[go: up one dir, main page]

JP3408692B2 - Water treatment equipment - Google Patents

Water treatment equipment

Info

Publication number
JP3408692B2
JP3408692B2 JP12758896A JP12758896A JP3408692B2 JP 3408692 B2 JP3408692 B2 JP 3408692B2 JP 12758896 A JP12758896 A JP 12758896A JP 12758896 A JP12758896 A JP 12758896A JP 3408692 B2 JP3408692 B2 JP 3408692B2
Authority
JP
Japan
Prior art keywords
tank
circulating water
membrane modules
water flow
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12758896A
Other languages
Japanese (ja)
Other versions
JPH09314144A (en
Inventor
善久 鳴上
勝郎 石原
健 吉崎
俊也 尾崎
昌彦 塩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP12758896A priority Critical patent/JP3408692B2/en
Publication of JPH09314144A publication Critical patent/JPH09314144A/en
Application granted granted Critical
Publication of JP3408692B2 publication Critical patent/JP3408692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、処理槽の内部に複
数台の浸漬型膜モジュールを配設した水処理装置に関す
る。 【0002】 【従来の技術】浄水や下排水などを処理する水処理装置
として、処理槽の内部に複数台の浸漬型膜モジュールを
配設したものがある。 【0003】たとえば図2〜図5に示した水処理装置で
は、膜モジュール1は、透過水吸引室2を形成したケー
シング3の内部に複数本の管状セラミック分離膜4を配
列することにより直方体形状に構成されている。そし
て、このような膜分離装置1が、処理槽5の内部に複数
段かつ複数列(ここでは6段2列)配設され、各膜モジ
ュール1の透過水吸引室2に連通する透過水吸引管6が
設けられ、積層した膜モジュール1の下方に散気装置7
が設けられている。透過水吸引管6には吸引ポンプ8が
介装され、散気装置7はブロワ9に接続している。10
は被処理水である。 【0004】このような構成において、吸引ポンプ8を
駆動して、透過水吸引管6と透過水吸引室2を通じて分
離膜4の内側すなわち透過水流路4aに吸引圧を作用さ
せることにより、分離膜4によって被処理水10を濾過
し、膜面を透過して透過水流路4a内に流入した透過水
を透過水吸引室2と透過水吸引管6を通じて槽外へ取り
出している。このとき、ブロワ9より散気装置7を通じ
て散気する空気の気泡によって、各膜モジュール1の内
部を上昇する槽内循環水流11を生起し、この気泡を含
んだ循環水流11により分離膜4の表面を洗浄するよう
にしている。 【0005】 【発明が解決しようとする課題】上記したような水処理
装置を設計する場合、処理量が100m3 /日程度の中
小規模のものでは、膜分離装置を1〜3列程度配設すれ
ばよいので、槽内循環水流や槽内空間の利用効率は問題
にならなかったが、近年は処理量が1000m3/日以
上の大規模の需要もあり、槽内循環水流や槽内空間を効
率的に利用できる処理槽形状や膜モジュールの配置方法
の検討が必要とされている。 【0006】本発明は上記課題を解決するもので、処理
槽の内部に複数台の浸漬型膜モジュールを配設するに際
し、槽内循環水流や槽内空間を効率的に利用できるよう
に配置することを目的とするものである。 【0007】 【課題を解決するための手段】上記課題を解決するため
に、本発明の水処理装置は、一つの処理槽の内部に複数
台の浸漬型膜モジュールを配設し、各膜モジュールに槽
内循環水流を供給する循環水流供給手段を設けた水処理
装置において、前記複数台の膜モジュールは、槽の上下
方向に積層するとともに、相対向する1組の槽壁のそれ
ぞれから離れた位置に、前記槽壁に沿う方向の側面が互
いに隣接するように並列に配置し、それにより、並列に
配置した膜モジュールの両側に槽内循環水流の流路を形
し、並列に配置した各膜モジュールの列ごとに互いの
流れを妨害しない循環水流を形成するものである。 【0008】上記した構成によれば、各膜モジュールの
内部を上昇(または下降)した水流は、隣接する膜モジ
ュールが存在しない方向、すなわち流路に向かう方向に
流れ、次いでその流路において下降(または上昇)し、
次いで各膜モジュールの内部に流入する循環水流とな
る。すなわち、膜モジュールの列ごとに、互いの流れを
妨害しない循環水流が形成することができ、この循環水
流により、効率的に膜面洗浄を行える。 【0009】また、循環水流供給手段などを容易に設置
および組み立てできるとともに、その設置空間を低減す
ることができ、槽内空間を有効に利用できる。 【0010】 【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は本発明の一実施形態の水処理装
置を示し、この水処理装置は、図2〜図5を用いて説明
した従来のものと同様の構成を有しており、処理槽5の
内部に複数台の浸漬型膜モジュール1を配設し、各膜モ
ジュール1の内外を循環する槽内循環水流を生起する散
気装置7を設けている。 【0011】ただし、複数台の膜モジュール1は、槽の
上下方向に積層するとともに、相対向する1組の槽壁5
a,5bのそれぞれから離れた位置に、槽壁5a,5b
に沿う方向の側面が互いに隣接するように並列にかつ連
続して配置しており、a,b各列の膜モジュール1と槽
壁5a,5bとの間にそれぞれ、循環水流のための流路
12,13を形成している。 【0012】上記した構成によれば、図示したように、
a列の膜モジュール1では、散気装置7により生起され
る上昇流は、各膜モジュール1の内部を通過した後、隣
接する膜モジュールが存在しない方向、すなわち槽壁5
aに向かう方向に流れ、次いで流路12を下降し、次い
で各膜モジュール1の内部に流入する循環水流11とな
る。 【0013】同様に、b列の膜モジュールでは、散気装
置7により生起される上昇流は、各膜モジュール1の内
部を通過した後、隣接する膜モジュールが存在しない方
向、すなわち槽壁5bに向かう方向に流れ、次いで流路
13を下降し、次いで各膜モジュール1の内部に流入す
る循環水流となる。 【0014】すなわち、a,b各列の膜モジュール1ご
とに、互いの流れを妨害しない方向の循環水流11が形
成されることになり、膜面洗浄効果や被処理液攪拌効果
や動力の点で効率がよい。 【0015】このような膜モジュール1の配置によれ
ば、散気装置7や透過水吸引管(図示せず)、およびこ
れらに付随する装置の設置や組み立てが容易であり、ま
たその設置空間が少なくなるため、槽内空間を有効に利
用できる。したがって、数百台の膜モジュール1の設置
も可能である。 【0016】なお、図2に示したように、複数台の膜モ
ジュールを上記と同様に並列に、かつ複数段に配置して
もよく、この場合、隣接する一方の段のb列の膜モジュ
ール1と、他方の段のa列の膜モジュール1との間にも
循環水流のための流路14が形成され、上記したのと同
様の効果が得られる。 【0017】 【発明の効果】以上のように本発明によれば、処理槽の
内部に複数台の浸漬型膜モジュールを配設するに際し、
相対向する1組の槽壁に沿った方向に並列に膜モジュー
ルを配置して、各列の膜モジュールと各槽壁との間にそ
れぞれ循環水流の流路を形成するようにしたので、膜モ
ジュールの列ごとに、互いの流れを妨害しない循環水流
を形成することができ、この循環水流により効率的に膜
面洗浄や攪拌を行えるとともに、動力を低減できる。ま
た、循環水流供給手段などを容易に設置および組み立て
できるとともに、その設置空間を低減することができ、
槽内空間を有効に利用できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment apparatus in which a plurality of immersion type membrane modules are disposed inside a treatment tank. 2. Description of the Related Art As a water treatment apparatus for treating purified water or sewage, there is a water treatment apparatus in which a plurality of immersion type membrane modules are provided inside a treatment tank. For example, in the water treatment apparatus shown in FIGS. 2 to 5, the membrane module 1 has a rectangular parallelepiped shape by arranging a plurality of tubular ceramic separation membranes 4 inside a casing 3 in which a permeated water suction chamber 2 is formed. Is configured. Then, such a membrane separation device 1 is arranged in a plurality of stages and a plurality of rows (here, six rows and two rows) inside the processing tank 5, and the permeated water suction communicating with the permeated water suction chamber 2 of each membrane module 1. A tube 6 is provided, and an air diffuser 7 is provided below the laminated membrane module 1.
Is provided. A suction pump 8 is interposed in the permeated water suction pipe 6, and an air diffuser 7 is connected to a blower 9. 10
Is the water to be treated. In such a configuration, the suction pump 8 is driven to apply a suction pressure to the inside of the separation membrane 4, that is, the permeated water flow path 4 a through the permeated water suction pipe 6 and the permeated water suction chamber 2, whereby the separation membrane is separated. The water to be treated 10 is filtered by 4 and the permeated water that has passed through the membrane surface and flowed into the permeated water channel 4 a is taken out of the tank through the permeated water suction chamber 2 and the permeated water suction pipe 6. At this time, air bubbles diffused from the blower 9 through the air diffuser 7 generate a circulating water flow 11 in the tank that rises inside each membrane module 1, and the circulating water flow 11 containing the air bubbles causes the separation membrane 4 to flow. Try to clean the surface. [0005] In designing a water treatment apparatus as described above, in the case of a small- or medium-sized water treatment apparatus having a throughput of about 100 m 3 / day, about one to three rows of membrane separation devices are provided. Therefore, the circulating water flow in the tank and the efficiency of use of the space in the tank did not matter, but in recent years, there is a large-scale demand with a throughput of 1000 m 3 / day or more. It is necessary to study the shape of the processing tank and the method of arranging the membrane modules that can efficiently use the water. [0006] The present invention solves the above-mentioned problems, and when arranging a plurality of immersion-type membrane modules inside a processing tank, the immersion-type membrane modules are arranged so that the circulating water flow in the tank and the space in the tank can be used efficiently. The purpose is to do so. [0007] In order to solve the above-mentioned problems, a water treatment apparatus according to the present invention comprises a plurality of immersion-type membrane modules disposed in one treatment tank, and each of the membrane modules has a plurality of immersion-type membrane modules. In the water treatment apparatus provided with the circulating water flow supply means for supplying the circulating water flow in the tank, the plurality of membrane modules are stacked in the vertical direction of the tank and separated from each of a pair of opposed tank walls. Position, arranged in parallel so that the side surfaces in the direction along the tank wall are adjacent to each other, thereby forming a flow path of the circulating water flow in the tank on both sides of the membrane module arranged in parallel, and each arranged in parallel Each other in a row of membrane modules
It forms a circulating water flow that does not obstruct the flow . According to the above configuration, the water flow that has risen (or descended) inside each of the membrane modules flows in a direction in which there is no adjacent membrane module, that is, in a direction toward the flow path, and then descends (in the flow path). Or rise)
Next, the circulating water flows into each of the membrane modules. That is, a circulating water flow that does not hinder each other can be formed for each row of the membrane module, and the circulating water flow can efficiently clean the membrane surface. Further, the circulating water flow supply means and the like can be easily installed and assembled, the installation space can be reduced, and the space in the tank can be used effectively. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a water treatment apparatus according to an embodiment of the present invention. This water treatment apparatus has the same configuration as the conventional one described with reference to FIGS. Are provided with a plurality of immersion type membrane modules 1, and an air diffuser 7 for generating a circulating water flow in the tank circulating inside and outside each membrane module 1. However, a plurality of membrane modules 1 are stacked in the vertical direction of the tank and a pair of tank walls 5 opposed to each other.
a, 5b, the tank walls 5a, 5b
Are arranged in parallel and continuously so that the side surfaces in the direction along are adjacent to each other, and flow passages for the circulating water flow are respectively provided between the membrane modules 1 in each of the rows a and b and the tank walls 5a and 5b. 12 and 13 are formed. According to the above configuration, as shown in the figure,
In the membrane modules 1 in row a, the ascending flow generated by the air diffuser 7 passes through the inside of each membrane module 1, and then the direction in which there is no adjacent membrane module, that is, the tank wall 5.
a, and then descends the flow channel 12, and then becomes the circulating water flow 11 flowing into each membrane module 1. Similarly, in the membrane modules in row b, the ascending flow generated by the air diffuser 7 passes through the inside of each membrane module 1 and then flows in the direction in which there is no adjacent membrane module, ie, in the tank wall 5b. Then, the circulating water flows in the flow direction, then descends the flow path 13, and then flows into the inside of each membrane module 1. That is, a circulating water flow 11 is formed in each direction of the membrane modules 1 in each of the rows a and b so as not to hinder each other's flow. It is efficient. According to such an arrangement of the membrane module 1, it is easy to install and assemble the diffuser 7 and the permeated water suction pipe (not shown), and the devices associated therewith, and the installation space is small. The space inside the tank can be used effectively because it is reduced. Therefore, several hundred membrane modules 1 can be installed. As shown in FIG. 2, a plurality of membrane modules may be arranged in parallel and in a plurality of stages in the same manner as described above. A flow path 14 for circulating water flow is also formed between the membrane module 1 and the other row of the membrane modules 1 in row a, and the same effects as described above can be obtained. As described above, according to the present invention, when arranging a plurality of immersion-type membrane modules inside a processing tank,
Since the membrane modules are arranged in parallel in the direction along one set of opposed tank walls, and a flow path of a circulating water flow is formed between the membrane modules in each row and each tank wall, respectively. A circulating water flow that does not hinder each other's flow can be formed for each row of modules, and this circulating water flow can efficiently perform membrane surface cleaning and agitation and reduce power. In addition, circulating water flow supply means and the like can be easily installed and assembled, and the installation space can be reduced,
The space inside the tank can be used effectively.

【図面の簡単な説明】 【図1】本発明の一実施形態の水処理装置における膜モ
ジュールの配置を示した説明図である。 【図2】本発明の他の実施形態の水処理装置における膜
モジュールの配置を示した説明図である。 【図3】本発明の水処理装置または従来の水処理装置に
配設される従来よりある膜モジュールの全体構成を示し
た断面図である。 【図4】従来の水処理装置の平面図である。 【図5】図4に示した水処理装置のA−A’断面図であ
る。 【図6】図4に示した水処理装置のB−B’断面図であ
る。 【符号の説明】 1 膜モジュール 5 処理槽 5a,5b 槽壁 7 散気装置 11 循環水流 12,13 流路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing an arrangement of a membrane module in a water treatment apparatus according to an embodiment of the present invention. FIG. 2 is an explanatory diagram showing an arrangement of a membrane module in a water treatment apparatus according to another embodiment of the present invention. FIG. 3 is a cross-sectional view showing the overall configuration of a conventional membrane module disposed in the water treatment apparatus of the present invention or a conventional water treatment apparatus. FIG. 4 is a plan view of a conventional water treatment apparatus. FIG. 5 is a sectional view taken along line AA ′ of the water treatment apparatus shown in FIG. 6 is a sectional view of the water treatment apparatus shown in FIG. 4, taken along line BB '. [Explanation of Signs] 1 Membrane module 5 Treatment tank 5a, 5b Tank wall 7 Air diffuser 11 Circulating water flow 12, 13 Channel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾崎 俊也 大阪府大阪市西淀川区西島2丁目1番地 6号 株式会社クボタ 新淀川工場内 (72)発明者 塩山 昌彦 大阪府大阪市西淀川区西島2丁目1番地 6号 株式会社クボタ 新淀川工場内 (56)参考文献 特開 平8−299979(JP,A) 実開 平4−57202(JP,U) (58)調査した分野(Int.Cl.7,DB名) C02F 1/44 B01D 63/06,65/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiya Ozaki 2-1-1, Nishijima, Nishiyodogawa-ku, Osaka-shi, Osaka Inside Kubota Shin-Yodogawa Plant (72) Inventor Masahiko Shioyama 2-chome Nishijima, Nishiyodogawa-ku, Osaka-shi, Osaka No. 1 No. 6 Kubota Co., Ltd. Shin-Yodogawa Plant (56) References JP-A-8-299979 (JP, A) JP-A-4-57202 (JP, U) (58) Fields investigated (Int. Cl. 7) , DB name) C02F 1/44 B01D 63 / 06,65 / 00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 一つの処理槽の内部に複数台の浸漬型膜
モジュールを配設し、各膜モジュールに槽内循環水流を
供給する循環水流供給手段を設けた水処理装置におい
て、前記複数台の膜モジュールは、槽の上下方向に積層
するとともに、相対向する1組の槽壁のそれぞれから離
れた位置に、前記槽壁に沿う方向の側面が互いに隣接す
るように並列に配置し、それにより、並列に配置した膜
モジュールの両側に槽内循環水流の流路を形成し、並列
に配置した各膜モジュールの列ごとに互いの流れを妨害
しない循環水流を形成することを特徴とする水処理装
置。
(57) [Claims 1] A plurality of immersion type membrane modules are provided inside one processing tank, and a circulating water flow supply means for supplying a circulating water flow in the tank is provided for each membrane module. In the water treatment apparatus, the plurality of membrane modules are stacked in the vertical direction of the tank, and the side faces in the direction along the tank wall are adjacent to each other at a position apart from each of a pair of opposed tank walls. So that the channels of the circulating water flow in the tank are formed on both sides of the membrane modules arranged in parallel.
Block each other for each row of membrane modules placed in
A water treatment apparatus characterized by forming a circulating water flow .
JP12758896A 1996-05-23 1996-05-23 Water treatment equipment Expired - Lifetime JP3408692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12758896A JP3408692B2 (en) 1996-05-23 1996-05-23 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12758896A JP3408692B2 (en) 1996-05-23 1996-05-23 Water treatment equipment

Publications (2)

Publication Number Publication Date
JPH09314144A JPH09314144A (en) 1997-12-09
JP3408692B2 true JP3408692B2 (en) 2003-05-19

Family

ID=14963793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12758896A Expired - Lifetime JP3408692B2 (en) 1996-05-23 1996-05-23 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP3408692B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937494A3 (en) * 1998-02-23 2000-03-01 Kubota Corporation Membrane separation system

Also Published As

Publication number Publication date
JPH09314144A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
US5451317A (en) Solid-liquid separator
US10828607B2 (en) Aerator device, filter system including an aerator device, and method of aerating a filter using an aerator device
WO2001000307A2 (en) Self cleaning filter
DE69916479D1 (en) CYCLE WORKING VENTILATION SYSTEM FOR SUBMERSIBLE MEMBRANE MODULE
JPH11300177A (en) Membrane separator
WO1999029630A1 (en) Apparatus and method for treating water
JP5823489B2 (en) Membrane separator
JP3408692B2 (en) Water treatment equipment
JP5425394B2 (en) Filtration module, filtration module laminate, and filtration device
US11524264B2 (en) Aerator device and filter system including the same
CN114206477B (en) System and method for supplying a submerged membrane unit
JPH01168304A (en) Solid/liquid separation and condensation apparatus
JP2012161791A (en) Membrane separation equipment, membrane separation device and method for operating membrane separation equipment
WO2017110491A1 (en) Organic waste water treatment device and organic waste water treatment method
JP2001047046A (en) Membrane separation type water treatment apparatus
JP2935252B2 (en) Solid-liquid separator
JP4524553B2 (en) Membrane separation activated sludge treatment equipment
CN116348196A (en) Operation of submerged membranes using cross-flow
JPH0286818A (en) Solid-liquid separator
JP2925831B2 (en) Filtration device
JPH08973Y2 (en) Membrane-embedded microbial treatment or solid-liquid separation device
JP2003144864A (en) Immersing type membrane filtering device
JPH08332355A (en) Membrane separator
JP2006043631A (en) Immersion flat membrane filtration device
JP2007268415A (en) Immersion type membrane separation apparatus and water producing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

EXPY Cancellation because of completion of term