JP3395010B2 - Gas bed gasifier - Google Patents
Gas bed gasifierInfo
- Publication number
- JP3395010B2 JP3395010B2 JP16752492A JP16752492A JP3395010B2 JP 3395010 B2 JP3395010 B2 JP 3395010B2 JP 16752492 A JP16752492 A JP 16752492A JP 16752492 A JP16752492 A JP 16752492A JP 3395010 B2 JP3395010 B2 JP 3395010B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat recovery
- temperature
- gas
- gasification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000011084 recovery Methods 0.000 claims description 78
- 238000002309 gasification Methods 0.000 claims description 55
- 239000007789 gas Substances 0.000 claims description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 238000001816 cooling Methods 0.000 claims description 18
- 239000002994 raw material Substances 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 9
- 239000007800 oxidant agent Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 2
- 239000007858 starting material Substances 0.000 claims 1
- 239000000567 combustion gas Substances 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000006477 desulfuration reaction Methods 0.000 description 5
- 230000023556 desulfurization Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000003245 coal Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 238000005486 sulfidation Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000002956 ash Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Industrial Gases (AREA)
- Gasification And Melting Of Waste (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は気流層方式のガス化プラ
ントに係わり、特に原料に含まれる硫化物に起因する硫
化腐食を著しく減少させた気流層ガス化装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed gasification plant, and more particularly to a fluidized bed gasification apparatus in which sulfide corrosion due to sulfide contained in a raw material is remarkably reduced.
【0002】[0002]
【従来の技術】従来、石炭等の固体炭素質原料をガス化
する炉には、固定層、流動層及び気流層等の各方式が種
々提案されている。これらの方式の中で、気流層方式は
原料を微粉にして酸素や空気等の酸化剤と共に原料灰の
融点以上の温度(約1300〜1600℃)の炉内に供
給してガス化させるため、他の方式に比較してガス化効
率が高い、適用炭種が広い、及び公害性の副産物が少な
い等の特徴を有しており、合成ガス、複合発電及び燃料
電池等の燃料製造に適しているので、国内外で開発が進
められている。2. Description of the Related Art Conventionally, various systems such as a fixed bed, a fluidized bed and a gas stream bed have been proposed for a furnace for gasifying a solid carbonaceous raw material such as coal. Among these methods, the airflow layer method is for finely powdering the raw material and supplying it to a furnace at a temperature (about 1300 to 1600 ° C.) above the melting point of the raw material ash together with an oxidizing agent such as oxygen or air for gasification, Compared to other methods, it has characteristics such as high gasification efficiency, wide range of applicable coal types, and low pollution by-products, making it suitable for fuel production such as syngas, combined cycle power generation and fuel cells. Therefore, development is underway both in Japan and overseas.
【0003】気流層ガス化装置の従来技術を図3に基づ
いて説明する。この装置の構成としては、ガス化炉10
の下流に未燃分を回収するためのサイクロン30等の未
燃分回収機器と熱回収ボイラ40が設置され、更にその
下流に脱硫装置50等のガス精製装置が設置されてい
る。これらの機器類はそれぞれガスライン31,32,
42によって連結されている。A conventional technique of a gas stream gasifier will be described with reference to FIG. The structure of this device is as follows:
An unburned-content recovery device such as a cyclone 30 for recovering unburned-content and a heat recovery boiler 40 are installed downstream thereof, and a gas purification device such as a desulfurization device 50 is installed further downstream thereof. These devices are gas lines 31, 32,
They are connected by 42.
【0004】ガス化炉では、原料炭23と酸化剤22と
が、バーナ21によって炉壁が耐火材12と水冷壁11
で囲まれた炉内でガス化され、該ガスはガスライン31
によってサイクロン30に導かれる。一方、原料の不燃
分は炉内で溶融され、炉内下部のスラグホール17から
冷却水18中に流れ落ちて、沈澱する。沈澱物(スラグ
20)は、バルブ19を開けることによって炉外に排出
される。運転時には、ガス化炉内は上述のように原料灰
の溶融温度以上の高温になるので、ガス化炉を保護する
ため、ガス化炉の炉壁11に炉壁冷却手段が設けられ、
それによって炉内の熱を回収している。すなわち、ドラ
ム60の水がポンプ64と吸水ライン61,62を用い
て前記炉壁冷却手段の下部ヘッダ13から注入され、炉
内の熱を回収した蒸気は該炉壁冷却手段の上部ヘッダ2
4から蒸気ライン63を介してドラム60に戻される。In the gasification furnace, the raw coal 23 and the oxidizer 22 are burned by the burner 21, and the furnace wall is made of the refractory material 12 and the water cooling wall 11.
Is gasified in a furnace surrounded by, and the gas is gas line 31
Guided to the cyclone 30. On the other hand, the incombustible content of the raw material is melted in the furnace, flows down from the slag hole 17 in the lower part of the furnace into the cooling water 18, and precipitates. The precipitate (slag 20) is discharged outside the furnace by opening the valve 19. During operation, the inside of the gasification furnace is at a temperature higher than the melting temperature of the raw ash as described above, so in order to protect the gasification furnace, furnace wall cooling means is provided on the furnace wall 11 of the gasification furnace,
This recovers the heat in the furnace. That is, the water in the drum 60 is injected from the lower header 13 of the furnace wall cooling means using the pump 64 and the water absorption lines 61 and 62, and the steam that has recovered the heat in the furnace is the upper header 2 of the furnace wall cooling means.
4 is returned to the drum 60 via the steam line 63.
【0005】脱硫装置50としては現在、アミン系の吸
収剤52を充填塔51内に吸収剤ライン53,54とポ
ンプ55によって供給循環させる湿式の方法が用いられ
ている。この方式では、ガス化炉で発生した熱を効率良
く回収するために、脱硫装置50の上流に熱回収ボイラ
40が設置されている。前記熱回収ボイラでは、その内
部に伝熱管41が設けられ、ドラム70の水が吸水ライ
ン71,72とポンプ74によって該伝熱管41に導か
れ、ガスの熱を回収し蒸気となり、蒸気ライン73を介
してドラム70に戻されるようになっている。また、前
記熱回収ボイラ40の能力は、ガス化運転時に、その生
成された高温のガス(約1000℃)を約400℃にま
で冷却する程の高いものであるので、生成されたガスの
温度が低い場合には、ガス中に含まれた水蒸気が凝縮
し、その凝縮水に原料に含まれる硫黄分が溶けて酸が生
じ、この酸によってガスライン42の腐食がおこる。そ
のため、ガス化炉10の下部にバーナ14を設け、起動
時に、このバーナ14で軽油または重油15を燃焼させ
て生成させた燃焼ガスを、前記ガスライン中を流すこと
によって該ガスライン等を露点以上の温度(約150
℃)に高めている。As the desulfurization apparatus 50, a wet method in which an amine-based absorbent 52 is supplied and circulated in the packed tower 51 by absorbent lines 53 and 54 and a pump 55 is currently used. In this method, a heat recovery boiler 40 is installed upstream of the desulfurization device 50 in order to efficiently recover the heat generated in the gasification furnace. In the heat recovery boiler, the heat transfer pipe 41 is provided inside, and the water in the drum 70 is guided to the heat transfer pipe 41 by the water absorption lines 71 and 72 and the pump 74 to recover the heat of the gas and become the steam, and the steam line 73. It is adapted to be returned to the drum 70 via. In addition, since the capacity of the heat recovery boiler 40 is high enough to cool the generated high temperature gas (about 1000 ° C.) to about 400 ° C. during gasification operation, the temperature of the generated gas is lower, the condensed water vapor contained in the gas, the sulfur component contained in the raw material melts by acid occurs in the condensed water, corrosive gas line 4 2 occurs by the acid. Therefore, a burner 14 is provided in the lower part of the gasification furnace 10, and at the time of start-up, the combustion gas generated by burning the light oil or the heavy oil 15 in the burner 14 is caused to flow in the gas line to dew the gas line or the like. Above temperature (about 150
℃).
【0006】[0006]
【発明が解決しようとする課題】従来の技術では、ガス
化炉起動前に、ガス化炉10の下部に設けられた起動用
のバーナ14で軽油あるいは重油を燃焼させて生成され
た燃焼ガスを熱回収ボイラ40の配管及び該ボイラ以降
の配管に流すことによって、該配管の温度を水蒸気の露
点以上(150℃)に高めて、固体微粉原料に含まれる
硫化物に起因する硫化腐食を抑制している。しかし、ガ
ス化炉10の下流に設置されている熱回収ボイラ40の
能力は非常に高く、その上、起動時に生成された燃焼ガ
スの量は、ガス化運転時に生成されたガス量よりはるか
に少ないので、起動時の燃焼ガスの温度は、該熱回収ボ
イラ40を通過するときに大幅に低下してしまう。従っ
て、従来の気流層ガス化炉には、ガス化炉起動時に熱回
収ボイラの配管及び該熱回収ボイラ以降の配管を昇温す
るのに2〜3日の長い時間を必要とするという欠点があ
った。特に、負荷変化あるいは起動停止が頻繁に行われ
ることが要求される石炭ガス化複合発電システムでは起
動時間の短縮が課題であった。In the prior art, before starting the gasification furnace, the combustion gas generated by burning the light oil or the heavy oil by the starting burner 14 provided in the lower part of the gasification furnace 10 is used. By flowing through the piping of the heat recovery boiler 40 and the piping after the boiler, the temperature of the piping is raised to a temperature above the dew point of steam (150 ° C.), and sulfide corrosion caused by sulfide contained in the solid fine powder raw material is suppressed. ing. However, the capacity of the heat recovery boiler 40 installed downstream of the gasification furnace 10 is very high, and moreover, the amount of combustion gas generated at start-up is much larger than the amount of gas generated during gasification operation. Since the number of combustion gases is small, the temperature of the combustion gas at the time of start-up is significantly reduced when passing through the heat recovery boiler 40. Therefore, the conventional gas stream gasification furnace has a drawback that it takes a long time of 2 to 3 days to heat the piping of the heat recovery boiler and the piping after the heat recovery boiler at the time of starting the gasification furnace. there were. In particular, in the integrated coal gasification combined cycle system, which requires frequent load changes or frequent start / stop, reduction of the start time has been an issue.
【0007】また、気流層ガス化炉は、一般に数十気圧
の加圧容器内に納められており、石炭の灰の溶融温度以
上の高温にするため、スラグホールにバーナの先端が向
けられている起動バーナの燃料には軽油あるいは重油
を、酸化剤には酸素濃度の高い窒素含有ガスが使用され
る。これらを起動時に燃焼させると、高温でかつ加圧燃
焼であるため、燃料中に窒素分がない軽油であっても、
いわゆるサーマルNOxが数PPMのオーダーで多量に
発生し、これは亜酸化窒素となる。このガスは水に溶け
ると腐食性の強い硝酸になるので、起動時にも水分が凝
縮しない温度にまで配管を急速に昇温する必要がある。The gas stream gasification furnace is generally housed in a pressure vessel of several tens of atmospheric pressure, and the burner tip is directed to the slag hole in order to raise the temperature to a temperature higher than the melting temperature of coal ash. Light oil or heavy oil is used as the fuel for the starting burner, and nitrogen-containing gas with high oxygen concentration is used as the oxidizer. When these are burned at the time of start-up, they are high temperature and pressurized combustion, so even if diesel oil has no nitrogen in the fuel,
So-called thermal NOx is generated in large quantities on the order of several PPM, and this becomes nitrous oxide. This gas becomes nitric acid, which is highly corrosive when dissolved in water, so it is necessary to rapidly raise the temperature of the pipe to a temperature at which water does not condense even at the time of startup.
【0008】本発明の目的は、ガス化炉で生成されたガ
スが通流される熱回収手段およびこの熱回収手段の下流
のガスラインを短時間で昇温して硫化腐食を抑制するこ
とができる気流層ガス化装置を提供することにある。The object of the present invention is to produce gas produced in a gasifier.
And a downstream of this heat recovery means
In order to suppress sulfide corrosion by heating the gas line of
An object of the present invention is to provide a gas stream gasification apparatus capable of
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
本発明は、固体微粉原料と酸化剤とが供給されてこれら
を一酸化炭素および水素に富むガスに変換するガス化炉
と、このガス化炉に設けられた起動用バーナおよび炉壁
冷却手段と、ガス化炉の下流に設けられ該ガス化炉で生
成されたガスから熱を回収する熱回収手段とを備え、前
記炉壁冷却手段と前記熱回収手段の回収熱系統が熱的に
独立に形成された気流層ガス化装置において、前記炉壁
冷却手段により回収される前記ガス化炉の回収熱を、前
記熱回収手段に導入する回収熱導入手段が設けられたこ
とを特徴とするものである。あるいは、炉壁冷却手段に
より回収される回収熱を、起動時にのみ熱回収手段に導
入するようにしてもよく、また炉壁冷却手段により回収
される回収熱を、起動時に熱回収手段に導入するように
切り替え手段(回収熱導入手段)を設けてもよい。 In order to achieve the above object, the present invention provides a gasification furnace which is supplied with a solid fine powder raw material and an oxidizing agent and converts them into a gas rich in carbon monoxide and hydrogen, and this gas. It includes a starting burner and the furnace wall cooling means provided in the furnace, and a heat recovery unit for recovering heat from the gas generated in the gasification furnace provided downstream of the gasification furnace, before
The furnace wall cooling means and the heat recovery system of the heat recovery means are thermally
In the independently formed gas stream gasifier, the furnace wall
The recovered heat of the gasification furnace is recovered by the cooling means, it is characterized in that the recovered heat introducing means for introducing into the heat recovery means is provided. Alternatively, for furnace wall cooling means
The recovered heat that is recovered is conducted to the heat recovery means only at startup.
It may be put in and may be recovered by means of furnace wall cooling.
The recovered heat that is recovered is introduced into the heat recovery means at startup.
A switching means (recovery heat introduction means) may be provided.
【0010】前記気流層ガス化装置において、ガス化炉
で生成されたガスが通流される前記熱回収手段をバイパ
スするガスラインを設けるのがよい。また、熱回収手段
が熱回収ボイラの場合、熱回収ボイラよりも下流のガス
ライン中の温度を検出する温度検出手段と、その温度検
出手段で検出した温度値によって前記回収熱導入手段に
より前記熱回収ボイラに導入する熱量(蒸気量)を制御
する制御手段とが設けられたものがよい。また、更に熱
回収ボイラの水及び蒸気ラインの出口部分の温度を検出
する温度検出手段と、その温度検出手段で検出した温度
値よって前記回収熱導入手段により前記熱回収ボイラに
導入する熱量(蒸気量)を制御する制御手段とが設けら
れたものがよい。In the gas stream gasifier, it is preferable to provide a gas line that bypasses the heat recovery means through which the gas generated in the gasification furnace flows . Also, heat recovery means
Is a heat recovery boiler, the temperature detection means for detecting the temperature in the gas line downstream of the heat recovery boiler, and the temperature value detected by the temperature detection means is introduced into the heat recovery boiler by the recovery heat introduction means. A device provided with a control means for controlling the amount of heat (the amount of steam) is preferable. Also, the amount of heat introduced into the heat recovery steam generator further temperature detecting means for detecting the temperature of the exit portion of the water and steam lines in the heat recovery boiler, by the recovered heat introduction means by the temperature value detected by the temperature detecting means ( A control means for controlling the amount of steam) is preferably provided.
【0011】[0011]
【作用】本発明によれば、起動時のようにガス化炉で生
成されたガス量が少ないときでも、炉壁冷却手段で回収
した熱によって熱回収手段の加熱を促進できるから、熱
回収手段および後流機器の温度を生成ガスの露点以上
(約150℃)に容易にかつ短時間に昇温することがで
きる。According to the present invention , the gasification furnace is used as it is when starting up.
Even when the amount of gas produced is small , the heat recovered by the furnace wall cooling means can accelerate the heating of the heat recovery means.
Collecting means and the temperature of the wake equipment or the dew point of the product gas easily and (about 0.99 ° C.) that-out <br/> in that increasing the temperature in a short time.
【0012】さらに熱回収ボイラの部分のバイパスを用
いれば温度上昇の遅い該熱回収ボイラの温度上昇を待た
ずにガス化を始めることができる。Further, if the bypass of the heat recovery boiler is used, gasification can be started without waiting for the temperature increase of the heat recovery boiler whose temperature rises slowly.
【0013】また熱回収ボイラ以降のガスラインにおけ
る生成ガス中の水分が凝縮する可能性のある部分に温度
を検知する手段を設置し、その温度検出手段で検出した
温度値によって回収熱導入手段により熱回収ボイラに導
入する熱量(蒸気量)を制御すればガス化装置の運転は
容易になる。また、更に熱回収ボイラの水及び蒸気ライ
ンの出口部分の温度を検出する温度検出手段と、その温
度検出手段で検出した温度値によって前記回収熱導入手
段により前記熱回収ボイラに導入する熱量(蒸気量)を
制御すればガス化装置の運転の効率はよくなる。以上の
ように、起動時のガス化装置の暖気運転を短縮すること
ができる。Further, means for detecting the temperature is installed in a portion of the gas line after the heat recovery boiler where water in the produced gas may condense, and the recovered heat introducing means is used to detect the temperature depending on the temperature value detected by the temperature detecting means. If the amount of heat (steam amount) introduced into the heat recovery boiler is controlled, the gasifier can be operated easily. Also, the amount of heat introduced into the heat recovery steam generator further temperature detecting means for detecting the temperature of the exit portion of the water and steam lines in the heat recovery boiler, by the recovered heat introduction means by the temperature value detected by the temperature detecting means ( If the steam amount is controlled, the operation efficiency of the gasifier will be improved. As described above, the warm-up operation of the gasifier at startup can be shortened.
【0014】[0014]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1に本発明に係る気流層ガス化装置の一実施例
の概略構成図を示す。図3に示した従来の概略構成図に
対し、本発明ではガス化炉10に設けられた炉壁冷却手
段で回収された蒸気65が吸水ライン72を介して、熱
回収ボイラ40内の伝熱管41に供給されるライン81
(回収熱導入手段)を追加したものである。このライン
81には制御器96からの制御信号92を受けて開閉す
るバルブ80が設けられている。熱回収ボイラ40で放
熱して冷却された蒸気あるいは復水は、蒸気ライン73
を介してドラム70に戻してもよいし、蒸気ライン73
のバルブ84を閉じてライン73とライン63を連通す
るライン83を介してドラム60に戻してもよい。この
ときライン83のバルブ82は開いている。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration diagram of an embodiment of a gas stream gasification apparatus according to the present invention. In contrast to the conventional schematic configuration diagram shown in FIG. 3, in the present invention, the steam 65 recovered by the furnace wall cooling means provided in the gasification furnace 10 is transferred through the water absorption line 72 to the heat transfer tube in the heat recovery boiler 40. Line 81 supplied to 41
(Recovery heat introduction means) is added. A valve 80 that opens and closes in response to a control signal 92 from a controller 96 is provided on the line 81. The steam or condensate radiated by the heat recovery boiler 40 and cooled is returned to the steam line 73.
May be returned to the drum 70 via a steam line 73
The valve 84 may be closed and returned to the drum 60 via the line 83 connecting the line 73 and the line 63. At this time, the valve 82 of the line 83 is open.
【0015】ガス化炉10における熱回収量が多いとき
にライン83を用いてドラム60に復水をもどせば、ド
ラム60における缶水のレベル変化が小さくなるので補
給水量が少なくなる利点がある。逆にガス化炉10にお
ける熱回収量が少ないときにライン83を用いてドラム
60に復水をもどせば、ドラム60における蒸気発生量
が少なくなるので、そのときはバルブ82を閉じ、バル
ブ84を開いて熱回収ボイラ40からの復水をドラム7
0に戻す方がよい。ライン71に設けたバルブ85は通
常運転状態の時に開かれる。If the condensate is returned to the drum 60 by using the line 83 when the heat recovery amount in the gasification furnace 10 is large, there is an advantage that the level change of the can water in the drum 60 becomes small and the amount of makeup water becomes small. On the contrary, if the condensed water is returned to the drum 60 by using the line 83 when the heat recovery amount in the gasification furnace 10 is small, the steam generation amount in the drum 60 becomes small. At that time, the valve 82 is closed and the valve 84 is opened. Open the drum 7 for condensate from the heat recovery boiler 40
It is better to return it to 0. The valve 85 provided in the line 71 is opened in the normal operation state.
【0016】このように起動時に、ガス化炉で回収した
熱を熱回収ボイラに導入するようにしたので、伝熱管4
1及びライン42を急速に昇温することができる。よっ
て、ガス化炉の起動時間を大幅に短縮でき、しかも配管
の硫化腐食を低減することができる。[0016] Thus at startup, since the heat recovered in the gasification furnace so as to introduce the heat recovery boiler, the heat transfer tube 4
1 and the line 42 can be rapidly heated. Therefore, the start-up time of the gasification furnace can be greatly shortened, and the sulfidation corrosion of the pipe can be reduced.
【0017】また、図1に示した本発明に係る気流層ガ
ス化装置には、熱回収ボイラ40の下流でかつ湿式の脱
硫装置50の手前のライン42に温度計90が設置され
ている。その温度計で検出した温度が検出信号91によ
り制御器96に送られ、検出温度が設定した値よりも低
くければ、熱回収ボイラ40の吸水ライン72に、ガス
化炉10で回収した蒸気を、バルブ80,82を開い
て、前記ライン81,83を用いて供給するようになっ
ている。93,94,95はそれぞれ制御信号を示す。
このような制御系を組み立てれば、起動時の温度管理
が容易にできる。Further, in the gas stream gasification apparatus according to the present invention shown in FIG. 1, a thermometer 90 is installed downstream of the heat recovery boiler 40 and in a line 42 before the wet desulfurization apparatus 50. The temperature detected by the thermometer is sent to the controller 96 by the detection signal 91, and if the detected temperature is lower than the set value, the steam recovered in the gasification furnace 10 is fed to the water absorption line 72 of the heat recovery boiler 40. The valves 80 and 82 are opened and the lines 81 and 83 are used for supply. Reference numerals 93, 94 and 95 respectively represent control signals.
By assembling such a control system, temperature control at startup can be easily performed.
【0018】図2は、本発明に係る気流層ガス化装置の
他の実施例の概略構成図を示す。本実施例は、図1のラ
イン81に加えて、ガスライン32,42に熱回収ボイ
ラ40の部分をバイパスするバイパスライン100を設
けたものである。このバイパスライン100には制御器
96からの制御信号104により開閉する制御ダンパ1
01が設けられている。また、ライン32にはバイパス
ライン100との連結部分より下流側に、前記制御器9
6からの制御信号103により開閉する制御ダンパ10
2が設けられている。また、熱回収ボイラ40の伝熱管
41の出口部近傍の蒸気ライン73に温度計97が設け
られている。FIG. 2 is a schematic configuration diagram of another embodiment of the gas stream gasification apparatus according to the present invention. In this embodiment, in addition to the line 81 of FIG. 1, a bypass line 100 that bypasses the heat recovery boiler 40 is provided in the gas lines 32 and 42. The bypass line 100 has a control damper 1 which is opened / closed by a control signal 104 from a controller 96.
01 is provided. In addition, in the line 32, the controller 9 is provided on the downstream side of the connecting portion with the bypass line 100.
Control damper 10 that opens and closes according to control signal 103 from 6
Two are provided. A thermometer 97 is provided in the steam line 73 near the outlet of the heat transfer tube 41 of the heat recovery boiler 40.
【0019】次に作用を説明する。ガス化炉10の起動
時、先ず起動用バーナ14を燃焼させてその燃焼ガスを
ライン31,32を通って下流に流す。それと同時にガ
ス化炉10で回収した熱を含む蒸気をライン81を通し
て吸水ライン72に導入し、伝熱管41内を流して熱回
収ボイラ40を暖気するが、この熱回収ボイラ40は前
述の如く、伝熱面積が大きいので昇温に長時間を要す
る。そこで、制御器96の制御信号103により制御ダ
ンパ102を閉にすると共に制御ダンパ101を開と
し、前記燃焼ガスは熱回収ボイラ40内を通さずにバイ
パスライン100を通す。これにより、下流のライン4
2,56等は前記燃焼ガスによって優先して短時間で暖
気され、前記熱回収ボイラ40はガス化炉10で回収し
た熱により独立に暖気される。そして、前記温度計97
で検出した温度が設定した値よりも高くなったときに、
制御器96からの制御信号103,104により制御ダ
ンパ102を開き、一方制御ダンパ101を閉じて、前
記燃焼ガスが熱回収ボイラ40内を流れるように切り替
える。本実施例のようにすれば、前記実施例に示したも
のよりも更に、起動時間が短縮でき、また配管の硫化腐
食を防止することができる。以上説明した実施例によれ
ば、ガス化炉の起動時に、ガス化炉に設けられた炉壁冷
却手段で回収した熱(蒸気)を熱回収ボイラに供給する
ので、該熱回収ボイラおよび該熱回収ボイラの後流の配
管は、生成ガスの露点以上(約150℃)の温度に短時
間で昇温される。従って、ガス化炉を短時間で起動でき
ると共に配管の硫化腐食も抑制することができる。更
に、熱回収ボイラの部分のバイパスラインを用いれば、
温度上昇の遅い該熱回収ボイラの温度上昇を待たずにガ
ス化を始めることができる。また、熱回収ボイラ以降の
ガスラインにおける生成ガス中の水分が凝縮する可能性
のある部分に温度を検知する手段を設置し、その温度検
出手段で検出した温度値によって回収熱導入手段により
熱回収ボイラに導入する熱量(蒸気量)を制御すればガ
ス化装置の運転は容易になる。また更に、熱回収ボイラ
の水及び蒸気ラインの出口部分の温度を検出する温度検
出手段と、その温度検出手段で検出した温度値によって
前記回収熱導入手段により前記熱回収ボイラに導入する
熱量(蒸気量)を制御すればガス化装置の運転の効率は
よくなる。 Next, the operation will be described. When the gasification furnace 10 is started up, first, the start-up burner 14 is burned, and the combustion gas is flowed downstream through the lines 31 and 32. At the same then introduced into water line 7 2 vapor including heat recovered in the gasification furnace 10 at the same time through the line 81, although warm air heat recovery boiler 40 flowing through the heat exchanger tube 41, the heat recovery boiler 40 as described above Since the heat transfer area is large, it takes a long time to raise the temperature. Therefore, the control damper 103 is closed and the control damper 101 is opened by the control signal 103 of the controller 96, and the combustion gas passes through the bypass line 100 without passing through the heat recovery boiler 40. As a result, the downstream line 4
2, 56 and the like are preferentially warmed up in a short time by the combustion gas, and the heat recovery boiler 40 is independently warmed up by the heat recovered in the gasification furnace 10. And the thermometer 97
When the temperature detected by is higher than the set value,
The control damper 103 is opened by the control signals 103 and 104 from the controller 96, while the control damper 101 is closed to switch the combustion gas so as to flow in the heat recovery boiler 40. According to this embodiment, the starting time can be further shortened and the sulfidation corrosion of the pipe can be prevented as compared with the case shown in the above embodiments. According to the embodiment described above
For example, when starting the gasification furnace, the furnace wall cooling provided in the gasification furnace is cooled.
The heat (steam) recovered by the cooling means is supplied to the heat recovery boiler.
Therefore, the heat recovery boiler and the wake of the heat recovery boiler are
The temperature of the pipe is short above the dew point of the produced gas (about 150 ° C).
The temperature is raised between. Therefore, the gasifier can be started in a short time.
In addition, the sulfidation corrosion of the pipe can be suppressed. Change
If you use the bypass line of the heat recovery boiler,
The temperature of the heat recovery boiler, whose temperature rises slowly, can be controlled without waiting for the temperature rise.
You can start converting. In addition, after the heat recovery boiler
Possibility of condensation of water in product gas in gas line
Install a means to detect the temperature in the part where
Depending on the temperature value detected by the output means, by the recovery heat introduction means
If the heat quantity (steam quantity) introduced into the heat recovery boiler is controlled,
The operation of the sooting device becomes easy. Furthermore, a heat recovery boiler
Temperature detection to detect the temperature of water and steam line outlets
Depending on the output means and the temperature value detected by the temperature detection means
Introduced into the heat recovery boiler by the recovery heat introduction means
If the heat quantity (steam quantity) is controlled, the operation efficiency of the gasifier will be
Get better.
【0020】本発明によれば、ガス化炉の起動時に、ガ
ス化炉に設けられた炉壁冷却手段で回収した熱(蒸気)
を熱回収手段(ボイラ)に供給して放散させるので、熱
回収手段およびこの熱回収手段の下流の配管は、水蒸気
の露点以上(約150℃)の温度に短時間で昇温され、
配管の硫化腐食も抑制することができる。According to the present invention, when starting the gasification furnace,
Heat (steam) recovered by the furnace wall cooling means installed in the sootification furnace
Heat is supplied to the heat recovery means (boiler) to be dissipated,
The recovery means and the piping downstream of this heat recovery means are
Is heated to a temperature above the dew point of (about 150 ° C) in a short time,
Sulfide corrosion of piping can also be suppressed .
【0021】[0021]
【0022】[0022]
【0023】[0023]
【図1】本発明のガス化装置の概略構成図を示す。FIG. 1 shows a schematic configuration diagram of a gasifier of the present invention.
【図2】本発明の他の実施例のガス化装置の概略構成図
を示す。FIG. 2 shows a schematic configuration diagram of a gasifier of another embodiment of the present invention.
【図3】従来のガス化装置の概略構成図を示す。FIG. 3 shows a schematic configuration diagram of a conventional gasifier.
10 ガス化炉 11 水冷壁 14 起動バ−ナ 22 酸化剤 23 固体粉末原料 31、32 ガスライン 40 熱回収ボイラ 41 伝熱管 42 ガスライン 50 脱硫装置(吸収塔) 56 ガスライン 60 ドラム 61、62 吸水ライン 63 蒸気ライン 65 蒸気 70 ドラム 72 吸水ライン 73 蒸気ライン 81、83 蒸気ライン 90 温度計 96 制御器 97 温度計 100 バイパスライン 101、102 制御ダンパ 10 gasification furnace 11 water cooling wall 14 Start-up burner 22 Oxidizing agent 23 Solid powder raw material 31, 32 gas line 40 heat recovery boiler 41 heat transfer tube 42 gas line 50 Desulfurization equipment (absorption tower) 56 gas line 60 drums 61, 62 Water absorption line 63 steam line 65 steam 70 drums 72 Water absorption line 73 Steam line 81,83 Steam line 90 thermometer 96 controller 97 thermometer 100 bypass line 101, 102 control damper
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−207493(JP,A) 特開 昭61−233083(JP,A) 特開 平2−195102(JP,A) 特開 平3−74492(JP,A) 特開 平4−20591(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10J 3/56 C10J 3/86 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-207493 (JP, A) JP-A-61-233083 (JP, A) JP-A-2-195102 (JP, A) JP-A-3- 74492 (JP, A) JP-A-4-20591 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C10J 3/56 C10J 3/86
Claims (5)
れらを一酸化炭素及び水素に富むガスに変換するガス化
炉と、このガス化炉に設けられた起動用バーナおよび炉
壁冷却手段と、前記ガス化炉の下流に設けられ該ガス化
炉で生成されたガスから熱を回収する熱回収手段とを備
えた気流層ガス化装置において、前記熱回収手段よりも
下流のガスラインの検出温度が設定温度よりも低いと
き、前記炉壁冷却手段により回収される前記ガス化炉の
回収熱を前記熱回収手段に導入する回収熱導入手段が設
けられたことを特徴とする気流層ガス化装置。1. A gasification furnace for supplying a solid fine powder raw material and an oxidizer to convert them into a gas rich in carbon monoxide and hydrogen, a starter burner and a furnace wall cooling means provided in the gasification furnace. When, in the stream-bed gasification apparatus having a heat recovery unit for recovering heat from the gas generated in the gasification furnace is provided downstream of the gasification furnace, than the heat recovery means
If the temperature detected in the downstream gas line is lower than the set temperature
And a recovery heat introducing means for introducing the recovery heat of the gasification furnace recovered by the furnace wall cooling means into the heat recovery means.
前記回収熱導入手段は、前記炉壁冷却手段により回収さ
れる前記ガス化炉の回収熱を起動時にのみ前記熱回収手
段に導入することを特徴とする気流層ガス化装置。2. The gas stream gasifier of claim 1, wherein:
The recovered heat introduction means, the furnace wall airflow layer gasifier, wherein the Turkey be introduced into the heat recovery unit only recovered heat of the gasification furnace is recovered at startup by the cooling means.
前記熱回収手段をバイパスして前記ガス化炉で生成され
たガスが通流されるガスラインが設けられたことを特徴
とする気流層ガス化装置。3. The gas stream gasifier of claim 1 , wherein
Stream layer gasifier, wherein a gas produced in the gasification furnace to bypass the heat recovery means passing streamed Ruga Surain is provided.
前記熱回収手段よりも下流のガスライン中の温度を検出
する温度検出手段と、その温度検出手段で検出した温度
値によって前記回収熱導入手段により前記熱回収手段に
導入する熱量を制御する制御手段とが設けられたことを
特徴とする気流層ガス化装置。4. The gas stream gasification apparatus according to claim 1 ,
Temperature detection means for detecting the temperature in the gas line downstream of the heat recovery means, and control means for controlling the amount of heat introduced into the heat recovery means by the recovered heat introduction means according to the temperature value detected by the temperature detection means. An air flow bed gasification apparatus, characterized in that and are provided.
前記熱回収手段が熱回収ボイラであり、該熱回収ボイラ
の水及び蒸気ラインの出口部分の温度を検出する温度検
出手段と、その温度検出手段で検出した温度値によって
前記回収熱導入手段により前記熱回収ボイラに導入する
熱量を制御する制御手段とが設けられたことを特徴とす
る気流層ガス化装置。5. The gas stream gasification apparatus according to claim 1 ,
The heat recovery means is a heat recovery boiler, the temperature detection means for detecting the temperature of the water and steam line outlet of the heat recovery boiler, and the recovery heat introduction means by the temperature value detected by the temperature detection means A gas stream gasification apparatus comprising: a control means for controlling the amount of heat introduced into the heat recovery boiler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16752492A JP3395010B2 (en) | 1992-06-25 | 1992-06-25 | Gas bed gasifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16752492A JP3395010B2 (en) | 1992-06-25 | 1992-06-25 | Gas bed gasifier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH069968A JPH069968A (en) | 1994-01-18 |
JP3395010B2 true JP3395010B2 (en) | 2003-04-07 |
Family
ID=15851298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16752492A Expired - Fee Related JP3395010B2 (en) | 1992-06-25 | 1992-06-25 | Gas bed gasifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3395010B2 (en) |
-
1992
- 1992-06-25 JP JP16752492A patent/JP3395010B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH069968A (en) | 1994-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0158763B1 (en) | Method for optimizing operating efficiency of fossil fuel combustion power generation system | |
JP2954972B2 (en) | Gasification gas combustion gas turbine power plant | |
US4546603A (en) | Coal gasification composite power generating plant | |
JPH08500412A (en) | Control system for integrated gasification combined cycle system | |
JP4150937B2 (en) | Coal gasifier and coal gasification method | |
JP3676022B2 (en) | Combined power generation facility | |
WO1994019591A1 (en) | New power process | |
JP4095829B2 (en) | Char circulation type coal gasification power plant system | |
JP3395010B2 (en) | Gas bed gasifier | |
JP2001280863A (en) | Heat exchanger and electric power generator comprising it | |
JPS601362B2 (en) | Method for recovering thermal energy from converter exhaust gas | |
JPS60169007A (en) | Method and device for reducing discharge of injurious material in combustion gas of combustion facility | |
JP3976888B2 (en) | Coal air bed gasification method and apparatus | |
JPH0633370B2 (en) | Coal gasification power plant | |
JP3924172B2 (en) | Waste pyrolysis gasification system | |
JP3988008B2 (en) | Coal gasification system and method of operating the system | |
JP3008251B2 (en) | Method for generating gas for operating a gas turbine in a combined gas / steam power plant and apparatus for implementing the method | |
JPH0559954B2 (en) | ||
JP4016300B2 (en) | Coal gasifier | |
JP2802504B2 (en) | Coal gasifier startup or hot banking system | |
Lozza | Syngas cooling in IGCC systems | |
JP5339937B2 (en) | Tar decomposition facility and its startup method | |
JP3952236B2 (en) | Fossil fuel gasification power plant and method for preheating the equipment | |
JP3649456B2 (en) | Coal gasification power generation method | |
JPH0583739B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090207 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100207 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110207 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110207 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120207 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |