnet 5C and the electromagnet yoke causes the driven magnet 5C and the stationary magnets 5A and 5A,
In order to prevent B from coming into close contact, a stationary magnet that generates a repulsive force larger than this attractive force is used.

【0031】図6は上記駆動装置の実験データの一例で
あるが、直径40mm、厚さ6mmの従動磁石を用い、
最大駆動力2kg以上(電流1.5A)、ストローク7m
m以上の性能が得られている。
FIG. 6 shows an example of the experimental data of the above driving device. A driven magnet having a diameter of 40 mm and a thickness of 6 mm is used.
Maximum driving force 2kg or more (current 1.5A), stroke 7m
A performance of m or more is obtained.

【0032】この実験データに示されるように、駆動装
置は電磁石4A、4Bに十分大きな磁力を出し得るもの
を用いれば、上記の動作において、被駆動体に十分な移
動量と大きな駆動力を与えることが可能である。
As shown in the experimental data, if the driving device is one that can generate a sufficiently large magnetic force to the electromagnets 4A and 4B, a sufficient amount of movement and a large driving force are given to the driven body in the above operation. It is possible.

【0033】本発明の流量調節弁は上述した駆動装置を
備えるものとしてある。図1において符号10は流量調
節弁の弁箱を、11は弁箱カバーを示し、直線駆動装置
9は弁箱カバー11上に固定されている。弁箱10には
流体の流入管12aと同流出管12bが形成されてお
り、流入管と流出管とはポート13で接続されていて、
ポートに弁坐14が形成されている。
The flow control valve of the present invention is equipped with the above-mentioned drive device. In FIG. 1, reference numeral 10 indicates a valve box of the flow control valve, 11 indicates a valve box cover, and the linear drive device 9 is fixed on the valve box cover 11. The valve box 10 is formed with a fluid inflow pipe 12a and a fluid outflow pipe 12b, and the inflow pipe and the outflow pipe are connected by a port 13,
A valve seat 14 is formed at the port.

【0034】しかして直線駆動装置9の被駆動体たる棒
体、すなわち弁棒6は弁箱カバー上蓋の孔15を貫通し
て下部のテーパー状弁体16が弁坐14に臨んでおり、
弁体の弁坐への臨入度(嵌入度)で流入管から流出管へ
の流路の一部の流路面積(開度)が規制・設定され、流
量が制御される。なお、符号17はポートの開口上部を
塞いでいるベローズで、下部が弁箱10の上蓋に固定さ
れ、上部はそれを貫通する弁棒6に固着されている。
However, the rod body as the driven body of the linear drive device 9, that is, the valve rod 6 penetrates the hole 15 of the upper lid of the valve box cover, and the lower tapered valve body 16 faces the valve seat 14.
The flow area is controlled by setting and controlling the flow passage area (opening) of a part of the flow passage from the inflow pipe to the outflow pipe by the degree of insertion (fitting degree) of the valve body into the valve seat. Reference numeral 17 is a bellows that closes the upper opening of the port. The lower part is fixed to the upper lid of the valve box 10 and the upper part is fixed to the valve rod 6 penetrating it.

【0035】この流量調節弁の駆動装置9の第1、第2
の電磁石に図3や図4の電源、あるいは図5のごとき切
換スイッチ8付きの電源7を接続し、第1、第2の電磁
石への電流の供給を加減することにより、弁棒の従動磁
石5Cへ磁力による上下方向の移動力を与えて、弁体1
6の弁坐14への嵌入度を設定することにより流量調節
ができる。
The first and second drive devices 9 for the flow rate control valve
3 or 4 or the power source 7 with a changeover switch 8 as shown in FIG. 5 is connected to the electromagnet of FIG. 3 and the current supply to the first and second electromagnets is adjusted to control the driven magnet of the valve rod. 5C is given a moving force in the vertical direction by the magnetic force, and the valve body 1
The flow rate can be adjusted by setting the degree of insertion of the valve 6 into the valve seat 14.

【0036】また、この流量調節弁は図1に示すように
流量計18と制御ユニット19とにより流量自動調節装
置にできる。すなわち、上記の流量調節弁の流路には、
電気的な流量信号を連続的に出力する流量計18を設
け、この流量計による実測流量信号によって流量調節弁
を通過する流体の量を知ることができるようになってい
る。
The flow rate control valve can be an automatic flow rate control device by means of a flow meter 18 and a control unit 19 as shown in FIG. That is, in the flow path of the flow control valve,
A flow meter 18 that continuously outputs an electrical flow signal is provided, and the amount of fluid passing through the flow rate control valve can be known from the actually measured flow signal from this flow meter.

【0037】また、制御ユニット19は、流量計よりの
実測流量信号Qと、外部から入力される設定流量信号P
とを読み取り、両者が一致するように第1、第2電磁石
への直流電源7A、7Bに制御信号を送って流量調節弁
を制御する。
Further, the control unit 19 controls the measured flow rate signal Q from the flow meter and the set flow rate signal P input from the outside.
Is read, and a control signal is sent to the DC power supplies 7A and 7B to the first and second electromagnets so that they match each other, and the flow control valve is controlled.

【0038】すなわち、流量計の流量信号をQcc/min
、設定流量信号をPcc/min とすると、Q>Pのとき
には、第1電磁石4Aのコイル2Aに従動磁石5Cと反
発する磁力を発生する電流を、第2電磁石4Bのコイル
2Bに従動磁石5Cと吸引し合う磁力を発生する電流を
同時に供給することにより従動磁石5Cに下向きの力が
与えられて、弁体16が下方に移動させられ、Qが減少
させられる。
That is, the flow rate signal of the flowmeter is set to Qcc / min.
When the set flow rate signal is Pcc / min, when Q> P, a current that generates a magnetic force that repels the driven magnet 5C of the coil 2A of the first electromagnet 4A and the driven magnet 5C of the coil 2B of the second electromagnet 4B is generated. By simultaneously supplying currents that generate magnetic forces that attract each other, a downward force is applied to the driven magnet 5C, the valve body 16 is moved downward, and Q is reduced.

【0039】Q<Pのときには、第1、第2の電磁石4
A、4Bに供給する電流の向きがそれぞれ逆になり、従
動磁石5Cに上向きの力が与えられて、弁体16は上方
に移動させられ、Qが増加させられる。
When Q <P, the first and second electromagnets 4
The directions of the electric currents supplied to A and 4B are opposite to each other, an upward force is applied to the driven magnet 5C, the valve body 16 is moved upward, and Q is increased.

【0040】このとき従動磁石5Cに与えられる力の強
さは、2つの電磁石4A、4Bに供給する電流の強弱に
よって調節できるので、QとPの差によって最適な電流
値を選ぶことにより、速やかにQをPに一致させること
ができる。
At this time, the strength of the force applied to the driven magnet 5C can be adjusted by the strength of the current supplied to the two electromagnets 4A and 4B. Therefore, by selecting the optimum current value according to the difference between Q and P, it is possible to quickly And Q can be matched to P.

【0041】流量調節弁には図1に示すもののほかに各
種のタイプのものがあるので、その例を図7〜11に示
すもので説明する。
Since there are various types of flow rate control valves other than those shown in FIG. 1, an example thereof will be described with reference to FIGS.

【0042】図7はダブルポートタイプの流量調節弁
で、流入管20a、流出管20bを有する弁箱21内に
二つのポート22a、22bがあり、したがって各ポー
トの弁坐23a、23bに対応する二つの弁体24a、
24bが一本の弁棒25に設けられている。
FIG. 7 shows a double-port type flow control valve having two ports 22a and 22b in a valve box 21 having an inflow pipe 20a and an outflow pipe 20b, and therefore corresponds to the valve seats 23a and 23b of the respective ports. Two valve bodies 24a,
24b is provided on one valve rod 25.

【0043】しかして弁箱21には前述した直線駆動装
置9が設けられていて、同駆動装置9により弁棒25が
軸線方向(図では上下方向)に作動させられ、弁坐と弁
体との周隙が規制されて流量調節がなされる。このタイ
プの流量調節弁は流路に生じる圧力差が二つの弁体24
a、24bに互いに逆向き作用するので、弁を開くのに
必要な力が小さくてすむという利点がある。
The valve box 21 is provided with the above-described linear drive device 9, and the drive device 9 operates the valve rod 25 in the axial direction (vertical direction in the figure), so that the valve seat and the valve body are moved. The clearance is regulated and the flow rate is adjusted. This type of flow control valve has a valve body 24 in which the pressure difference generated in the flow path is two.
Since the a and 24b act in opposite directions to each other, there is an advantage that a small force is required to open the valve.

【0044】図8は流入管20aと流出管20bとが直
交するダイヤフラムタイプの流量調節弁で、弁棒25の
弁体24をダイヤフラム26に取り付けてあり、弁箱2
1には前述の直線駆動装置9を設けてあって、同装置に
より弁棒25が直線移動(図では上下動)させられて流
入管20a内端の弁坐23と弁体24間のギャップが規
制され、流路の流量調節がなされる。
FIG. 8 shows a diaphragm type flow rate control valve in which the inflow pipe 20a and the outflow pipe 20b are orthogonal to each other. The valve body 24 of the valve rod 25 is attached to the diaphragm 26, and the valve box 2
1 is provided with the above-described linear drive device 9, which linearly moves (vertically moves in the figure) the valve rod 25 so that the gap between the valve seat 23 and the valve body 24 at the inner end of the inflow pipe 20a is reduced. The flow rate of the flow path is regulated and regulated.

【0045】図9は流入管20aと流出管20bとが同
一直線上にあるダイヤフラムタイプの流量調節弁で、弁
棒25の弁体24をダイヤフラム26に取り付けてあ
り、弁箱21には前述の直線駆動装置9を設けてあっ
て、同装置により弁棒25が直線移動(図では上下動)
させられて弁坐23と弁体24間のギャップが規制さ
れ、流路の流量調節がなされる。
FIG. 9 shows a diaphragm type flow rate control valve in which the inflow pipe 20a and the outflow pipe 20b are on the same straight line. The valve body 24 of the valve rod 25 is attached to the diaphragm 26, and the valve box 21 has the above-mentioned structure. A linear drive device 9 is provided, and the valve rod 25 moves linearly by the device (moves up and down in the figure).
As a result, the gap between the valve seat 23 and the valve body 24 is regulated, and the flow rate of the flow path is adjusted.

【0046】図10は弁棒25先端(図では下端)の弁
体24が上下動することにより流量調節するゲート弁
で、流路管20の上部に前述の直線駆動装置9を設けて
あり、同装置により弁棒25を作動させて、流入管から
流出管に至る流路内の一部の流路面積を弁体24によっ
て規定するようにしてある。
FIG. 10 shows a gate valve for adjusting the flow rate by vertically moving the valve body 24 at the tip (lower end in the figure) of the valve rod 25. The above-mentioned linear drive device 9 is provided above the flow passage pipe 20, The valve rod 25 is actuated by the same device, and the flow passage area of a part of the flow passage from the inflow pipe to the outflow pipe is defined by the valve body 24.

【0047】図11は弁箱を上下から挟むように第1電
磁石及び第1不動磁石と第2電磁石及び第2不動磁石を
設けたタイプである。流入管20aは弁箱21の下面に
接続され、流出管20bは弁箱21の上面に接続されて
おり、流入管20aの周りにはコイル2Aと鉄心3Aよ
りなる第1電磁石4A及び第1不動磁石5Aが、流出管
20bの周りにはコイル2Bと鉄心3Bよりなる第2電
磁石4B及び前記第1不動磁石とは異極をなす第2不動
磁石5Bが設けられている。
FIG. 11 shows a type in which a first electromagnet and a first stationary magnet, a second electromagnet and a second stationary magnet are provided so as to sandwich the valve box from above and below. The inflow pipe 20a is connected to the lower surface of the valve box 21, the outflow pipe 20b is connected to the upper surface of the valve box 21, and the first electromagnet 4A composed of the coil 2A and the iron core 3A and the first immovable member are arranged around the inflow tube 20a. The magnet 5A is provided around the outflow pipe 20b with a second electromagnet 4B including a coil 2B and an iron core 3B and a second stationary magnet 5B having a different pole from the first stationary magnet.

【0048】しかして流入管、弁箱、流出管を通る一本
の弁棒25があり、弁箱21内には前記上下の第1、第
2の不動磁石と相対する面の極がそれぞれ同極となるよ
う着磁された従動磁石5Cを弁棒に固定して設けてあ
り、弁棒の下端には流入管の上端弁坐23に対応する弁
体24を設けてある。また、弁棒の上側部には流出管2
0bの内壁に接するガイド27を設けてある。電流の供
給手段は、図3乃至図5のものと同様である。
However, there is one valve rod 25 passing through the inflow pipe, the valve box and the outflow pipe, and the poles on the surfaces facing the upper and lower first and second stationary magnets are the same in the valve box 21. A driven magnet 5C magnetized to be a pole is fixedly provided on the valve rod, and a valve body 24 corresponding to the upper valve seat 23 of the inflow pipe is provided at the lower end of the valve rod. Further, the outflow pipe 2 is provided on the upper side of the valve rod.
A guide 27 is provided that contacts the inner wall of 0b. The means for supplying the current is the same as that shown in FIGS.

【0049】なお、図7及び図10中の符号28はシー
ル体を、図11中の符号29は従動磁石のシールドカバ
ーを示し、ともに耐薬品性のある合成樹脂製とか金属製
のものとしてある。
Reference numeral 28 in FIGS. 7 and 10 indicates a seal body, and reference numeral 29 in FIG. 11 indicates a shield cover for the driven magnet, both of which are made of chemical resistant synthetic resin or metal. .

【0050】[0050]

【発明の効果】上述のように、本発明の流量調節弁で
は、弁棒が大きな移動範囲(ストローク)と大きな駆動
力を得ることができ、かつ電流に比例した駆動力がほぼ
瞬時に発生する。
As described above, in the flow control valve of the present invention, the valve rod can obtain a large moving range (stroke) and a large driving force, and the driving force proportional to the current is generated almost instantly. .

【0051】したがって、流量の制御範囲が大で、大流
量用にも使用でき、応答が速くて、流量の高速制御がで
き、弁体の駆動力は小なる電流で強力に得ることがで
き、したがって省エネルギー化に資することができ、か
つ、構造が簡単で製造コストの低減を期せるという利点
がある。
Therefore, the control range of the flow rate is large, it can be used for a large flow rate, the response is fast, the flow rate can be controlled at high speed, and the driving force of the valve element can be strongly obtained with a small current. Therefore, there are advantages that it can contribute to energy saving, that the structure is simple and that the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る流量調節弁の一例を示す縦断面
図。
FIG. 1 is a vertical sectional view showing an example of a flow rate control valve according to the present invention.

【図2】本発明の流量調節弁の駆動部たる直線駆動装置
の一例を示す縦断面図。
FIG. 2 is a vertical cross-sectional view showing an example of a linear drive device that is a drive unit of the flow rate control valve of the present invention.

【図3】同直線駆動装置の作動状態の一例を示す縦断面
図。
FIG. 3 is a vertical cross-sectional view showing an example of an operating state of the linear drive device.

【図4】同直線駆動装置の作動状態の他の例を示す縦断
面図。
FIG. 4 is a vertical cross-sectional view showing another example of the operating state of the linear drive device.

【図5】同直線駆動装置の他の例を示す縦断面図。FIG. 5 is a vertical cross-sectional view showing another example of the linear drive device.

【図6】電磁石への供給電流と従動磁石の駆動力及び変
位の関係を示す図。
FIG. 6 is a diagram showing the relationship between the current supplied to the electromagnet and the driving force and displacement of the driven magnet.

【図7】本発明に係る流量調節弁の他の例を示す縦断面
図。
FIG. 7 is a vertical cross-sectional view showing another example of the flow rate control valve according to the present invention.

【図8】本発明に係る流量調節弁のさらに他の例を示す
縦断面図。
FIG. 8 is a vertical cross-sectional view showing still another example of the flow rate control valve according to the present invention.

【図9】本発明に係る流量調節弁のさらに他の例を示す
縦断面図。
FIG. 9 is a vertical sectional view showing still another example of the flow rate control valve according to the present invention.

【図10】本発明に係る流量調節弁のさらに他の例を示
す縦断面図。
FIG. 10 is a vertical cross-sectional view showing still another example of the flow rate control valve according to the present invention.

【図11】本発明に係る流量調節弁のさらに他の例を示
す、(a) は縦断面図、(b) は流出管部の拡大横断面図。
FIG. 11 shows still another example of the flow rate control valve according to the present invention, (a) is a vertical sectional view, and (b) is an enlarged transverse sectional view of the outflow pipe portion.

【図12】従来の流量調節弁の駆動装置を示す縦断面
図。
FIG. 12 is a vertical cross-sectional view showing a conventional drive device for a flow rate control valve.

【図13】従来の流量調節弁の縦断面図。FIG. 13 is a vertical cross-sectional view of a conventional flow rate control valve.

【図14】電磁石への供給電流と被駆動体の変位及び力
の関係、及び皿ばねの変位と復元力の関係を示す図。
FIG. 14 is a diagram showing the relationship between the supply current to the electromagnet and the displacement and force of the driven body, and the relationship between the displacement of the disc spring and the restoring force.

【図15】ゲート弁の従来の駆動装置を示す縦断面図。FIG. 15 is a vertical cross-sectional view showing a conventional drive device for a gate valve.

【図16】従来の流量調節弁の縦断面図。FIG. 16 is a vertical cross-sectional view of a conventional flow rate control valve.

【符号の説明】[Explanation of symbols]

1・・・支持体 1a、1b・・・フランジ 2A、2B・・・コイル 3A、3B・・・空心ヨーク(鉄心) 3a、3b・・・縦ガイド孔 4A・・・第1電磁石 4B・・・第2電磁石 5A・・・第1不動磁石 5B・・・第2不動磁石 5C・・・従動磁石 6・・・弁棒 7A、7B・・・直流電源 8・・・切換スイッチ 9・・・直線駆動装置 10・・・弁箱 11・・・弁箱カバー 12a・・・流入管 12b・・・流出管 13・・・ポート 14・・・弁坐 15・・・弁箱カバーの孔 16・・・弁体 17・・・ベローズ 18・・・流量計 19・・・制御ユニット 20a・・・流入管 20b・・・流出管 21・・・弁箱 22a、22b・・・ポート 23・・・弁坐 23a、23b・・・弁坐 24・・・弁体 24a、24b・・・弁体 25・・・弁棒 26・・・ダイヤフラム 27・・・ガイド 28・・・シール 29・・・シールドカバー 1 ... Support 1a, 1b ... flange 2A, 2B ... Coil 3A, 3B: Empty core yoke (iron core) 3a, 3b ... Vertical guide holes 4A ... first electromagnet 4B: second electromagnet 5A: first stationary magnet 5B: second stationary magnet 5C: driven magnet 6 ... Valve rod 7A, 7B ... DC power supply 8 ... Changeover switch 9: Linear drive 10 ... Valve box 11 ... Valve box cover 12a ... inflow pipe 12b ... Outflow pipe 13 ... Port 14 ... Benza 15 ... Valve box cover hole 16 ... Valve 17 ... Bellows 18 ... Flowmeter 19 ... Control unit 20a ... inflow pipe 20b ... Outflow pipe 21 ... Valve box 22a, 22b ... Port 23 ... Benza 23a, 23b ... Benza 24 ... Valve 24a, 24b ... Valve 25 ... Valve rod 26 ... Diaphragm 27 ... Guide 28 ... Seal 29 ... Shield cover

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−177510(JP,A) 特開 平8−138932(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 7/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-57-177510 (JP, A) JP-A-8-138932 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 7/16

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】或る間隔で対峙する第1電磁石と第2電磁
石の相対する側に対向する面どうしが異極となるよう
着磁された第1不動磁石第2不動磁石を設け、前記第
1、第2電磁石の中心部及び第1、第2不動磁石の中心
部を通る軸線部をフリー移動できる被駆動体たる弁棒
の第1、第2不動磁石間に当たる部位に、第1、第2の
不動磁石と相対する面がそれぞれ各不動磁石の対向面と
同極となるよう着磁された従動磁石を固定してなり、
記第1及び第2の電磁石に電流を供給していないときに
は従動磁石に第1、第2の不動磁石からの磁気的反発力
が作用して従動磁石が可動範囲の中間位置に保持される
が、第1及び第2の電磁石もしくは一方の電磁石へ任意
の極性及び強さの直流電流を供給すると、従動磁石に第
1、第2の電磁石からの磁力が作用して前記弁棒が従動
磁石とともに軸線方向に所要量正逆移動させられて、弁
棒と一体をなす弁体によって流路の一部の流路面積が設
定されるようにした流量調節弁。
1. A first non-moving magnet and a second non-moving magnet, which are magnetized so that opposing surfaces have different polarities , on opposite sides of a first electromagnet and a second electromagnet facing each other at a certain interval, the first, central portion of the second electromagnet and the first, the first, site hits between the second stationary magnet valve rod serving driven body an axis portion which passes through the center portion of the second stationary magnets can be moved to the free, third 1, it secures the second driven magnet that faces surface stationary magnet is magnetized so that respectively opposing surfaces of the stationary magnet and <br/> same polarity, before
Note When no current is supplied to the first and second electromagnets
Is the magnetic repulsive force from the first and second stationary magnets on the driven magnet.
Acts to hold the driven magnet in the middle position of the movable range.
However, when a direct current of arbitrary polarity and strength is supplied to the first and second electromagnets or one of the electromagnets , the driven magnet is first
The valve rod is driven by the magnetic force from the first and second electromagnets.
A flow control valve that is moved in the axial direction together with a magnet by a required amount in the reverse direction so that the flow passage area of a part of the flow passage is set by a valve body that is integral with a valve rod.
【請求項2】両端部に第1電磁石、第2電磁石を備える
支持体の両端部内側に、互いに相対する面が異極となる
よう着磁された第1不動磁石第2不動磁石を設け、前
記第1、第2電磁石の中心部及び第1、第2不動磁石の
中心部のガイド孔にフリーに挿通した被駆動体たる弁棒
の第1、第2不動磁石間に当たる部位に、第1、第2の
不動磁石と相対する面がそれぞれ各不動磁石の対向面と
同極となるよう着磁された従動磁石を固定してなり、
記第1及び第2の電磁石に電流を供給していないときに
は従動磁石に第1、第2の不動磁石からの磁気的反発力
が作用して従動磁石が可動範囲の中間位置に保持される
が、第1及び第2の電磁石もしくは一方の電磁石へ任意
の極性及び強さの直流電流を供給すると、従動磁石に第
1、第2の電磁石からの磁力が作用して前記弁棒が従動
磁石とともに軸線方向に所要量正逆移動させられて、弁
棒と一体をなす弁体によって流路の一部の流路面積が設
定されるようにした流量調節弁。
2. A first immovable magnet and a second immovable magnet, which are magnetized so that surfaces facing each other have different polarities, inside a support having a first electromagnet and a second electromagnet at both ends. , A portion of the valve rod, which is a driven body, freely inserted through the guide holes in the central portions of the first and second electromagnets and the central portions of the first and second immovable magnets, the portion corresponding to the first and second immovable magnets. 1, it secures the second driven magnet that faces surface stationary magnet is magnetized so that respectively opposing surfaces of the stationary magnet and <br/> same polarity, before
Note When no current is supplied to the first and second electromagnets
Is the magnetic repulsive force from the first and second stationary magnets on the driven magnet.
Acts to hold the driven magnet in the middle position of the movable range.
However, when a direct current of arbitrary polarity and strength is supplied to the first and second electromagnets or one of the electromagnets , the driven magnet is first
The valve rod is driven by the magnetic force from the first and second electromagnets.
A flow control valve that is moved in the axial direction together with a magnet by a required amount in the reverse direction so that the flow passage area of a part of the flow passage is set by a valve body that is integral with a valve rod.
【請求項3】弁箱の両端部に流入管と流出管とが接続さ
れ、流入管の周りに第1電磁石及び第1不動磁石を、流
出管の周りに第2電磁石及び第2不動磁石を、それぞれ
第1と第2の不動磁石の互いに相対する面が異極となる
ように設け、弁箱内に、前記第1、第2の不動磁石と相
対する面がそれぞれ各不動磁石の対向面と同極となるよ
う着磁された従動磁石を設け、前記第1及び第2の電磁
石に電流を供給していないときには従動磁石に第1、第
2の不動磁石からの磁気的反発力が作用して従動磁石が
可動範囲の中間位置に保持されるが、第1及び第2の電
磁石もしくは一方の電磁石へ任意の極性及び強さの直流
電流を供給すると、従動磁石に第1、第2の電磁石から
の磁力が作用して前記弁体が流入管・流出管の軸線方向
に所要量正逆移動させられて、弁体によって流路の一部
の流路面積が設定されるようにした流量調節弁。
3. An inflow pipe and an outflow pipe are connected to both ends of the valve box, and a first electromagnet and a first stationary magnet are provided around the inflow pipe, and a second electromagnet and a second stationary magnet are provided around the outflow pipe. ,Each
The surfaces of the first and second stationary magnets facing each other have different polarities.
And a driven magnet magnetized so that the surfaces facing the first and second stationary magnets have the same poles as the facing surfaces of the stationary magnets, respectively . 2 electromagnetic
When the stone is not supplied with electric current, the driven magnet is
The magnetic repulsive force from the 2 immovable magnet acts and the driven magnet becomes
Although it is held at an intermediate position in the movable range, when a direct current of arbitrary polarity and strength is supplied to the first and second electromagnets or one of the electromagnets , the driven magnets are driven by the first and second electromagnets.
Flow control valve in which the valve body is moved forward and backward by a required amount in the axial direction of the inflow pipe / outflow pipe due to the magnetic force of the .
JP17153799A 1999-06-17 1999-06-17 Flow control valve Expired - Fee Related JP3426160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17153799A JP3426160B2 (en) 1999-06-17 1999-06-17 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17153799A JP3426160B2 (en) 1999-06-17 1999-06-17 Flow control valve

Publications (2)

Publication Number Publication Date
JP2001006928A JP2001006928A (en) 2001-01-12
JP3426160B2 true JP3426160B2 (en) 2003-07-14

Family

ID=15924973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17153799A Expired - Fee Related JP3426160B2 (en) 1999-06-17 1999-06-17 Flow control valve

Country Status (1)

Country Link
JP (1) JP3426160B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140114198A (en) * 2013-03-18 2014-09-26 한국전력공사 Fulid circulator

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009015231A1 (en) 2009-04-01 2010-10-07 Focke & Co.(Gmbh & Co. Kg) (Glue) valve
WO2014076734A1 (en) * 2012-11-13 2014-05-22 パイオニア株式会社 Static actuator, variable capacitance device and method for driving static actuator
DE102018003658A1 (en) * 2018-05-05 2019-11-07 Gea Tuchenhagen Gmbh process component
DE102018008266A1 (en) * 2018-10-18 2020-04-23 Gea Tuchenhagen Gmbh Process component
DE102019131604A1 (en) * 2019-11-22 2021-05-27 Induserve B.V. Electromagnetic valve actuator for non-stop electromagnetic valve, valve and reciprocating internal combustion engine with valve
CN114508600A (en) * 2022-01-13 2022-05-17 中科首望无水染色智能装备(苏州)有限公司 Electromagnetic strong-sealing flash explosion device and working method
CN114526342B (en) * 2022-01-13 2023-09-08 中科首望无水染色智能装备(苏州)有限公司 Long-range electromagnetic sealing flash explosion device and working method
CN114542731B (en) * 2022-01-13 2024-01-26 中科首望无水染色智能装备(苏州)有限公司 Double-electromagnetic sealing flash explosion device and working method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140114198A (en) * 2013-03-18 2014-09-26 한국전력공사 Fulid circulator
KR102110437B1 (en) * 2013-03-18 2020-05-13 한국전력공사 Fulid circulator

Also Published As

Publication number Publication date
JP2001006928A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
US6040752A (en) Fail-safe actuator with two permanent magnets
CN101709806B (en) Miniature self-locking electromagnetic valve
JP2011513979A (en) Electromagnetic operation mechanism
JPH0361777A (en) Solenoid valve using permanent magnet
JP3426160B2 (en) Flow control valve
JPS60159481A (en) Control valve
WO2005124206A2 (en) Servo valve with miniature embedded force motor with stiffened armature
RU2243441C1 (en) Solenoid valve
JP3426161B2 (en) Linear drive for driven body
EP0333452A2 (en) Two position valve
JP2659317B2 (en) High-speed solenoid valve
JPH0529133A (en) Electromagnet
KR100578086B1 (en) Maglev Electromagnetic Drive Valve for Flow Control
US11118702B2 (en) Valve with energy-saving electrodynamic actuator
JP3251085B2 (en) solenoid valve
JPH10299936A (en) Three-position valve
GB2395362A (en) Improved electromagnetically operated device
JPS6240593B2 (en)
CA2240876A1 (en) Fail-safe actuator with two permanent magnets
KR200407542Y1 (en) Directional valve for refrigerant
KR200322083Y1 (en) all-purpose solenoid valve
JPS6046307B2 (en) fluid flow control valve
JP2004015997A (en) Electromagnetic control type linear actuators
JPH07208621A (en) Flow control device
KR20040042697A (en) Electronic Valve

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees