JP3422083B2 - Method and apparatus for measuring chromaticity in sewage or wastewater treatment - Google Patents
Method and apparatus for measuring chromaticity in sewage or wastewater treatmentInfo
- Publication number
- JP3422083B2 JP3422083B2 JP18974094A JP18974094A JP3422083B2 JP 3422083 B2 JP3422083 B2 JP 3422083B2 JP 18974094 A JP18974094 A JP 18974094A JP 18974094 A JP18974094 A JP 18974094A JP 3422083 B2 JP3422083 B2 JP 3422083B2
- Authority
- JP
- Japan
- Prior art keywords
- chromaticity
- wavelength
- absorbance
- transmitted light
- color
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は下水処理又は排水処理工
程における色度測定方法及び装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chromaticity measuring method and apparatus in a sewage treatment or wastewater treatment process.
【0002】[0002]
【従来の技術】一般に河川などから取水した原水とか下
水2次処理水を浄化するには、凝集沈殿池で原水中に凝
集剤を注入,混合し、撹拌及び滞留処理により原水中の
懸濁物質(砂,粘土,藻類等の有機物等)を凝集して沈
澱,分離する。このプロセスでは殺藻処理や鉄,マンガ
ンなどの色度成分の除去を目的とした塩素処理が組み込
まれている。2. Description of the Related Art Generally, in order to purify raw water taken from rivers or secondary treated water of sewage, a coagulant is injected and mixed in raw water in a coagulating sedimentation tank, and suspended substances in the raw water are treated by stirring and retaining. (Sand, clay, algae, and other organic matter) are aggregated, precipitated, and separated. This process incorporates chlorine treatment for the purpose of algicidal treatment and removal of chromaticity components such as iron and manganese.
【0003】一方、近年下水道の普及率が高くなるのに
つれて、都市域における水資源として下水処理水の有効
活用が期待されている。特に年間80億m3を越すとい
われる下水処理水は、都市域における安定した水資源と
しての可能性を有しており、さまざまな形態での処理水
再利用の期待がかけられているが、その一つとして修景
用水とか親水用水等への再利用がある。[0003] On the other hand, with the increasing prevalence of sewerage in recent years, effective utilization of sewage treated water is expected as a water resource in urban areas. Especially treated sewage water, which is said to exceed 8 billion m 3 per year, has the potential as a stable water resource in urban areas, and there are expectations for the reuse of treated water in various forms. One of them is reuse for landscape water or hydrophilic water.
【0004】修景用水としての再利用形態は、既存水路
への処理水導入とか堀等の滞水としての利用、公園等の
アメニティ施設の池とか噴水、せせらぎ等の用水として
の使用が考えられる。又、親水用水とは水遊び等の人間
が触れることを前提とした再利用水である。As a form of reuse as scenic water, it is considered that the treated water is introduced into an existing water channel or used as water retention such as a moat, or as water for amenity facilities such as parks, fountains, murmuring, etc. . Further, hydrophilic water is reused water that is presumed to be touched by humans such as playing in water.
【0005】このように下水処理水を修景用水・親水用
水として再利用するには、再利用水の衛生学的安全性と
か感覚的快適性及び再利用技術、補完的な方策について
十分な検討を行う必要がある。As described above, in order to reuse the treated sewage water as scenic water / hydrophilic water, sufficient consideration is given to hygienic safety of the reused water, sensory comfort, reuse technology, and complementary measures. Need to do.
【0006】下水処理水を再利用するため留意すべき基
本的水質項目には、これまでの下水処理水に求められて
いた処理水質に加えて、大腸菌群数とか臭気及び色度等
の除去が問題となる。特に上記大腸菌とか臭気及び色度
の除去には高度処理,例えばオゾン処理により有機物,
無機物の分解を行う方法が考えられ、且つ実際のプラン
トにも採用されている。即ち、オゾンは強い酸化力と殺
菌力を持ち、他の方法に比べて効果的に殺菌、脱臭及び
脱色を行うことができる。特に浄水の分野では、塩素処
理に起因するTHM(トリハロメタン)対策と原水の水
質悪化対策を目的として近時オゾン処理が実用化されて
いる。In order to reuse the treated sewage water, the basic water quality items to be noted are, in addition to the treated water quality required for the treated sewage water up to now, the removal of the number of coliform bacteria, odor and chromaticity. It becomes a problem. Especially, for the removal of the above-mentioned Escherichia coli and odor and chromaticity, high-level treatment, for example, ozone treatment for organic matter,
A method of decomposing inorganic substances has been considered and is also adopted in an actual plant. That is, ozone has a strong oxidizing power and sterilizing power, and can effectively sterilize, deodorize and decolorize as compared with other methods. Particularly in the field of water purification, ozone treatment has recently been put into practical use for the purpose of measures against THM (trihalomethane) caused by chlorine treatment and measures against deterioration of water quality of raw water.
【0007】このような背景から、上述した物質の除去
を目的とする高度処理システムの監視及び制御を実施す
るに際して、色度は重要な指標の一つであり、この色度
を自動的且つ連続的に測定する方法の実現が望まれてい
る。From such a background, chromaticity is one of the important indexes when monitoring and controlling an advanced processing system for the purpose of removing the above-mentioned substances, and this chromaticity is automatically and continuously measured. It is desired to realize a method for measuring in real time.
【0008】色度は本来上水処理において使用されてい
る指標であり、上水試験方法(1985年版)には「色
度とは水中に含まれる溶解性物質及びコロイド性物質が
呈する類黄色ないし黄褐色の程度をいい、主として地質
に由来するフミン質による呈色と同じ色調の色について
測られるものである。」と定義されている。通常精製水
1リットルに色度標準液中の白金1mg及びコバルト
0.5mgを含む時の呈色に相当するものを1度として
いる。[0008] Chromaticity is an index originally used in the treatment of clean water. According to the clean water test method (1985 version), "chromaticity is a kind of yellow or yellow which is exhibited by soluble substances and colloidal substances contained in water. It is the degree of yellow-brown color, and is mainly measured for colors with the same color tone as that of the humic substances derived from the geology. " Usually, one degree corresponds to the coloration when 1 liter of purified water contains 1 mg of platinum and 0.5 mg of cobalt in the chromaticity standard solution.
【0009】上水試験方法による色度測定方法は、一般
に白金・コバルト法を採用するのが通例である。この方
法は色度標準原液として、塩化白金酸カリウム(K2P
tCl6)2.49g及び塩化コバルト(CoCl2・6
H2O)2.02gをメスフラスコ1リットルに採り、
塩酸200mlで溶かした後、精製水を加えて全量を1
リットルとし、この色度標準原液100mlをメスフラ
スコ1リットルに採り、精製水を加えて全量を1リット
ルとして色度標準液として、試料液を比色法により測定
する方法である(上水試験方法4.色度の項を参照)。In general, the platinum / cobalt method is adopted as the method for measuring chromaticity by the water test method. This method uses potassium chloroplatinate (K 2 P
Tcl 6) 2.49 g and cobalt chloride (CoCl 2 · 6
H 2 O) 2.02 g was taken in a 1-liter volumetric flask,
After dissolving with 200 ml of hydrochloric acid, add purified water to bring the total volume to 1
This is a method of measuring 100 ml of this chromaticity standard stock solution in 1 liter of a volumetric flask, adding purified water to bring the total volume to 1 liter and using the chromaticity standard solution as a chromaticity standard solution, and measuring the sample solution by the colorimetric method. 4. See chromaticity section).
【0010】即ち、色度の主原因となるフミン酸の光吸
収の極大は紫外部にあり、可視光の吸収は極めて小さい
が、色度自体は人の感覚に訴える色の程度をいうもので
あるから肉眼により測らなければならない。That is, the maximum light absorption of humic acid, which is the main cause of chromaticity, is in the ultraviolet region and the absorption of visible light is extremely small, but the chromaticity itself is the degree of color appealing to human senses. Because it's there, you have to measure it with the naked eye.
【0011】更に上水試験方法「5.色の単色表示」及
び工場排水試験方法(JIS K0102)「11.色
度」によれば、「色の単色表示とは主波長(色相),刺
激純度及び明度によって表したものをいい、色度の測定
ができない着色水の色の状態を示すもの」と規定されて
いる。主波長とは試料の呈色に最も寄与している光の波
長をいい、色相とは主波長によって呈せられる色の鮮や
かさをいい、明度とは明るさをいう。Further, according to the water supply test method “5. Single color display of color” and the factory drainage test method (JIS K0102) “11. Chromaticity”, “single color display of color means dominant wavelength (hue), stimulation purity”. And the lightness, which indicates the state of the color of colored water for which the chromaticity cannot be measured. " The dominant wavelength refers to the wavelength of light that contributes most to the coloration of the sample, the hue refers to the vividness of the color exhibited by the dominant wavelength, and the lightness refers to the brightness.
【0012】単色表示の測定は、光電分光光度計を用い
て可視光線(400〜700nm)の各波長における検
水の透過率を測定して3刺激値を求め、これから刺激純
度を算定し、併せて明度及び主波長(色相)を求める方
法である。The monochromatic display is measured by measuring the transmittance of the sample water at each wavelength of visible light (400 to 700 nm) using a photoelectric spectrophotometer to obtain three stimulus values. It is a method for obtaining the brightness and the dominant wavelength (hue).
【0013】更に修景用水・親水用水の色度測定法とし
て、平成2年に建設省から出された「下水処理水の修景
・親水利用水質検討マニュアル(案)」では、前記上水
試験方法の「4.色度」の測定方法にしたがうとされて
いる。但し染色排水等が流入する下水処理水については
検討を要する旨の記述がある。Furthermore, as a method for measuring the chromaticity of landscape water / hydrophilic water, in the “Scenic Treatment Water Landscape / Hydrophilic Water Quality Examination Manual (draft)” issued by the Ministry of Construction in 1990, the above-mentioned water supply test was conducted. It is said to follow the measuring method of "4. chromaticity" in the method. However, there is a statement that sewage treatment water, such as dyeing wastewater, needs to be examined.
【0014】又、水道協会雑誌,第62巻第2号(平成
5年2月号)には、厚生省による「水道水質に関する基
準の制定について」と題する記事があり、これによれば
波長390nm付近で吸光度を測定し、色度標準液で作
成した検量線から試料水の色度を算定する方法(以下、
透過光測定法と略称する)が記載されている。In addition, there is an article titled "Establishment of Standards for Water Quality in Tap Water" by the Ministry of Health and Welfare in the Water Supply Association Magazine, Vol. 62, No. 2 (February, 1993 issue), which says that the wavelength is around 390 nm. Method to calculate the chromaticity of the sample water from the calibration curve created with the chromaticity standard solution by measuring the absorbance with
(Abbreviated as transmitted light measurement method).
【0015】[0015]
【発明が解決しようとする課題】しかしながらこのよう
な下水又は排水再利用における色度測定法は、試料水の
連続的な測定は出来ない上、水質等の変動に対する敏速
な対策が不十分となって下水等の高度処理監視,制御用
として必ずしも満足することができないという課題があ
る。更に色調に影響されずに色度を求めることが困難で
あるという問題点がある。However, such a chromaticity measuring method in the reuse of sewage or waste water cannot continuously measure the sample water, and the quick measures against the fluctuation of the water quality are insufficient. There is a problem that it is not always satisfactory for monitoring and controlling advanced treatment of sewage. Further, there is a problem that it is difficult to obtain the chromaticity without being influenced by the color tone.
【0016】例えば前記白金・コバルト法は肉眼での目
視による比色法であり、この目視を透過光量に置き換え
ることは可能であるが、色調の区別はできない。上水処
理では類黄色ないし黄褐色を評価すれば良いが、下水又
は排水再利用の場合には、可視光領域全般の範囲で色度
を評価する必要があり、単なる比色だけでは不十分であ
るものといえる。For example, the platinum-cobalt method is a colorimetric method by visual observation with the naked eye, and this visual observation can be replaced by the amount of transmitted light, but the color tone cannot be distinguished. In clean water treatment, yellowish or yellowish brown color may be evaluated, but in the case of sewage or wastewater reuse, it is necessary to evaluate chromaticity in the entire visible light range, and simple colorimetry is not enough. It can be said that there is.
【0017】特に下水又は排水を高度処理システムによ
り修景用水・親水用水として利用するための監視・制御
用として採用するに際しては、連続的な測定とともに類
黄色,黄褐色以外の色調に対しても評価できることが挙
げられる。オゾン処理等により高度処理された処理水
は、ほとんど類黄色ないし黄褐色であるが、監視・制御
用としては高度処理前の色度も測定する必要があるた
め、他の色調も評価することが要求される。染色排水が
流入する場合は特に上記色調評価の必要性が高い。In particular, when the sewage or wastewater is used as a monitoring / control for using the sewage or drainage as scenic water / hydrophilic water by a high-level treatment system, continuous measurement as well as color tones other than yellowish or yellowish brown can be performed. It can be evaluated. Almost all treated water that has been highly treated by ozone treatment has a yellowish or yellowish brown color, but it is also necessary to measure the chromaticity before advanced treatment for monitoring and control, so it is possible to evaluate other color tones. Required. When dyeing wastewater flows in, the above-mentioned color tone evaluation is highly necessary.
【0018】又、下水等の水質は処理場とか季節、曜日
毎に色調が変化することが多く、この変化に応じて測定
波長とか色度換算式を変更することは煩瑣であって、作
業者の混乱を招く原因となる。Further, the quality of water such as sewage often changes depending on the treatment plant, the season, and the day of the week, and it is troublesome for the operator to change the measurement wavelength or the chromaticity conversion formula according to the change. Cause confusion.
【0019】JIS法(単色表示法)は、色調を評価す
ることができるが、可視光の400〜700nmの範囲
で20nm間隔でのデータが必要であるため、連続的に
測定するには装置が大型化してしまうという難点があ
る。Although the JIS method (monochromatic display method) can evaluate the color tone, it requires data at 20 nm intervals in the range of 400 to 700 nm of visible light. There is a drawback that it becomes large.
【0020】色度測定装置に求められる他の要件とし
て、前記白金・コバルト法による測定と相関性が高いこ
とが挙げられる。即ち、前記建設省から出された「下水
処理水の修景・親水利用水質検討マニュアル(案)」で
は白金・コバルト法を基本としているため、一般的な統
一性を考慮しても上記マニュアルに準拠し、相関性があ
ることが好ましいものと考えられる。Another requirement for the chromaticity measuring device is that it has a high correlation with the measurement by the platinum-cobalt method. In other words, the “Scenic Treatment Water Landscape / Hydrophilic Water Quality Study Manual (Draft)” issued by the Ministry of Construction is based on the platinum / cobalt method, so even if general uniformity is taken into consideration, Conformity and correlation are considered preferable.
【0021】そこで本発明は上記の問題点に鑑み、特に
自動的且つ連続的な測定を可能として下水等の高度処理
監視,制御用として適しており、しかも前記白金・コバ
ルト法による測定と相関性が高い下水又は排水処理にお
ける色度測定方法及び装置を提供することを目的とする
ものである。In view of the above problems, the present invention is particularly suitable for monitoring and controlling advanced treatment of sewage or the like, which enables automatic and continuous measurement, and has correlation with the measurement by the platinum-cobalt method. It is an object of the present invention to provide a method and an apparatus for measuring chromaticity in the treatment of sewage or waste water with high quality.
【0022】[0022]
【課題を解決するための手段】前記課題を解決するため
に、請求項1記載の発明は、試料水の波長370nm〜
410nm及び波長460nmの2点の吸光度を測定
し、得られた吸光度を演算式に基づいて透過光率に換算
してから該透過光率に各波長の感度係数を掛けて色透過
度を算出し、標準液の色度に対して色透過度をプロット
した色度検量線から色度を求める下水又は排水処理にお
ける色度測定方法であって、波長として390nmと4
60nmを用いた場合の色透過度の算出手順は、波長3
90nmにおける3刺激値の感度係数をX390、Y390、
Z390とし、波長460nmにおける感度係数をX460、
Y460、Z460とし、波長として390nmと460nm
の吸光度を換算して得た透過光率T390 、T 460 とし
色透過度(%)=(X390+Y390+Z390)×T390+
(X460+Y460+Z460)×T460 式によって求めることを特徴とする。 In order to solve the above-mentioned problems, the invention according to claim 1 has a wavelength of sample water of 370 nm to
Absorbance at two points of 410 nm and a wavelength of 460 nm is measured, the obtained absorbance is converted into a transmitted light rate based on an arithmetic expression, and then the transmitted light rate is multiplied by a sensitivity coefficient of each wavelength to calculate a color transmittance. A method for measuring chromaticity in sewage or wastewater treatment, in which the chromaticity is obtained from a chromaticity calibration curve in which the color transmittance is plotted against the chromaticity of a standard solution, and the wavelength is 390 nm and 4
The calculation procedure of the color transmittance when 60 nm is used is as follows:
The sensitivity coefficient of the three stimulus values at 90 nm is X 390 , Y 390 ,
Z 390 , the sensitivity coefficient at a wavelength of 460 nm is X 460 ,
Y 460 and Z 460 , with wavelengths of 390 nm and 460 nm
Transmittances T 390 and T 460 obtained by converting the absorbance of ## EQU1 ## Color transmittance (%) = (X 390 + Y 390 + Z 390 ) × T 390 +
It is characterized by being obtained by the formula (X 460 + Y 460 + Z 460 ) × T 460 .
【0023】また、請求項3記載の発明は、試料水が流
入する測定セルの一方に集光レンズを介在して配置され
た光源と、該測定セルの他方に集光レンズを介在して配
置された受光素子と、該受光素子と集光レンズとの間に
配置され、2つ以上の波長から目的とする波長を選択す
る波長選択フィルタと、選択された特定の波長における
吸光度を受光素子の受光データとして受け入れて、得ら
れた吸光度を演算式に基づいて透過光率に換算し、各波
長の感度係数を掛けて色透過度を算出し、標準液の色度
に対して色透過度をプロットした色度検量線から色度を
求めて出力する演算及び制御信号出力部と、を具備し、
波長として390nmと460nmを用いた場合の色透
過度を下記の演算によって算出することを特徴とする下
水又は排水処理における色度測定装置を提供する。
色透過度(%)=(X390+Y390+Z390)×T390+
(X460+Y460+Z460)×T460 X 390 、Y 390 、Z 390 :波長390nmにおける3刺激
値の感度係数 X 460 、Y 460 、Z 460 :波長460nmにおける感度係
数 T 390 :波長390nmの吸光度を換算して得た透過光
率 T 460 :波長460nmの吸光度を換算して得た透過光
率 ここで、請求項1及び3記載の発明において、前記によ
り測定された吸光度(Abs)を透過光率(%)に換算
するための演算式は、透過光率(%)=10 -(Abs) とす
るとよい。 Further, in the invention according to claim 3, a light source is arranged in one of the measuring cells into which the sample water flows, with a condenser lens interposed, and a light source is arranged in the other of the measuring cells with a condenser lens interposed. A light receiving element, a wavelength selection filter arranged between the light receiving element and the condenser lens to select a target wavelength from two or more wavelengths, and an absorbance at the selected specific wavelength of the light receiving element. Accepted as received light data, the obtained absorbance is converted into the transmitted light rate based on an arithmetic expression, and the color transmittance is calculated by multiplying by the sensitivity coefficient of each wavelength, and the color transmittance is calculated with respect to the chromaticity of the standard solution. And a calculation and control signal output unit for obtaining and outputting chromaticity from the plotted chromaticity calibration curve,
Color transmission when wavelengths of 390 nm and 460 nm are used
The following is characterized by calculating the excess by the following calculation.
Provided is a chromaticity measuring device for water or wastewater treatment . Color transmittance (%) = (X 390 + Y 390 + Z 390 ) × T 390 +
(X 460 + Y 460 + Z 460 ) × T 460 X 390 , Y 390 , Z 390 : 3 stimuli at a wavelength of 390 nm
Value sensitivity coefficients X 460 , Y 460 , Z 460 : Sensitivity coefficient at wavelength of 460 nm
Number T 390 : Transmitted light obtained by converting the absorbance at a wavelength of 390 nm
Ratio T 460 : Transmitted light obtained by converting the absorbance at a wavelength of 460 nm
Rate where, in the invention of claim 1 and 3 wherein, in the
Convert the measured absorbance (Abs) into transmitted light rate (%)
Arithmetic expressions for the transmitted light rate (%) = 10 - to the (Abs)
It is good.
【0024】[0024]
【作用】かかる色度測定方法及び測定装置によれば、色
度を測定すべき試料水が測定セル内に入り、波長選択フ
ィルタによって予め設定された波長を選択してから光源
を点灯することにより、光源から発した光が集光レンズ
から測定セル内に入り、試料水を透過してから集光レン
ズ及び波長選択フィルタを介して受光素子に受け止めら
れ、選択された特定の波長における吸光度が受光素子の
受光データとして得られる。この吸光度が演算及び制御
信号出力部に入力されて演算式に基づいて透過光率に換
算され、各波長の感度係数を掛けて色透過度が算出さ
れ、標準液の色度に対して色透過度をプロットした色度
検量線から色度値が求められる。According to such a chromaticity measuring method and measuring apparatus, the sample water whose chromaticity is to be measured enters the measuring cell, the wavelength preset by the wavelength selection filter is selected, and then the light source is turned on. , The light emitted from the light source enters the measuring cell through the condenser lens, passes through the sample water, and is received by the light receiving element through the condenser lens and the wavelength selection filter, and the absorbance at the selected specific wavelength is received. It is obtained as light reception data of the element. This absorbance is input to the calculation and control signal output unit, converted into the transmitted light rate based on the calculation formula, and the color transmittance is calculated by multiplying the sensitivity coefficient of each wavelength, and the color transmission is compared with the chromaticity of the standard solution. The chromaticity value is obtained from the chromaticity calibration curve in which the degree is plotted.
【0025】[0025]
【実施例】以下図面に基づいて本発明にかかる色度測定
方法を適用した測定装置の具体的な実施例を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment of a measuring apparatus to which the chromaticity measuring method according to the present invention is applied will be described below with reference to the drawings.
【0026】図1は本実施例を適用した色度自動測定装
置の構成例を示す概要図であり、図中の1は測定セルで
あって、この測定セル1の両側には集光レンズ2,3が
配置されている。4は集光レンズ2に近接して配置され
た光源,5は集光レンズ3に近接して配置された受光素
子,6は集光レンズ3と受光素子5間に配置された波長
選択フィルタ,7はステッピングモータ,8は演算及び
制御信号出力部,9は浮遊物除去フィルタである。波長
選択フィルタ6は2つ以上の波長から目的とする波長を
選択するために配置されている。FIG. 1 is a schematic diagram showing a structural example of an automatic chromaticity measuring apparatus to which this embodiment is applied. In the figure, 1 is a measuring cell, and condenser lenses 2 are provided on both sides of this measuring cell 1. , 3 are arranged. Reference numeral 4 is a light source arranged in the vicinity of the condenser lens 2, 5 is a light receiving element arranged in the vicinity of the condenser lens 3, 6 is a wavelength selection filter arranged between the condenser lens 3 and the light receiving element 5, Reference numeral 7 is a stepping motor, 8 is a calculation and control signal output unit, and 9 is a suspended matter removal filter. The wavelength selection filter 6 is arranged to select a target wavelength from two or more wavelengths.
【0027】これを具体的に述べると、詳細は後述する
ように、波長選択フィルタ6は可視光波長域内での一つ
又は二つ以上の波長での吸光度を測定するためのもので
あって、本例では試料水の波長370nm〜410nm
及び波長460nmの2点の吸光度を測定することを基
本としている。More specifically, as will be described later in detail, the wavelength selection filter 6 is for measuring the absorbance at one or more wavelengths in the visible light wavelength range, In this example, the wavelength of the sample water is 370 nm to 410 nm
And measuring the absorbance at two points with a wavelength of 460 nm.
【0028】かかる測定装置による色度測定時の操作概
要は以下の通りである。即ち色度を測定すべき試料水1
0は先ず浮遊物除去フィルタ9によって濾過された後、
管路11を経由して測定セル1の底壁側からセル内に入
る。この時に余分な試料水10はオーバーフロー管12
を介して溢流する。The outline of the operation at the time of measuring the chromaticity by such a measuring device is as follows. That is, sample water 1 whose chromaticity should be measured
0 is first filtered by the suspended matter removal filter 9 and then
It enters into the cell from the bottom wall side of the measuring cell 1 via the conduit 11. At this time, excess sample water 10 is overflow pipe 12
Overflow through.
【0029】そしてステッピングモータ7の駆動により
波長選択フィルタ6を回転させ、この波長選択フィルタ
6により、予め設定された波長を選択してから光源4を
点灯する。これらステッピングモータ7の駆動及び光源
4の点灯は、演算及び制御信号出力部8の出力信号に基
づいて行われる。Then, the wavelength selection filter 6 is rotated by driving the stepping motor 7, and the wavelength selection filter 6 selects a preset wavelength before turning on the light source 4. The driving of the stepping motor 7 and the lighting of the light source 4 are performed based on the output signal of the calculation and control signal output unit 8.
【0030】すると光源4から発した光が集光レンズ2
から測定セル1内に入り、試料水10を透過してから集
光レンズ3及び波長選択フィルタ6を介して受光素子5
に受け止められ、選択された特定の波長における吸光度
が受光素子5の受光データとして演算及び制御信号出力
部8に入力されて、以下に説明する測定原理に基づいて
色度値が算定される。Then, the light emitted from the light source 4 is condensed by the condenser lens 2.
From inside to the measurement cell 1 and through the sample water 10 and then through the condenser lens 3 and the wavelength selection filter 6 to the light receiving element 5
The light absorbency at the selected specific wavelength is input to the calculation and control signal output unit 8 as the light reception data of the light receiving element 5, and the chromaticity value is calculated based on the measurement principle described below.
【0031】以下に本実施例における色度測定の根拠と
なる各種データの解析結果を説明する。The analysis results of various data which are the basis of the chromaticity measurement in this embodiment will be described below.
【0032】図2は下水2次処理水を一定の条件下でオ
ゾン処理し、各オゾン処理時間毎(図示例では20分ご
と)に試料を採水して白金コバルト法(比色法)と透過
光測定法を用いて色度を測定した結果を比較したグラフ
である。図2によれば上記両測定法の測定結果が一致し
ておらず、且つオゾンによる脱色の過程も異なっている
ものと考えられる。In FIG. 2, the sewage secondary treated water is subjected to ozone treatment under constant conditions, and a sample is taken at each ozone treatment time (every 20 minutes in the illustrated example) to obtain a platinum cobalt method (colorimetric method). It is a graph which compared the result of having measured chromaticity using the transmitted light measuring method. According to FIG. 2, it is considered that the measurement results of the above two measurement methods do not match, and the process of decolorization by ozone is different.
【0033】上記の測定結果の相違を白金コバルト標準
液と試料水との吸光度スペクトルの比較に基づいて説明
する。図3は図2と同じ試料水と白金コバルト標準液に
ついて、波長350nm〜800nmの50mmセルに
おける吸光度スペクトルを示したグラフであり、両グラ
フを比較すると、透過光測定法での測定波長である39
0nmの吸光度はほぼ一致しているが、白金コバルト標
準液は波長460nmでいったん弱いピークを示した
後、550nmから長波長側で吸光度がゼロになってい
るのに対して、試料水では800nm付近まで吸光度が
裾を引いた状態になっている。The difference in the above measurement results will be explained based on the comparison of the absorbance spectra of the platinum cobalt standard solution and the sample water. FIG. 3 is a graph showing an absorbance spectrum in a 50 mm cell having a wavelength of 350 nm to 800 nm for the same sample water and platinum cobalt standard solution as in FIG. 2, and comparing both graphs, the measured wavelength in the transmitted light measurement method is 39.
The absorbance at 0 nm is almost the same, but the platinum-cobalt standard solution once shows a weak peak at a wavelength of 460 nm and then becomes zero on the long wavelength side from 550 nm. The absorbance has reached the bottom.
【0034】比色法によっても上記吸光度スペクトルの
差に相当する色調の相違が見られ(試料水はくすんだ黄
褐色となった)、白金コバルト法での色度の決定が困難
であることが判明した。A difference in color tone corresponding to the difference in the above-mentioned absorbance spectra was also observed by the colorimetric method (the sample water became a dull yellowish brown color), and it was difficult to determine the chromaticity by the platinum-cobalt method. found.
【0035】そこで図3に示した吸光度スペクトルが人
の視覚にどのように映るか考察する。図4は視覚細胞の
光の波長に対する感度、即ち人の視覚細胞が受ける3刺
激値の感度係数(%)と波長(nm)の相関をプロット
したグラフであり、この例では感度が最大のものを10
0%とし、相対的な割合で表わしている。Therefore, let us consider how the absorbance spectrum shown in FIG. 3 appears in human vision. FIG. 4 is a graph plotting the sensitivity of the visual cells to the wavelength of light, that is, the correlation between the sensitivity coefficient (%) of the three stimulus values received by human visual cells and the wavelength (nm). 10
It is set to 0% and is expressed as a relative ratio.
【0036】3刺激値とは、眼が色から受ける刺激が主
として赤色に強く感じるもの、緑色に強く感じるもの及
び青紫色に強く感じるものとがあり、これら3種類の刺
激の混合の割合によって感覚的に識別されるものである
ため、眼に対してそれぞれの刺激を与える光の波長群を
X,Y,Zの系列にまとめ、各波長の光における検水の
透過率を系列毎に集計して得た値に係数を乗じて求めた
ものである。The three stimulus values mean that the stimulus that the eye receives from the color mainly has a strong red sensation, a strong green sensation and a bluish purple sensation. The sensation depends on the mixing ratio of these three stimuli. Therefore, the wavelength groups of light that give each stimulus to the eye are grouped into X, Y, and Z series, and the transmittance of the sample water for each wavelength of light is tabulated for each series. It is obtained by multiplying the obtained value by a coefficient.
【0037】これを更に述べると、人の網膜には錘体と
いう視覚に関与する視細胞があり、3つの色に反応す
る。これを通常3刺激と呼び、赤に反応するXは580
nm付近の波長の光に最大の感度を持ち、緑に反応する
Yは540nm、青に反応するZは440nm付近の波
長の光に最大の感度をもっている。上記3色の合成で人
は色を感じ、区別することができる。そして同じ強さの
光を受けても視覚細胞が受け取る光の量は波長によって
異なってくることが明らかとなっている(技報堂出版発
行,色のはなし編集委員会編,色のはなし1を参照)。To further describe this, the human retina has cones, which are photoreceptor cells involved in vision, and respond to three colors. This is usually called tristimulus, and the X that responds to red is 580
It has the maximum sensitivity to light having a wavelength near nm, Y reacting with green has a maximum sensitivity of 540 nm, and Z reacting with blue has a maximum sensitivity to light having a wavelength near 440 nm. A person can perceive and distinguish the colors by combining the above three colors. And it has been clarified that the amount of light received by visual cells varies with wavelength even if it receives light of the same intensity (see Gihodo Publishing, edited by Color Story Editor, Color Story 1). .
【0038】そこで本実施例では、上記に鑑みて人の視
覚感度を考慮した色度換算方法を求めることを主眼とし
て以下の方法を実施した。先ず白金コバルト標準液の特
徴的な傾向を示す390nmと、460nmの測定波長
について試料水の吸光度を前記図1の測定装置を利用し
て測定する。実際に人の視覚に映るのは試料を透過して
くる光の波長である。次に次式を用いて吸光度(Ab
s)を透過光率(%)に換算する。In view of the above, in the present embodiment, the following method was implemented with the main object of obtaining a chromaticity conversion method in consideration of human visual sensitivity. First, the absorbance of sample water is measured at the measurement wavelengths of 390 nm and 460 nm, which show the characteristic tendency of the platinum-cobalt standard solution, using the measuring device of FIG. What is actually reflected in human vision is the wavelength of the light transmitted through the sample. Next, the absorbance (Ab
s) is converted into transmitted light rate (%).
【0039】
透過光率(%)=10-(Abs))・・・・・・・・・・・・・・(1)
次に得られた透過光率を図4によって求められる各波長
の感度係数を掛けて色透過度を算出する。この算出手順
を以下に説明する。即ち図4から390nmにおける感
度係数X390=0(%)、Y390=0(%)、Z390=
1.5(%)であり、460nmにおける感度係数X
460=16(%)、Y460=6.5(%)、Z460=88
(%)である。この値を用いて次式により色透過度を求
める。Transmitted light rate (%) = 10 − (Abs)) (1) Next, the obtained transmitted light rate of each wavelength is obtained from FIG. The color transmittance is calculated by multiplying by the sensitivity coefficient. This calculation procedure will be described below. That is, from FIG. 4, sensitivity coefficients X 390 = 0 (%), Y 390 = 0 (%), and Z 390 = at 390 nm.
1.5 (%), sensitivity coefficient X at 460 nm
460 = 16 (%), Y 460 = 6.5 (%), Z 460 = 88
(%). Using this value, the color transmittance is calculated by the following equation.
【0040】
色透過度(%)=(X390+Y390+Z390)×T390+
(X460+Y460+Z460)×T460・・・・・(2)
ここでX,Y,Zは感度係数、Tは透過光率、添字は波
長を示す。Color transmittance (%) = (X 390 + Y 390 + Z 390 ) × T 390 +
(X 460 + Y 460 + Z 460 ) × T 460 (2) Here, X, Y, and Z are sensitivity coefficients, T is the transmitted light ratio, and the subscript indicates the wavelength.
【0041】表1は白金コバルト色度標準液の各色度0
〜100度について、吸光度(E390,E460)と
透過光率(T390,T460)及び色透過度(%)を
測定した結果を示している。Table 1 shows that each chromaticity of the platinum-cobalt chromaticity standard solution is 0.
The results of measuring the absorbance (E390, E460), the transmitted light rate (T390, T460), and the color transmittance (%) are shown for -100 degrees.
【0042】[0042]
【表1】 [Table 1]
【0043】図5は表1に示された標準液の色度に対し
て色透過度をプロットした検量線グラフである。図示し
たように色度(度)と色透過度(%)は良い相関を示し
ており、この直線に基づいて色透過度から色度を求める
ことが可能となる。直線式及び相関係数は以下の通りと
なっている。FIG. 5 is a calibration curve graph in which the color transmittance is plotted against the chromaticity of the standard solution shown in Table 1. As shown in the figure, the chromaticity (degree) and the color transmittance (%) show a good correlation, and the chromaticity can be obtained from the color transmittance based on this straight line. The linear equation and correlation coefficient are as follows.
【0044】
色透過度(%)=−0.3062×(色度)+111.
9837・・・・・(3)
相関係数=0.99896
以上の方法を用いて実際の試料水の色度を求めた。図6
は図2,図3と同じ試料水について50mmセルで39
0nmと460nmの吸光度を測定し、前記式(1)
(2)から色透過度を算出した後、前記(3)式によっ
て換算した色度のオゾン処理時間(分)に対する変化を
示しており、同時に比較のために白金コバルト法と透過
光測定法で求めた色度の変化も示した。Color transmittance (%) = − 0.3062 × (chromaticity) +111.
9837 (3) Correlation coefficient = 0.99896 The chromaticity of the actual sample water was determined using the above method. Figure 6
Is the same as in Fig. 2 and Fig.
The absorbance at 0 nm and 460 nm was measured, and the above formula (1) was used.
After calculating the color transmittance from (2), the change in chromaticity converted by the equation (3) with respect to the ozone treatment time (minutes) is shown. At the same time, the platinum cobalt method and the transmitted light measurement method are used for comparison. The change in chromaticity obtained is also shown.
【0045】図6によれば、色透過度から求めた色度が
白金コバルト法によって求めた色度とかなり一致してい
ることが分かる。特に色透過度から色度を求めた場合に
は、オゾン処理が進んでいない時に比色法では色度の決
定が困難な試料水でも評価が可能であるという利点を有
している。According to FIG. 6, it can be seen that the chromaticity obtained from the color transmittance substantially agrees with the chromaticity obtained by the platinum-cobalt method. In particular, when the chromaticity is obtained from the color transmittance, there is an advantage that it is possible to evaluate even sample water for which it is difficult to determine the chromaticity by the colorimetric method when the ozone treatment is not progressing.
【0046】以上の結果から、本実施例では測定波長3
90nm、460nmの2点の吸光度(透過光率)を測
定し、人の視覚する光の波長に対する感度係数から色透
過度を算出して、白金コバルト色度標準液で検量して色
度に換算する方法を確立した。吸光度の測定に用いるセ
ルは50mmセルとしたが、試料水の色の濃度に応じて
適当なセル長を選択使用する。つまり色が薄い場合には
50mm以上のセルを採用し、色が濃い場合には50m
m以下のセルを採用して、新たに白金コバルト標準液を
用いた検量線を作成し、色度を求める。From the above results, in this embodiment, the measurement wavelength was 3
The absorbance (transmitted light rate) at two points of 90 nm and 460 nm is measured, and the color transmittance is calculated from the sensitivity coefficient for the wavelength of the light visually perceived by humans, and the color is calibrated by calibrating with a platinum-cobalt chromaticity standard solution. Established a way to do. The cell used for measuring the absorbance was a 50 mm cell, but an appropriate cell length is selected and used according to the color density of the sample water. In other words, if the color is light, use a cell of 50 mm or more, and if the color is dark, 50 m or more.
Using a cell of m or less, a calibration curve is newly prepared using a platinum-cobalt standard solution, and the chromaticity is obtained.
【0047】更に測定波長390nmは上水の透過光測
定法に基づく波長であるが、通常は370nm〜410
nm付近の波長が色度の換算に適しているとされてお
り、従って測定は390nmに限定されるものではな
く、上記の範囲内の任意の波長を採用すれば良い。Further, the measurement wavelength of 390 nm is a wavelength based on the method for measuring transmitted light of tap water, but it is usually 370 nm to 410.
It is said that a wavelength in the vicinity of nm is suitable for chromaticity conversion, and therefore the measurement is not limited to 390 nm, and any wavelength within the above range may be adopted.
【0048】[0048]
【発明の効果】以上詳細に説明したように、本発明によ
れば色度を測定する試料水を測定セル内で波長選択フィ
ルタによって選択された波長に基づく光の透過と、選択
された特定の波長における受光素子の受光データに基づ
く吸光度から演算及び検量線手段によって色度値を連続
的に測定することができる。特に本実施例では人の視覚
感度を考慮した色度換算方法を採用しており、視覚に映
る試料を透過した光の波長である試料水の吸光度を透過
光率に換算し、この透過光率に各波長の感度係数を掛け
て色透過度を算出し、標準液の色度に対して色透過度を
プロットした色度検量線から色度を求めているため、人
の視覚が受ける印象により近い色度の評価が可能とな
る。As described in detail above, according to the present invention, the sample water whose chromaticity is to be measured transmits the light based on the wavelength selected by the wavelength selection filter in the measuring cell and the selected specific water. The chromaticity value can be continuously measured by the calculation and calibration curve means from the absorbance based on the received light data of the light receiving element at the wavelength. In particular, in this embodiment, a chromaticity conversion method considering human visual sensitivity is adopted, and the absorbance of the sample water, which is the wavelength of the light transmitted through the sample visually, is converted into the transmitted light rate, and the transmitted light rate Is calculated by multiplying the sensitivity coefficient of each wavelength to the color transmittance, and the chromaticity is obtained from the chromaticity calibration curve in which the color transmittance is plotted against the chromaticity of the standard solution. It is possible to evaluate near chromaticity.
【0049】更に下水又は排水再利用のように類黄色な
いし黄褐色のみの評価では不十分であって可視光領域全
般の範囲で色度を評価したり色調の区別をするという要
求にも満足することができ、水質の変動に関係なく吸光
度のみから色度が換算されるので汎用性が高いという効
果が得られる。Further, it is not sufficient to evaluate only yellowish or yellowish brown color such as reuse of sewage or waste water, and the demand for evaluating chromaticity and distinguishing color tone in the entire visible light range is satisfied. Since the chromaticity is converted from only the absorbance regardless of the change in water quality, the effect of high versatility can be obtained.
【0050】従来の単に肉眼での目視による比色法とは
異なって客観的な測定が可能であり、可視光の400〜
700nmの範囲での吸光度測定データを装置の大型化
を必要とせずに連続的に測定可能で、しかも類黄色,黄
褐色以外の色調に対しても評価可能となり、オゾン処理
を含む下水等の高度処理監視,制御用として求められる
要件を満足しており、且つ白金・コバルト法による測定
と相関性が高いので、一般的な統一性の面からも好まし
い色度測定方法及び装置を提供することができる。Unlike the conventional naked-eye colorimetric method, objective measurement is possible, and visible light of 400 to 400
It is possible to continuously measure the absorbance measurement data in the range of 700 nm without the need to upsize the device, and it is possible to evaluate the color tone other than yellowish or yellowish brown. Since it satisfies the requirements for processing monitoring and control and has a high correlation with the measurement by the platinum-cobalt method, it is possible to provide a preferable chromaticity measuring method and apparatus in terms of general uniformity. it can.
【図面の簡単な説明】[Brief description of drawings]
【図1】本実施例にかかる色度測定装置の構成例を示す
概要図。FIG. 1 is a schematic diagram showing a configuration example of a chromaticity measuring device according to this embodiment.
【図2】試料を各オゾン処理時間毎に白金コバルト法と
透過光測定法を用いて色度を測定した結果を比較したグ
ラフ。FIG. 2 is a graph comparing the results of measuring the chromaticity of a sample for each ozone treatment time using a platinum cobalt method and a transmitted light measurement method.
【図3】試料水と白金コバルト標準液について、波長3
50nm〜800nmの吸光度スペクトルを示すグラ
フ。[Figure 3] Wavelength 3 for sample water and platinum-cobalt standard solution
The graph which shows the light absorption spectrum of 50 nm-800 nm.
【図4】人の視覚細胞が受ける3刺激値の感度係数と波
長の相関をプロットしたグラフ。FIG. 4 is a graph plotting the correlation between the sensitivity coefficient of three stimulus values received by human visual cells and the wavelength.
【図5】標準液の色度に対して色透過度をプロットした
検量線グラフ。FIG. 5 is a calibration curve graph in which the color transmittance is plotted against the chromaticity of the standard solution.
【図6】本実施例に基づいてオゾン処理時間に対する試
料水の色度変化をプロットしたグラフ。FIG. 6 is a graph plotting changes in chromaticity of sample water with respect to ozone treatment time based on this example.
1…測定セル 2,3…集光レンズ 4…光源 5…受光素子 6…波長選択フィルタ 7…ステッピングモータ 8…演算及び制御信号出力部 9…浮遊物除去フィルタ 10…試料水 12…オーバーフロー管 1 ... Measuring cell 2, 3 ... Condensing lens 4 ... Light source 5 ... Light receiving element 6 ... Wavelength selection filter 7 ... Stepping motor 8 ... Calculation and control signal output section 9 ... Floating matter removal filter 10 ... Sample water 12 ... Overflow pipe
───────────────────────────────────────────────────── フロントページの続き (72)発明者 野口 寛 東京都品川区大崎2丁目1番17号 株式 会社明電舎内 (56)参考文献 特開 平4−315020(JP,A) 特開 平3−189542(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/61 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Noguchi 2-17 Osaki, Shinagawa-ku, Tokyo Meidensha Co., Ltd. (56) Reference JP-A-4-315020 (JP, A) JP-A-3- 189542 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 21/00-21/61
Claims (4)
び波長460nmの2点の吸光度を測定し、得られた吸
光度を演算式に基づいて透過光率に換算してから該透過
光率に各波長の感度係数を掛けて色透過度を算出し、標
準液の色度に対して色透過度をプロットした色度検量線
から色度を求める下水又は排水処理における色度測定方
法であって、 波長として390nmと460nmを用いた場合の色透
過度の算出手順は、波長390nmにおける3刺激値の
感度係数をX390、Y390、Z390とし、波長460nm
における感度係数をX460、Y460、Z460とし、波長と
して390nmと460nmの吸光度を換算して得た透
過光率T 390 、T 460 とし 色透過度(%)=(X390+Y390+Z390)×T390+
(X460+Y460+Z460)×T460 式によって求めることを特徴とする下水又は排水処理に
おける色度測定方法。1. The absorbance of sample water at two points of 370 nm to 410 nm and 460 nm is measured, and the obtained absorbance is converted into a transmitted light rate based on an arithmetic expression, and then the transmitted light rate of each wavelength is calculated. This is a method for measuring chromaticity in sewage or wastewater treatment, in which the color transmittance is calculated by multiplying the sensitivity coefficient, and the chromaticity is obtained from the chromaticity calibration curve in which the color transmittance is plotted against the chromaticity of the standard solution. The calculation procedure of the color transmittance when 390 nm and 460 nm are used is that the sensitivity coefficient of the tristimulus value at the wavelength of 390 nm is X 390 , Y 390 , and Z 390 , and the wavelength is 460 nm.
The sensitivity coefficients in the X 460, Y 460, Z 460 , and the wavelength
The absorbance obtained by converting the absorbance at 390 nm and 460 nm
With light transmittance T 390 and T 460 , color transmittance (%) = (X 390 + Y 390 + Z 390 ) × T 390 +
(X 460 + Y 460 + Z 460 ) × T 460 The method for measuring chromaticity in sewage or wastewater treatment, characterized by the formula.
を透過光率(%)に換算するための演算式は 透過光率(%)=10-(Abs) であることを特徴する請求項1記載の下水又は排水処理
における色度測定方法。2. Absorbance (Abs) measured by the above
2. The method for measuring chromaticity in sewage or wastewater treatment according to claim 1, wherein an arithmetic expression for converting the above into a transmitted light rate (%) is a transmitted light rate (%) = 10 − (Abs) .
レンズを介在して配置された光源と、 該測定セルの他方に集光レンズを介在して配置された受
光素子と、 該受光素子と集光レンズとの間に配置され、2つ以上の
波長から目的とする波長を選択する波長選択フィルタ
と、 選択された特定の波長における吸光度を受光素子の受光
データとして受け入れて、得られた吸光度を演算式に基
づいて透過光率に換算し、各波長の感度係数を掛けて色
透過度を算出し、標準液の色度に対して色透過度をプロ
ットした色度検量線から色度を求めて出力する演算及び
制御信号出力部と、を具備し、 波長として390nmと460nmを用いた場合の色透
過度を下記の演算によって算出すること を特徴とする下
水又は排水処理における色度測定装置。 色透過度(%)=(X390+Y390+Z390)×T390+
(X460+Y460+Z460)×T460 X 390 、Y 390 、Z 390 :波長390nmにおける3刺激
値の感度係数 X 460 、Y 460 、Z 460 :波長460nmにおける感度係
数 T 390 :波長390nmの吸光度を換算して得た透過光
率 T 460 :波長460nmの吸光度を換算して得た透過光
率 3. A light source in which the sample water is arranged by interposing one the condenser lens of the measuring cell flowing, a light receiving element disposed interposing a condenser lens to the other of the measuring cell, the photodetection A wavelength selection filter arranged between an element and a condenser lens to select a target wavelength from two or more wavelengths.
And, the absorbance at the selected specific wavelength is accepted as the received light data of the light receiving element, the obtained absorbance is converted to the transmitted light rate based on the arithmetic expression, and the color transmittance is calculated by multiplying it by the sensitivity coefficient of each wavelength. In the case of using 390 nm and 460 nm as wavelengths , a calculation and control signal output unit that obtains and outputs chromaticity from a chromaticity calibration curve in which color transmittance is plotted against chromaticity of a standard solution is output . Color transparency
A chromaticity measuring device for sewage or wastewater treatment, which is characterized by calculating the excess by the following calculation . Color transmittance (%) = (X 390 + Y 390 + Z 390 ) × T 390 +
(X 460 + Y 460 + Z 460 ) × T 460 X 390 , Y 390 , Z 390 : 3 stimuli at a wavelength of 390 nm
Value sensitivity coefficients X 460 , Y 460 , Z 460 : Sensitivity coefficient at wavelength of 460 nm
Number T 390 : Transmitted light obtained by converting the absorbance at a wavelength of 390 nm
Ratio T 460 : Transmitted light obtained by converting the absorbance at a wavelength of 460 nm
rate
を下記の演算によって透過光率(%)に換算することを
特徴する請求項3記載の下水又は排水処理における色度
測定装置。 透過光率(%)=10-(Abs) 4. Absorbance (Abs) measured by the above
The chromaticity measuring device for sewage or wastewater treatment according to claim 3 , wherein is converted into a transmitted light rate (%) by the following calculation . Transmitted light rate (%) = 10- (Abs)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18974094A JP3422083B2 (en) | 1994-08-12 | 1994-08-12 | Method and apparatus for measuring chromaticity in sewage or wastewater treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18974094A JP3422083B2 (en) | 1994-08-12 | 1994-08-12 | Method and apparatus for measuring chromaticity in sewage or wastewater treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0852481A JPH0852481A (en) | 1996-02-27 |
JP3422083B2 true JP3422083B2 (en) | 2003-06-30 |
Family
ID=16246393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18974094A Expired - Fee Related JP3422083B2 (en) | 1994-08-12 | 1994-08-12 | Method and apparatus for measuring chromaticity in sewage or wastewater treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3422083B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103792233A (en) * | 2014-03-04 | 2014-05-14 | 河南工业大学 | Device and method for simultaneously detecting potassium bromate and benzoyl peroxide in wheat meal |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5176182B2 (en) * | 2008-03-04 | 2013-04-03 | 独立行政法人土木研究所 | Algae growth suppression method and apparatus for treated sewage water |
JP5463243B2 (en) * | 2010-08-30 | 2014-04-09 | 株式会社日立製作所 | Aluminum automatic measuring device |
CN103792199B (en) * | 2014-02-19 | 2016-05-11 | 杭州富铭环境科技有限公司 | A kind of water monitoring device based on colorimetric method |
CN105300896B (en) * | 2015-11-10 | 2019-05-17 | 广东省生物资源应用研究所 | A kind of gutter oil EO-1 hyperion transmission rapid detection method |
JP2019215298A (en) * | 2018-06-14 | 2019-12-19 | 栗田工業株式会社 | Measurement method and measurement device for residual chlorine concentration |
TWI700489B (en) * | 2018-10-29 | 2020-08-01 | 林修安 | Device for instantaneously inspecting waste quality and recovery device and method using the same |
-
1994
- 1994-08-12 JP JP18974094A patent/JP3422083B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103792233A (en) * | 2014-03-04 | 2014-05-14 | 河南工业大学 | Device and method for simultaneously detecting potassium bromate and benzoyl peroxide in wheat meal |
CN103792233B (en) * | 2014-03-04 | 2015-11-25 | 河南工业大学 | Pick-up unit and detection method while potassium bromate and benzoyl peroxide in wheat flour |
Also Published As
Publication number | Publication date |
---|---|
JPH0852481A (en) | 1996-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3842492B2 (en) | Algae concentration measurement system | |
CA2619753C (en) | Ultraviolet irradiation system and water quality monitoring instrument | |
Bieroza et al. | Relating freshwater organic matter fluorescence to organic carbon removal efficiency in drinking water treatment | |
Carignan et al. | Planktonic production and respiration in oligotrophic Shield lakes | |
US9696261B2 (en) | Multi-channel device and method for measuring optical properties of a liquid | |
EP0443593B1 (en) | Method and apparatus for detecting flocculation process of components in liquid | |
Pérez-Caballero et al. | Proposal for a new standard OIV method for determination of chromatic characteristics of wine | |
Seredyńska-Sobecka et al. | Monitoring organic loading to swimming pools by fluorescence excitation–emission matrix with parallel factor analysis (PARAFAC) | |
Nagels et al. | A water quality index for contact recreation in New Zealand | |
KR101224855B1 (en) | Apparatus for measuring algae using multi wavelength source of light | |
JP3422083B2 (en) | Method and apparatus for measuring chromaticity in sewage or wastewater treatment | |
CN100538335C (en) | COD assay method and device | |
Davies-Colley et al. | Optical characteristics of waste stabilization ponds: recommendations for monitoring | |
KR102148992B1 (en) | device that tests drinking water using color and turbidity | |
JPH07198593A (en) | Chromaticity measuring method and apparatus in sewage or drain disposal | |
Crowther et al. | Estimating color in Hazen units by spectrophotometry | |
JP2004156912A (en) | Method and apparatus for measuring bod and method and apparatus for treating waste water | |
JPH0868788A (en) | Tap water color and turbidity detector | |
Nakajima et al. | Excitation-emission fluorescence spectra and trihalomethane formation potential in the Tama River, Japan | |
JP3223726B2 (en) | Method and apparatus for measuring ultraviolet absorbance for process | |
JPH08136526A (en) | Continuous measuring apparatus for concentration of dissolved ozone | |
Mitchell et al. | Relationship between different methods of colour measurement in potable water | |
M G et al. | Evaluation of some chemical properties of wastewater in Chad | |
KR20010008766A (en) | Automatic Determination Method Device for Chlorine Demand Quantity of Water Treatment Plant | |
JP3374939B2 (en) | Dilution degree measuring device by dilution method and its measuring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080425 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100425 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |