JP3410171B2 - Method for producing rare earth magnet powder and anisotropic bonded magnet - Google Patents
Method for producing rare earth magnet powder and anisotropic bonded magnetInfo
- Publication number
- JP3410171B2 JP3410171B2 JP24125193A JP24125193A JP3410171B2 JP 3410171 B2 JP3410171 B2 JP 3410171B2 JP 24125193 A JP24125193 A JP 24125193A JP 24125193 A JP24125193 A JP 24125193A JP 3410171 B2 JP3410171 B2 JP 3410171B2
- Authority
- JP
- Japan
- Prior art keywords
- dehydrogenation
- seconds
- rare earth
- treatment
- dehydrogenation treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 title claims description 20
- 229910052761 rare earth metal Inorganic materials 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 150000002910 rare earth metals Chemical class 0.000 title claims description 14
- 238000006356 dehydrogenation reaction Methods 0.000 claims description 59
- 239000001257 hydrogen Substances 0.000 claims description 26
- 229910052739 hydrogen Inorganic materials 0.000 claims description 26
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 238000001953 recrystallisation Methods 0.000 claims description 9
- 239000011230 binding agent Substances 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 1
- 239000006247 magnetic powder Substances 0.000 description 11
- 230000009466 transformation Effects 0.000 description 9
- 229910001172 neodymium magnet Inorganic materials 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002074 melt spinning Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- 229910017495 Nd—F Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0573—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は希土類、遷移金属および
ホウ素から実質的になる異方性希土類磁石粉末、ならび
に異方性ボンド磁石の製造方法の改良に関する。BACKGROUND OF THE INVENTION The present invention is a rare earth, transition metals and anisotropic rare earth magnet powder consisting essentially of <br/> boron, list
The present invention relates to improvement of a method for manufacturing an anisotropic bonded magnet.
【0002】[0002]
【従来の技術】R−T−B系永久磁石(RはYを含む希
土類元素の少なくとも1種であり、TはFeまたはFe
とCoである)は安価でかつ高い磁気特性を有するもの
として注目を集めている。R−T−B系永久磁石は最終
製品の分類からバルク磁石(焼結磁石あるいは温間加工
磁石)とボンド磁石に大別される。特にボンド磁石はそ
の形状自由度および価格面の有利性から今後重要度が増
すと考えられる。Nd−Fe−B系ボンド磁石用磁粉は
製造方法の違いで幾つかに分類される。例えば、メルト
スピニング法により得られたNd−Fe−B系急冷薄片
を適当な温度で熱処理し、等方性磁粉とする製造方法が
特開昭59−647393号公報に開示されている。また同様の
メルトスピニング法で得られた薄片をホットプレスおよ
びダイアプセットし圧縮方向に異方性を付与した異方性
バルク磁石をいったん作製し、次いで同磁石を粉砕する
ことによって異方性磁粉とする製造方法も知られてい
る。その他、近年注目されている手法として、Sm2F
e17合金に窒化処理を施し格子間に窒素元素を侵入さ
せることによって異方性磁界が飛躍的に向上し、その結
果異方性ボンド磁石用磁粉として利用できる方法があ
る。またこの方法と同様の原理でNbFe11Ti、N
dFe10V2といったThMn12タイプの合金にも
同様の効果が得られるとの報告がある。更に、Nd−F
e−B系合金に水素吸蔵処理および脱水素処理を行い、
再結晶反応を利用して磁気的に異方性化したNd2Fe
14B型磁粉を得る方法が知られている(特開平1−132
106号公報、特開平2−4901号公報等)。2. Description of the Related Art R-T-B system permanent magnets ( R is a rare magnet containing Y)
At least one of the earth elements, T is Fe or Fe
And a Co) have attracted attention as having magnetic properties inexpensive yet high. RTB permanent magnets are roughly classified into bulk magnets (sintered magnets or warm-worked magnets) and bonded magnets according to the classification of the final product. Bond magnets are expected to increase in importance in the future due to their shape flexibility and price advantages. Magnetic powders for Nd-Fe-B based bonded magnets are classified into several types depending on the manufacturing method. For example, an Nd-Fe-B-based quenched thin piece obtained by the melt spinning method
Heat treatment at an appropriate temperature, a manufacturing method for an isotropic magnet powder is disclosed in JP-A-59-647393. The flakes obtained in the same melt spinning process Hoyo hot press
Fine die chipset anisotropic bulk magnet imparted with anisotropy in the compression direction once prepared, then it is also known manufacturing method of an anisotropic magnet powder by grinding the magnet. In addition, as a method that has been receiving attention in recent years, Sm 2 F
anisotropic magnetic field by entering the nitrogen element interstitially subjected to nitriding treatment e 17 alloy is remarkably improved, there is a method that can be used as a result the magnetic powder for an anisotropic bonded magnet. In addition, NbFe 11 Ti, N
It has been reported that a similar effect can be obtained with a ThMn 12 type alloy such as dFe 10 V 2 . Furthermore, Nd-F
e-B alloy is subjected to hydrogen storage treatment and dehydrogenation treatment,
Magnetically anisotropic Nd 2 Fe using recrystallization reaction
A method for obtaining 14 B type magnetic powder is known (Japanese Patent Application Laid-Open No. 1-132).
106 gazette , JP-A-2-4901 gazette, etc.).
【0003】[0003]
【発明が解決しようとする課題】従来法で得られる磁粉
の内、メルトスピニング法によるNd−Fe−B系急冷
薄片は磁気的に等方性であり最終的に得られるボンド磁
石の最大エネルギー績は高々10MGOeにすぎず磁気特性面
で問題がある。また上記従来のNd−Fe−B系異方性
磁粉を配合してなる異方性ボンド磁石は磁気特性が十分
ではなく改良の余地を残していた。一方、Sm2Fe
17 型窒化磁粉は主原料としてSmを使用するため資源
的な面で将来性に不安が残る。ThMn 12 型磁粉は使
用する希土類元素がNdであるため資源的に有利である
が、窒化後の磁気ポテンシャルはNd2Fe14B型あ
るいはSm2Fe17 型より低い。水素吸蔵処理および
脱水素処理を行い、得られるNd−Fe−B系異方性磁
粉は製造工程をかなり簡略化できるという特徴を有して
いるがNd−Fe−B系バルク磁石の理論値から概算し
て現時点で得られている磁気特性はまだ十分とは言えな
い。この製造方法は脱水素処理工程における相変態をと
もなう再結晶反応を利用しており、最終的に得られるN
d−Fe−B系異方性磁粉の磁気特性はこの反応速度に
大きく依存するものと考えられる。つまりやみくもに強
制的脱水素を行っても相変態が進行せず相変態以前の
相、つまりNdH2、α−T、Fe2Bがそのままある
いは一部残ってしまい理想的なR2T14B 相が得ら
れないため最終的に得られる磁気特性は低い。Among the magnetic powders obtained by the conventional method, the Nd-Fe-B system quenched flakes prepared by the melt spinning method are magnetically isotropic and the finally obtained bond magnet is obtained.
The maximum energy record of stone is only 10 MGOe at most, and there is a problem in terms of magnetic properties. Further, the conventional Nd-Fe-B system anisotropy
Anisotropic bonded magnet magnetic powder ing blended with the magnetic properties sufficiently
Instead, there was room for improvement . On the other hand, Sm 2 Fe
Since 17- type nitride magnetic powder uses Sm as a main raw material, there is concern about its future prospects in terms of resources. ThMn 12 type magnetic powder is resource advantageous because the rare earth element is Nd to use
But magnetic potential after the nitriding is Nd 2 Fe 14 B type Ah <br/> Rui have lower than Sm 2 Fe 17 type. The Nd-Fe-B type anisotropic magnetic powder obtained by performing the hydrogen storage treatment and the dehydrogenation treatment has a feature that the manufacturing process can be considerably simplified, but the Nd-Fe-B type bulk magnet is used. Tei Ru magnetic characteristics obtained at present by estimated from the theoretical value of the leaves much to be desired. This manufacturing method utilizes a recrystallization reaction accompanied with a phase transformation in the dehydrogenation treatment step, and finally obtains N
It is considered that the magnetic characteristics of the d-Fe-B anisotropic magnetic powder largely depend on this reaction rate. That is, even if the forced dehydrogenation is performed blindly, the phase transformation does not proceed, and the phases before the phase transformation, that is, NdH 2 , α-T, and Fe 2 B remain as they are or part of them are ideal R 2 T 14 B Since no phase is obtained, the finally obtained magnetic properties are low.
【0004】[0004]
【問題を解決するための手段】本発明者等は理想的なN
d−Fe−B系異方性磁粉を得るため、相変態反応速度
(再結晶反応速度)を脱水素処理工程における真空度でコ
ントロールすることによって、磁気異方性に優れかつ平
均結晶粒径が0.02〜5μmの微細結晶粒の集合体から実
質的になり、従来に比べて高い磁気特性を有するNd−
Fe−B系異方性磁粉が得られることを知見した。上記
課題を解決した本発明の希土類磁石粉末の製造方法は、
平均結晶粒径が0.02〜5μmのR 2 T 14 B相(RはYを
含む希土類元素の少なくとも1種であり、TはFeまた
はFeとCoである)を主相とする微細結晶粒の集合体
から実質的になる希土類磁石粉末の製造方法において、
水素吸蔵処理および脱水素処理を行い再結晶反応を生じ
させる製造工程のうち、脱水素処理工程における真空度
(Torr)をyとし、脱水素処理時間(秒)をxとしたとき、
x=60〜1000秒の範囲内において y=Ax z (ただ
し、−0.70≦z≦−0.30)で表される指数関数の条件下
で脱水素処理を行うことを特徴とする。また本発明の異
方性ボンド磁石の製造方法は、平均結晶粒径が0.02〜5
μmのR 2 T 14 B相(RはYを含む希土類元素の少なく
とも1種であり、TはFeまたはFeとCoである)を
主相とする微細結晶粒の集合体から実質的になる希土類
磁石粉末をバインダーで結合してなる異方性ボンド磁石
の製造方法において、 水素吸蔵処理および脱水素処理を
行い再結晶反応を生じさせる製造工程のうち、脱水素処
理工程における真空度(Torr)をyとし、脱水素処理時間
(秒)をxとしたとき、x=60〜1000秒の範囲内において
y=Ax z (ただし、−0.70≦z≦−0.30)で表さ
れる指数関数の条件下で脱水素処理を行った希土類磁石
粉末とバインダーとの混合物を磁場中成形することを特
徴とする。 前記希土類磁石粉末は、Rを25〜35wt%、
Bを0.5〜1.5wt%、Coを3〜20wt%、Ga、Z
r、Nb、Hf、Ta、Al、SiおよびVの群から選
択される少なくとも1種をその合計で0.05〜5wt%、
残部Feおよび不可壁的不純物からなる組成を有するも
のが好ましい。この希土類磁石粉末は母合金に水素吸蔵
処理および脱水素処理を施しNdH2、α−T、Fe2
Bの三相からR2T14B相の微細結晶粒に変化させ
る、脱水素処理工程における相変態をともなう再結晶反
応により得られるものであり、磁気異方性を有する。The inventors of the present invention have found that the ideal N
To obtain a d-Fe-B based anisotropic magnetic powder, phase transformation kinetics
By controlling the (recrystallization reaction rate) by the degree of vacuum in the dehydrogenation process , magnetic anisotropy is excellent and flat.
Average crystal grain size real of fine crystal grains of an aggregate of 0.02~5μm
Nd- which is qualitative and has higher magnetic characteristics than the conventional one
It was found that an Fe-B anisotropic magnetic powder can be obtained . the above
The method for producing a rare earth magnet powder of the present invention which has solved the problem is
R 2 T 14 B phase with an average crystal grain size of 0.02 to 5 μm (where R is Y
At least one of rare earth elements including T is Fe or
Is an aggregate of fine crystal grains whose main phase is Fe and Co)
In the method for producing a rare earth magnet powder consisting essentially of
Hydrogen storage and dehydrogenation processes are performed to cause a recrystallization reaction.
Degree of vacuum in the dehydrogenation process among the manufacturing processes
When (Torr) is y and dehydrogenation treatment time (seconds) is x,
Within the range of x = 60 to 1000 seconds, y = Ax z (only
The condition of the exponential function represented by -0.70≤z≤-0.30)
It is characterized in that the dehydrogenation treatment is performed by . The method for producing an anisotropic bonded magnet according to the present invention has an average crystal grain size of 0.02 to 5
μm R 2 T 14 B phase (R is a rare earth element containing Y
And T is Fe or Fe and Co).
Rare earths consisting essentially of aggregates of fine grains as the main phase
Anisotropic bonded magnet made by binding magnet powder with binder
In the manufacturing method of, hydrogen storage treatment and dehydrogenation treatment
Dehydrogenation treatment is one of the manufacturing processes that cause recrystallization reaction.
Dehydration treatment time, where y is the degree of vacuum (Torr) in the process
When (sec) is x, in the range of x = 60 to 1000 seconds
y = Ax z (where -0.70 ≦ z ≦ −0.30)
Rare earth magnets dehydrogenated under controlled exponential function
Specializing in molding a mixture of powder and binder in a magnetic field
To collect. The rare earth magnet powder has an R content of 25 to 35 wt%,
0.5 to 1.5 wt% B, 3 to 20 wt% Co, Ga, Z
selected from the group of r, Nb, Hf, Ta, Al, Si and V
0.05-5 wt% in total of at least one selected ,
Also it has with balance of Fe and improper wall impurities
Is preferred . This rare earth magnet powder absorbs hydrogen in the mother alloy
And NdH 2 , α-T, Fe 2 after treatment and dehydrogenation treatment
A recrystallization reaction accompanied by a phase transformation in the dehydrogenation process, which changes the three phases of B into fine crystal grains of the R 2 T 14 B phase.
A shall be obtained by the response, having magnetic anisotropy.
【0005】本発明者等は脱水素処理時の相変態速度が
磁気異方性化度に影響を与えると考え種々の脱水素処理
条件下で実験を繰り返した。その結果、脱水素処理工程
には一定の規則性があることを見い出した。つまり脱水
素開始後約60〜1000秒の間における一次脱水素処理工程
とそれ以降の二次脱水素処理工程からなるものである。
特に一次脱水素処理速度によって磁気特性を左右する磁
気異方性ポテンシャルが決定されることが分かった。二
次脱水素処理は一次脱水素処理終了後、格子間に残った
余分な水素を放出させるための脱水素処理であり、不可
避ではあるが磁気特性を決定的に左右するほどの大きな
影響は与えない。一次脱水素処理における真空度(Torr)
をy、脱水素処理時間(秒)をxとした場合、x=60〜10
00秒の範囲内では対数グラフ上でほぼ直線に近似でき
y=Axz (ただし、−0.70≦z≦−0.30)という指
数関数で表現され、二次脱水素処理では急激に真空度が
高まることが分かった。ここでxの値を限定した理由は
xが60秒以下では試料以外の炉内水素雰囲気を脱気する
ための脱水素を含むため、正味のR 2T14B相生成の
ための相変態平衡状態ではないからである。上限の1000
秒は試料の質量、装置の性能によって若干変動するもの
のこの範囲内までが一次脱水素処理としてのおおよその
目安となるからである。試料の処理量あるいは脱水素時
のポンプ容量を調整しz値を意図的に変化させたとこ
ろ、z値が−0.70未満では磁化量および保磁力が極めて
低い値を示した。この現象を詳細に説明すると、一次脱
水素処理を高速で行うため再結晶、成長に必要な核生成
方向がランダム方向に発生し、その状態で成長するため
磁気的に等方的になる。更に反応の平衡状態が崩れるた
め水素吸蔵時に相分解した各相がそのままの形態で、あ
るいは一部残存し実質的なR2T14B相生成量が減少
する。したがって最終的に得られる磁粉内には水素が多
量に残存するほか保磁力、磁化量等の磁気特性も低下す
ることになる。一方、z値が−0.30を越えると相変態は
進行するものの余分な水素を放出するための最終目標真
空度(例えば約0.1Torr)に到達するために長時間を要
し、再結晶粒の粗大化にともなう保磁力の低下を招く。
したがって脱水素速度を −0.70≦z≦−0.30 の範囲
内の速度勾配におさめることによって相変態も適切な速
度で進行するため高い磁気特性を有する希土類磁石粉末
を得ることが可能となる。The present inventors considered that the phase transformation rate during dehydrogenation treatment affects the degree of magnetic anisotropy and repeated the experiment under various dehydrogenation treatment conditions. As a result, the dehydrogenation step was found that there is a certain regularity. That it is made of primary dehydrogenation step <br/> and subsequent secondary dehydrogenation process between dehydrogenation start after about 60 to 1000 seconds.
In particular, it was found that the magnetic anisotropy potential that influences the magnetic properties is determined by the primary dehydrogenation treatment rate. After secondary dehydrogenated primary dehydrogenation process ends, a dehydrogenation process for releasing excess hydrogen remaining interstitial, No
Although it is evasive, it does not have such a large influence as to decisively influence the magnetic characteristics. Degree of vacuum in primary dehydrogenation (Torr)
Is y and the dehydrogenation treatment time (sec) is x , x = 60 to 10
Within the range of 00 seconds , it can be approximated to a straight line on a logarithmic graph.
It is expressed by a numerical function of y = Ax z (where, −0.70 ≦ z ≦ −0.30), and it was found that the degree of vacuum sharply increases in the secondary dehydrogenation treatment . Here, since the reason for limiting the value of x containing dehydrogenation for x is to degas the furnace hydrogen atmosphere other than the sample in 60 seconds or less, phase transformation equilibrium for the net R 2 T 14 B phase generator Because it is not in a state. Upper limit of 1000
This is because the second varies slightly depending on the mass of the sample and the performance of the apparatus, but within this range is an approximate guideline for the primary dehydrogenation treatment . When a z value to adjust the amount of processing or the pump capacity at dehydrogenation of the sample was intentionally varied, z values magnetization amount and the coercive force is less than -0.70 showed a very low value. This phenomenon will be described in detail. Since the primary dehydrogenation treatment is performed at a high speed, the nucleation directions necessary for recrystallization and growth occur in random directions, and the growth occurs in that state, so that it becomes magnetically isotropic. Furthermore, since the equilibrium state of the reaction is disrupted, each phase decomposed during hydrogen absorption is left as it is, or a part thereof remains to reduce the substantial amount of R 2 T 14 B phase produced. Thus addition coercivity in finally obtained the magnet powder to hydrogen a large amount of residual, magnetic properties such as magnetization amount ing to decrease. On the other hand, when the z value exceeds -0.30, the phase transformation proceeds, but it takes a long time to reach the final target vacuum degree (for example, about 0.1 Torr) for releasing excess hydrogen, and the recrystallized grains are coarse. As a result, the coercive force is reduced.
Therefore, by setting the dehydrogenation rate to a velocity gradient within the range of −0.70 ≦ z ≦ −0.30, the phase transformation also proceeds at an appropriate rate, so that it is possible to obtain a rare earth magnet powder having high magnetic properties.
【0006】本発明による希土類磁石粉末は磁気的に高
い異方性化度を有しているため、バインダーで結合し、
次いで磁場中成形することによって高性能の異方性ボン
ド磁石が得られる。脱水素速度の制御はさほど難しくな
い。例えば炉内容積およびロータリーポンプ排気能力が
決っている場合試料の処理量を調整してもよいし、この
条件で対応できない場合炉内とロータリーポンプをつな
ぐ配管中に圧力コントローラを設置するなどの処置が考
えられる。またバルブの開閉によって段階的に脱水素
し、平均的な脱水素速度として所定範囲内におさまって
いればよい。Since the rare earth magnet powder according to the present invention has a magnetically high degree of anisotropy, it is bonded with a binder ,
Then high performance anisotropic bonded magnet by molding in a magnetic field is Ru obtained. Controlling the dehydrogenation rate is not very difficult. For example, if the volume inside the furnace and the exhaust capacity of the rotary pump are fixed, the throughput of the sample may be adjusted.If this condition is not applicable, a procedure such as installing a pressure controller in the pipe connecting the inside of the furnace and the rotary pump is taken. Can be considered. Further, it suffices that dehydrogenation is performed stepwise by opening and closing the valve, and the average dehydrogenation rate falls within a predetermined range.
【0007】[0007]
【実施例】(実施例1)
希土類元素Nd、遷移金属Fe、Co、ホウ素Bを主成
分とし、他の元素としてGaあるいはZrを添加し、所
定組成に真空溶解し鋳造合金を得た。次いで同合金を11
00℃で20時間均質化処理して水素処理用試料とした。熱
処理炉は6401/分の排気能力を有するロータリーポンプ
を装備した一定容積の炉を使用し、試料を65g、200g、
1kg、2kg、3kgおよび10kgの6段階の処理量に分け同
一条件の下で水素処理を行った。水素処理条件として
は、まず水素を室温で十分吸蔵させた後、1気圧の水素
雰囲気を保ちながら10℃/分の昇温速度で840℃まで加熱
した。続いて同温度で3時間保持した後、45分間脱水素
処理した。脱水素終了後炉内をアルゴン雰囲気に置換し
冷却した。Gaを添加した試料について脱水素開始後1
分間経過した時点から45分間炉内真空度を測定し対数グ
ラフ上にプロットした結果を図1に示す。同図に示した
通り脱水素開始後約1000秒まではいずれも直線に近似さ
れ、以後急激に真空度が高くなることが分かる。この傾
向は処理量の低下にともない顕著になる。更にこの近似
直線から計算した勾配(z値)は処理量が多くなるほど増
大しており、脱水素速度が遅くなることを意味してい
る。得られた水素処理試料を粉砕し、次いで425μm以下
の粒径に分級し、同じ粒度分布になるよう調整した。分
級した粉末とエポキシ樹脂とを混合し、得られた混合物
を磁場中圧縮成形し異方性ボンド磁石を得た。表1に脱
水素処理45分間経過後の到達真空度、水素処理後の試料
に残存する水素量、図1の直線部分を指数関数で表現し
たときのz値、および異方性ボンド磁石の磁気特性を示
す。この結果よりz値が−0.70より小さい(つまり脱水
素速度が早い)場合、到達真空度が高くなるにもかかわ
らず試料内に多量の水素が残存し磁気特性も低い。一
方、処理量10kgのz値が高い試料でも残存水素量が多
く、異方性ボンド磁石の残留磁束密度は高いものの保磁
力は低い。Example 1 A rare earth element Nd, a transition metal Fe, Co, and boron B as a main component, Ga or Zr as another element were added, and vacuum-melted to a predetermined composition to obtain a cast alloy. Then the same alloy 11
The sample was homogenized at 00 ° C. for 20 hours to prepare a sample for hydrogen treatment. As the heat treatment furnace, a furnace with a fixed volume equipped with a rotary pump having an exhaust capacity of 6401 / min was used.
Hydrogen treatment was carried out under the same conditions by dividing the treatment amount into 6 stages of 1 kg, 2 kg, 3 kg and 10 kg. The hydrotreating conditions, after first be fully occluded at room temperature of hydrogen and heated to 840 ° C. at one atmosphere heating rate of 10 ° C. / min while maintaining the hydrogen atmosphere. Then, after holding at the same temperature for 3 hours, dehydrogenation treatment was performed for 45 minutes. After completion of dehydrogenation, the inside of the furnace was replaced with an argon atmosphere and cooled. For samples with Ga added 1 after dehydrogenation started
The results plotted on the measured log graph 45 min furnace vacuum from the time the minute between elapsed shown in FIG. As shown in the figure, it can be seen that until about 1000 seconds after the start of dehydrogenation, each of them is approximated to a straight line, and thereafter the vacuum degree rapidly increases. This tendency becomes remarkable as the processing amount decreases. Further, the gradient (z value) calculated from this approximate straight line increases as the amount of treatment increases, which means that the dehydrogenation rate becomes slower. The obtained hydrogen-treated sample was pulverized, and then classified to have a particle size of 425 μm or less, and adjusted to have the same particle size distribution . Minute
Mixing the grade powder and epoxy resin, the resulting mixture
By compression molding in a magnetic field to obtain an anisotropic bonded magnet. Table 1 ultimate vacuum after between dehydrogenated 45 minutes, the amount of hydrogen remaining in the sample after hydrogen treatment, z values when expressed by an exponential function of the linear portion of FIG. 1, and the anisotropic bonded magnet It shows magnetic properties. If this z value than the results -0.70 smaller (i.e. fast dehydrogenation rate), ultimate vacuum large amount of residual magnetic characteristics low hydrogen to higher due despite the sample. On the other hand, the amount of residual hydrogen is large even in the sample having a high z value of the treated amount of 10 kg, and the residual magnetic flux density of the anisotropic bonded magnet is high, but the coercive force is low.
【0008】[0008]
【表1】 [Table 1]
【0009】(実施例2)
Ga添加材について処理量を1kgとし脱水素時間を0
秒、1000秒、2000秒、2700秒、3500秒および4000秒の6
段階とした以外は他の条件を実施例1と全く同様にして
水素処理した。脱水素時間と炉内真空度の関係を図2に
示す。次いで実施例1と同様に粉砕し、分級して粒度分
布を調整し得られた粉末を用いて異方性ボンド磁石を作
製した。到達真空度、残存水素量およびボンド磁石の磁
気特性を表2に示す。この結果よりボンド磁石の磁気特
性は脱水素時間が約1000秒まででほぼ決定されることが
分かる。また長時間の脱水素は残存水素量を減少させ残
留磁束密度を改善する効果は有るものの保磁力の著しい
低下を招く。なお、図2のプロットはいずれもy=53x
−0.50 で表現できることや、再現性を確認した。Example 2 With respect to the Ga-added material, the treatment amount was set to 1 kg, and the dehydrogenation time was set to 0.
6 seconds, 1000 seconds, 2000 seconds, 2700 seconds, 3500 seconds and 4000 seconds
Except for using phase was <br/> hydrotreated in the same manner the other conditions as in Example 1. The relationship between the dehydrogenation time and the degree of vacuum in the furnace is shown in FIG. Then ground in the same manner as in Example 1, the particle size fraction and classified
An anisotropic bonded magnet was produced using the powder obtained by adjusting the cloth . Table 2 shows the ultimate vacuum, the amount of residual hydrogen, and the magnetic properties of the bonded magnet. From this result, it is found that the magnetic characteristics of the bonded magnet are almost determined by the dehydrogenation time up to about 1000 seconds. Further, dehydrogenation for a long time has the effect of reducing the amount of residual hydrogen and improving the residual magnetic flux density, but causes a significant decrease in coercive force. All plots in Figure 2 are y = 53x
Rukoto and can be expressed at -0.50, to confirm the reproducibility.
【0010】[0010]
【表2】 [Table 2]
【0011】(実施例3)
実施例1の表1に記載した如く、処理量10kgの場合高い
残留磁束密度を有するものの試料内に多量の水素が残存
していた。そこで排気能力の異なるロータリーポンプを
使用し、脱水素効率を上げることによって残存水素量を
低下させる実験を試みた。使用したロータリーポンプは
排気量640l/分、900l/分、1500l/分、および2000l/分の
4種類である。実験条件はロータリーポンプを変更した
以外は実施例1と全く同様に行った。脱水素時間と炉内
真空度の関係を図3に示す。同図より排気能力を高める
ことによって真空度は徐々に向上し、45分後の到達真空
度も改善できることを確認した。更に、脱水素開始後10
00秒までのz値も徐々に低下し、脱水素速度がやや早く
なることが分かる。得られた水素処理試料に対し実施例
1と同様の評価を行った結果を表3に示す。表3に示す
通り、ロータリーポンプの排気能力を高めることによっ
てz値は適正な範囲内に収まり残存水素量も低下し、最
終的に高性能の異方性ボンド磁石が得られた。Example 3 As shown in Table 1 of Example 1 , when the treatment amount was 10 kg, a large amount of hydrogen remained in the sample although the sample had a high residual magnetic flux density. Therefore, an experiment was conducted to reduce the amount of residual hydrogen by increasing the dehydrogenation efficiency using rotary pumps with different exhaust capacities. Rotary pump displacement volume 640L / min using, 900 l / min, 1500 l / min, and 2000 l / minute
There are four types. The experimental conditions except for changing the rotary pump was carried out in the same manner as in Example 1. The relationship between the dehydrogenation time and the degree of vacuum in the furnace is shown in FIG. From the figure, it was confirmed that the vacuum degree was gradually improved and the ultimate vacuum degree after 45 minutes could be improved by increasing the exhaust capacity. Furthermore, after starting dehydrogenation, 10
It can be seen that the z value up to 00 seconds also gradually decreases, and the dehydrogenation rate increases slightly. The results obtained hydrotreated samples to and evaluated in the same manner as in Example 1 shown in Table 3. Shown in Table 3
As described above , by increasing the exhaust capability of the rotary pump, the z value was kept within an appropriate range and the amount of residual hydrogen was reduced, and finally a high-performance anisotropic bonded magnet was obtained .
【0012】[0012]
【表3】 [Table 3]
【0013】[0013]
【発明の効果】本発明によれば、脱水素処理速度を特定
範囲内に制御することによって、従来に比べて磁気特性
を向上したNd−Fe−B系異方性磁石粉末およびそれ
を用いた高性能の異方性ボンド磁石を提供することがで
きる。According to the present invention, the dehydrogenation treatment rate can be specified.
By controlling within the range, magnetic characteristics compared to conventional
Nd-Fe-B based anisotropic magnet powder having improved heat resistance and the same
It is possible to provide a high-performance anisotropic bonded magnet using .
【図面の簡単な説明】[Brief description of drawings]
【図1】脱水素処理時間と炉内真空度の関係の一例を示
すグラフである。FIG. 1 is a graph showing an example of the relationship between dehydrogenation treatment time and furnace vacuum degree.
【図2】脱水素処理時間と炉内真空度の関係の他の例を
示すグラフである。FIG. 2 is a graph showing another example of the relationship between the dehydrogenation processing time and the degree of vacuum in the furnace.
【図3】脱水素処理時間と炉内真空度の関係の更に他の
例を示すグラフである。FIG. 3 shows still another relationship between the dehydrogenation processing time and the degree of vacuum in the furnace .
It is a graph which shows an example .
Claims (2)
14B相(RはYを含む希土類元素の少なくとも1種で
あり、TはFeまたはFeとCoである)を主相とする
微細結晶粒の集合体から実質的になる希土類磁石粉末の
製造方法において、 水素吸蔵処理および脱水素処理を行い再結晶反応を生じ
させる製造工程のうち、脱水素処理工程における真空度
(Torr)をyとし、脱水素処理時間(秒)をxとしたとき、
x=60〜1000秒の範囲内において y=Ax z (ただ
し、−0.70≦z≦−0.30)で表される指数関数の条件下
で脱水素処理を行うことを特徴とする希土類磁石粉末の
製造方法。1. R 2 T having an average crystal grain size of 0.02 to 5 μm
14 B phase (R is at least one rare earth element including Y)
There, T is the method for producing substantially ing rare-earth magnet powder of fine crystal grains of the aggregate as a main phase is Fe or Fe and Co), recrystallization reactions carried hydrogen absorption treatment and dehydrogenation treatment among occurs causing the manufacturing process, the degree of vacuum in the dehydrogenation step
When (Torr) is y and dehydrogenation treatment time (seconds) is x ,
x = Within 60-1000 seconds y = Ax z (however, -0.70 ≦ z ≦ -0.30) preparation of a rare earth magnet powder and performing dehydrogenation treatment under conditions of exponential function you express in Method.
14B相(RはYを含む希土類元素の少なくとも1種で
あり、TはFeまたはFeとCoである)を主相とする
微細結晶粒の集合体から実質的になる希土類磁石粉末を
バインダーで結合してなる異方性ボンド磁石の製造方法
において、 水素吸蔵処理および脱水素処理を行い再結晶反応を生じ
させる製造工程のうち、脱水素処理工程における真空度
(Torr)をyとし、脱水素処理時間(秒)をxとしたとき、
x=60〜1000秒の範囲内において y=Ax z (ただ
し、−0.70≦z≦−0.30)で表される指数関数の条件下
で脱水素処理を行った希土類磁石粉末とバインダーとの
混合物を磁場中成形することを特徴とする異方性ボンド
磁石の製造方法。2. R 2 T having an average crystal grain size of 0.02 to 5 μm
14 B phase (R is at least one rare earth element including Y)
There, T is substantially ing rare-earth magnet powder of fine crystal grains of the aggregate as a main phase is Fe or Fe and Co)
In the production method of the anisotropic bonded magnet ing bound by a binder, in the manufacturing process to cause recrystallization reaction performs hydrogen storage process and a dehydrogenation process, degree of vacuum dehydrogenation treatment step
When (Torr) is y and dehydrogenation treatment time (seconds) is x ,
x = 60-1,000 seconds y = Ax z within the range of (where, -0.70 ≦ z ≦ -0.30) between the rare-earth magnet powder subjected to dehydrogenation treatment at under exponential function it expresses in a binder
A method for producing an anisotropic bonded magnet, which comprises molding the mixture in a magnetic field.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24125193A JP3410171B2 (en) | 1993-09-28 | 1993-09-28 | Method for producing rare earth magnet powder and anisotropic bonded magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24125193A JP3410171B2 (en) | 1993-09-28 | 1993-09-28 | Method for producing rare earth magnet powder and anisotropic bonded magnet |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000295062A Division JP3522207B2 (en) | 2000-09-27 | 2000-09-27 | Rare earth magnet powder and anisotropic bonded magnet for anisotropic bonded magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0790308A JPH0790308A (en) | 1995-04-04 |
JP3410171B2 true JP3410171B2 (en) | 2003-05-26 |
Family
ID=17071462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24125193A Expired - Lifetime JP3410171B2 (en) | 1993-09-28 | 1993-09-28 | Method for producing rare earth magnet powder and anisotropic bonded magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3410171B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2226814A1 (en) | 2009-02-27 | 2010-09-08 | MINEBEA Co., Ltd. | Rare-earth iron -based magnet with self-recoverability |
DE102010037838A1 (en) | 2009-09-29 | 2011-03-31 | Minebea Co., Ltd. | Anisotropic resin bonded magnet based on rare earth iron |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002075305A1 (en) * | 2001-03-16 | 2002-09-26 | Showa Denko K.K. | Quality testing method and production method of rare earth magnet alloy ingot, the rare earth magnet alloy ingot, and rare earth magnet alloy |
CN105839006B (en) * | 2015-01-29 | 2020-08-11 | 户田工业株式会社 | Method for producing R-T-B-based rare earth magnet powder, and bonded magnet |
-
1993
- 1993-09-28 JP JP24125193A patent/JP3410171B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2226814A1 (en) | 2009-02-27 | 2010-09-08 | MINEBEA Co., Ltd. | Rare-earth iron -based magnet with self-recoverability |
DE102010037838A1 (en) | 2009-09-29 | 2011-03-31 | Minebea Co., Ltd. | Anisotropic resin bonded magnet based on rare earth iron |
US8329056B2 (en) | 2009-09-29 | 2012-12-11 | Minebea Co., Ltd. | Anisotropic rare earth-iron based resin bonded magnet |
Also Published As
Publication number | Publication date |
---|---|
JPH0790308A (en) | 1995-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63232301A (en) | Magnetic anisotropic bond magnet, magnetic powder used therefor, and manufacture thereof | |
WO1988006797A1 (en) | Rare earth element-iron base permanent magnet and process for its production | |
US4960474A (en) | Gallium-containing magnet for a motor | |
JP3092672B2 (en) | Rare earth-Fe-Co-B anisotropic magnet | |
JP3410171B2 (en) | Method for producing rare earth magnet powder and anisotropic bonded magnet | |
US4099995A (en) | Copper-hardened permanent-magnet alloy | |
JP3522207B2 (en) | Rare earth magnet powder and anisotropic bonded magnet for anisotropic bonded magnet | |
JPH045740B2 (en) | ||
JP3504735B2 (en) | Method for producing RTMN based anisotropic bonded magnet | |
JP3196224B2 (en) | Rare earth-Fe-Co-B anisotropic magnet | |
JPH03129703A (en) | Rare-earth-fe-co-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance | |
JP3854948B2 (en) | R-T-B type alloy dehydrogenation furnace for anisotropic bonded magnets | |
KR900006533B1 (en) | Anisotropic magnetic powder, its magnet and manufacturing method thereof | |
JP3469496B2 (en) | Manufacturing method of magnet material | |
EP0597582B1 (en) | Rare-earth magnet powder material | |
JPH10172850A (en) | Production of anisotropic permanent magnet | |
JP2586199B2 (en) | Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance | |
JP3092673B2 (en) | Rare earth-Fe-B based anisotropic magnet | |
JPS6052556A (en) | Permanent magnet and its production | |
JP2978004B2 (en) | Method for producing rare earth composite magnet having magnetic anisotropy | |
JP3529551B2 (en) | Manufacturing method of rare earth sintered magnet | |
JP2827643B2 (en) | Method for producing rare earth-Fe-B based magnet alloy powder | |
JP3649291B2 (en) | Method for producing R-T-B system anisotropic magnetic powder for bonded magnet | |
JPH07245206A (en) | Powder for rare-earth permanent magnet and its manufacturing method | |
JPH02285605A (en) | Manufacture of permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080320 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080320 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120320 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130320 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140320 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |