JP3392936B2 - Temperature calibration device - Google Patents
Temperature calibration deviceInfo
- Publication number
- JP3392936B2 JP3392936B2 JP08249094A JP8249094A JP3392936B2 JP 3392936 B2 JP3392936 B2 JP 3392936B2 JP 08249094 A JP08249094 A JP 08249094A JP 8249094 A JP8249094 A JP 8249094A JP 3392936 B2 JP3392936 B2 JP 3392936B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- optical fiber
- black body
- output
- body furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Radiation Pyrometers (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、光ファイバを用いて
測温する装置の温度校正装置に関するものである。
【0002】
【従来の技術】溶鋼等の高温の液体金属等の温度を検出
するために、先端部を測温エレメントとした金属管被覆
光ファイバを液体金属に挿入して測温するものが提案さ
れている(特開平2−248960号公報)。
【0003】
【発明が解決しようとする課題】この光ファイバを用い
た測温装置を測定に用いる場合、光ファイバからの出力
と実際の温度とを比較校正しておく必要がある。
【0004】しかしながら、1500℃前後の高温の空
気中において、光ファイバを黒体炉に挿入して校正を行
おうとすると、高分子、ゴム、金属等よりなる外装は、
燃焼し、光、煙、ガス等を発生し、出力変動を生じ、ま
た、光ファイバを汚損し、測定誤差を招く。また、外装
を燃焼させないようにするために密閉構造とすると、構
造が煩雑となり、作業性が悪くなる。
【0005】この発明の目的は、以上の点に鑑み、高温
雰囲気の空気中であっても、光ファイバを利用した温度
計の校正が容易に、高精度に行うことができる温度校正
装置を提供することである。
【0006】
【課題を解決するための手段】この発明は、先端部の外
装が所要長さ除去され焼成された光ファイバと、この光
ファイバの先端部が一方側に挿入される中央有底部をも
つ黒体炉と、この黒体炉の中央有底部の他方側を測温す
る温度測定手段と、この温度測定手段の出力に基いて黒
体炉を加熱制御する制御手段とを備えるようにした温度
校正装置である。
【0007】
【実施例】図1は、この発明の一実施例を示す構成説明
図である。図において、1は光ファイバで、その先端部
10は、円筒状の黒体炉2内の中央有底部20の一方側
に挿入されている。この光ファイバ1の他端は、検出器
を含む放射検出手段3に接続され、この放射検出手段3
で光ファイバ1の先端部10からの放射エネルギーが検
出されて測温され、温度出力Teが表示器その他により
出力される。また、黒体炉2の中央有底部20の他方側
は、熱電対等の温度センサ4が設けられ、これを用いて
温度測定手段5で測温され、温度出力Tが表示器その他
により出力される。この温度出力Tと設定値Tcとを調
節計6で比較し、操作端7を駆動し、黒体炉2を加熱す
るヒータ8の電圧、電流、電力等を制御し、黒体炉2が
所定温度となるよう加熱制御する。なお、調節計6や操
作端7等で制御手段を構成している。
【0008】ところで、光ファイバ1を黒体炉2に挿入
する場合、黒体炉2側の入口に設けられているか、また
は、光ファイバ1の側自体に設けられた案内管9に保持
されて挿入され黒体炉2の空洞に所定長さ突出する。こ
の挿入前に、図2で示すように、あらかじめ光ファイバ
1の外装1aは、所定長さ分、除去しておき、このむき
出しとなった先端部10をバーナー等で焼成し、汚損す
るものを除去する前処理をしておく。このようにして、
光ファイバ1の先端部10を黒体炉2に挿入すること
で、約1500℃の高温となっても、不要な燃焼は発生
せず光ファイバ1の先端部10は汚損されず、安定的に
測温できる。
【0009】光ファイバ1を黒体炉2に挿入したとき、
図3で示すように、光ファイバ1による放射検出手段3
の出力Teは、最初素早く、次には徐々に上昇して平衡
し、やがて、出力は低下する。最初の素早い上昇は空洞
放射の受光であり、次のゆるやかな上昇は光ファイバ1
自身が加熱されることによる自己放射を含み、やがて、
光ファイバ1の先端部10自体が、空気中において高温
にさらされるため失透現象を示し、出力が低下する。こ
のときの平衡温度出力Teと温度測定手段5の温度出力
Tと比較し、温度出力Tを基準として光ファイバ1につ
いての温度出力Teの比較校正を行う。
【0010】なお、温度測定手段5の機能を調節計6で
もたせるようにしてもよく、また、図4で示すように、
熱電対の温度センサ4の代わりに放射検出器40によ
り、黒体炉2の中央有底部20からの放射エネルギーを
検出し、温度測定手段50で温度測定するようにしても
よい。
【0011】ここで、黒体炉2を高純度のアルミナ管で
構成し、空洞部の内径Dと長さLとの比L/Dを4以上
とすると、みかけの実効放射率は0.999以上の黒体
となり、十分に安定的で高精度の測定ができる。このこ
とを以下説明する。
【0012】黒体炉2の空洞部の温度T、放射率ε1、
光ファイバ1の先端部10の温度To、放射率ε2と
し、測定波長λ、温度Tの分光放射輝度をL(λ、T)
とすると、放射検出手段3での検出する出力は次式で示
される。
【0013】
L(λ、Te)=ε2 L(λ、To)+(1−ε2 )ε1 L(λ、T)
(1)
光ファイバ1の出力が平衡したしたとき、To=Tとな
るから、
L(λ、Te)={ε2 +(1−ε2 )ε1 }L(λ、T) (2)
が得られる。ここで、
L(λ、Te)/L(λ、T)=ε2 +(1−ε2 )ε1 =εe
より、
εe=ε2 +(1−ε2 )ε1 (3)
として、みかけの放射率εeが得られる。
【0014】次に、分光放射輝度を指数nで近似する
と、L(λ、T)=kTn として、Te=T+ΔTとす
ると次式が得られる。
【0015】L(λ、Te)/L(λ,T)
=(T+ΔT)n /Tn
=1+nΔT/T=εe
これより、次式が得られる。
【0016】
ΔT/T=(εe−1)/n (4)
ここで、n=C2/λT、C2=0.0143388m
・Kである。これより校正誤差は、みかけの放射率ε
e、および指数nに依存する。アルミナ管の温度150
0℃おける固有放射率を0.2以上、空洞部のL/Dが
4以上で、ε1 ≧0.9と見込め、また、ファイバの先
端10を空洞部に挿入することで、ファイバ径の10倍
以上の均熱長が容易に得られ、ファイバの先端10の放
射率はε2≧0.99と見込めるから、(3)式より、
εe=0.999となる。一方、λ=1.5μm、T=
1773(K)として、n=5.4となるから、このと
きの校正誤差は、(4)式から0.019%、すなわち
0.34Kとなって、充分な校正精度が確保できる。
【0017】
【発明の効果】この発明は、光ファイバの先端部の外装
を除去し、焼成したものを黒体炉に挿入し、校正するよ
うにした温度校正装置である。このため、光ファイバの
先端部には、汚損の原因となる物質は存在しないので、
空気中において高温加熱して温度校正を行っても、不純
物の燃焼による出力変動や、光ファイバの汚損も少な
く、作業性も良く、高温雰囲気下での校正が容易に高精
度に可能となる。また、空気中での高温校正が可能なの
で、装置構成が簡素ですみ、案内管に光ファイバを保持
して黒体炉へ挿入することで、黒体炉の空洞部分が必要
十分に確保でき安定的な測温、校正が可能となる。ま
た、光ファイバを溶鋼に挿入した場合とほぼ同様な条件
の高温の黒体条件となるので、実際の使用に十分に対応
した校正ができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature calibration device for a device for measuring temperature using an optical fiber. 2. Description of the Related Art In order to detect the temperature of a high-temperature liquid metal such as molten steel, a method has been proposed in which a metal tube-coated optical fiber having a tip as a temperature measuring element is inserted into the liquid metal to measure the temperature. (JP-A-2-248960). [0003] When a temperature measuring device using an optical fiber is used for measurement, it is necessary to compare and calibrate the output from the optical fiber and the actual temperature. However, when the optical fiber is inserted into a blackbody furnace in a high-temperature air of about 1500 ° C. to perform calibration, the sheath made of polymer, rubber, metal, etc.
It burns and generates light, smoke, gas, etc., causing fluctuations in output, and fouling the optical fiber, leading to measurement errors. In addition, if a sealed structure is used to prevent the exterior from burning, the structure becomes complicated and workability deteriorates. SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a temperature calibrating apparatus which can easily and highly accurately calibrate a thermometer using an optical fiber even in air in a high-temperature atmosphere. It is to be. According to the present invention, there is provided an optical fiber in which a sheath at a distal end is removed by a required length and fired, and a central bottomed portion into which the distal end of the optical fiber is inserted on one side. A black body furnace having the same, a temperature measuring means for measuring the temperature of the other side of the central bottom of the black body furnace, and a control means for controlling the heating of the black body furnace based on the output of the temperature measuring means. It is a temperature calibration device. FIG. 1 is a structural explanatory view showing an embodiment of the present invention. In the figure, reference numeral 1 denotes an optical fiber, and a tip portion 10 is inserted into one side of a central bottomed portion 20 in a cylindrical black body furnace 2. The other end of the optical fiber 1 is connected to radiation detection means 3 including a detector.
The radiant energy from the distal end portion 10 of the optical fiber 1 is detected and the temperature is measured, and a temperature output Te is output by a display or the like. A temperature sensor 4 such as a thermocouple is provided on the other side of the central bottomed portion 20 of the black body furnace 2, and the temperature is measured by a temperature measuring means 5 using the temperature sensor 4, and a temperature output T is outputted by a display or the like. . The temperature output T and the set value Tc are compared by the controller 6, the operating end 7 is driven, and the voltage, current, electric power, etc. of the heater 8 for heating the black body furnace 2 are controlled. Heating control is performed to reach the temperature. The control means is constituted by the controller 6, the operation terminal 7, and the like. When the optical fiber 1 is inserted into the black body furnace 2, the optical fiber 1 is provided at the entrance on the black body furnace 2 side or is held by the guide tube 9 provided on the optical fiber 1 side itself. It is inserted and protrudes into the cavity of the black body furnace 2 for a predetermined length. Before this insertion, as shown in FIG. 2, the sheath 1a of the optical fiber 1 is removed in advance by a predetermined length, and the exposed distal end portion 10 is burned by a burner or the like to remove the soiled portion. Perform pre-treatment for removal. In this way,
By inserting the tip 10 of the optical fiber 1 into the black body furnace 2, even if the temperature becomes as high as about 1500 ° C., unnecessary combustion does not occur and the tip 10 of the optical fiber 1 is not polluted and stably Can measure temperature. When the optical fiber 1 is inserted into the black body furnace 2,
As shown in FIG. 3, radiation detection means 3 using optical fiber 1
Output Te is first quickly, then gradually rises and equilibrates, and eventually the output decreases. The first fast rise is the reception of cavity radiation, the next slow rise is
Including self-radiation caused by heating itself,
The distal end portion 10 of the optical fiber 1 itself is exposed to a high temperature in the air, which causes a devitrification phenomenon and lowers the output. At this time, the temperature output Te of the optical fiber 1 is calibrated by comparing the balanced temperature output Te with the temperature output T of the temperature measuring means 5 and using the temperature output T as a reference. Note that the function of the temperature measuring means 5 may be provided by the controller 6, and as shown in FIG.
Instead of the thermocouple temperature sensor 4, the radiation detector 40 may detect radiant energy from the central bottomed portion 20 of the black body furnace 2 and measure the temperature by the temperature measuring means 50. Here, if the blackbody furnace 2 is formed of a high-purity alumina tube and the ratio L / D of the inner diameter D and the length L of the cavity is 4 or more, the apparent effective emissivity is 0.999. The above black body is obtained, and sufficiently stable and highly accurate measurement can be performed. This will be described below. The temperature T of the cavity of the blackbody furnace 2, the emissivity ε1,
Assuming that the temperature To of the tip 10 of the optical fiber 1 and the emissivity ε2, the spectral radiance at the measurement wavelength λ and the temperature T is L (λ, T).
Then, the output detected by the radiation detecting means 3 is expressed by the following equation. L (λ, Te) = ε 2 L (λ, To) + (1−ε 2 ) ε 1 L (λ, T) (1) When the output of the optical fiber 1 is balanced, To = T Then, L (λ, Te) = {ε 2 + (1−ε 2 ) ε 1 } L (λ, T) (2) is obtained. Here, from L (λ, Te) / L (λ, T) = ε 2 + (1−ε 2 ) ε 1 = εe, εe = ε 2 + (1−ε 2 ) ε 1 (3) An apparent emissivity εe is obtained. Next, when the spectral radiance is approximated by an index n, the following equation is obtained when L (λ, T) = kT n and Te = T + ΔT. L (λ, Te) / L (λ, T) = (T + ΔT) n / T n = 1 + nΔT / T = εe From this, the following equation is obtained. ΔT / T = (εe−1) / n (4) where n = C2 / λT, C2 = 0.0143388 m
-It is K. From this, the calibration error is apparent emissivity ε
e and the index n. Alumina tube temperature 150
It is expected that the specific emissivity at 0 ° C. is 0.2 or more, the L / D of the cavity is 4 or more, and ε 1 ≧ 0.9. Also, by inserting the tip 10 of the fiber into the cavity, the fiber diameter can be reduced. Since the soaking length of 10 times or more can be easily obtained and the emissivity of the fiber tip 10 can be expected to be ε 2 ≧ 0.99, from the equation (3),
εe = 0.999. On the other hand, λ = 1.5 μm, T =
Since n = 5.4 as 1773 (K), the calibration error at this time is 0.019% from equation (4), that is, 0.34K, and sufficient calibration accuracy can be secured. According to the present invention, there is provided a temperature calibrating apparatus in which the sheath at the tip of an optical fiber is removed, the baked one is inserted into a blackbody furnace, and calibration is performed. For this reason, there is no substance that causes contamination at the tip of the optical fiber.
Even when the temperature is calibrated by heating at a high temperature in the air, the output fluctuation due to the burning of impurities and the contamination of the optical fiber are small, the workability is good, and the calibration under the high temperature atmosphere can be easily performed with high accuracy. In addition, since high-temperature calibration in air is possible, the equipment configuration is simple.By holding the optical fiber in the guide tube and inserting it into the black body furnace, the cavity of the black body furnace can be secured sufficiently and stable. Temperature measurement and calibration are possible. In addition, since the high temperature black body condition is almost the same as that in the case where the optical fiber is inserted into the molten steel, it is possible to perform calibration sufficiently corresponding to actual use.
【図面の簡単な説明】 【図1】この発明の一実施例を示す構成説明図である。 【図2】この発明の一実施例を示す構成説明図である。 【図3】この発明の一実施例を示す動作説明図である。 【図4】この発明の一実施例を示す構成説明図である。 【符号の説明】 1 光ファイバ 10 先端部 2 黒体炉 20 中央有底部 3 放射検出手段 4 温度センサ 5 温度検出手段 6 調節計 7 操作端 8 ヒータ 9 案内管[Brief description of the drawings] FIG. 1 is a configuration explanatory view showing one embodiment of the present invention. FIG. 2 is a configuration explanatory view showing one embodiment of the present invention. FIG. 3 is an operation explanatory diagram showing one embodiment of the present invention. FIG. 4 is a configuration explanatory view showing one embodiment of the present invention. [Explanation of symbols] 1 Optical fiber 10 Tip 2 Blackbody furnace 20 Central bottom 3 Radiation detection means 4 Temperature sensor 5 Temperature detection means 6 Controller 7 Operation terminal 8 heater 9 Guide tube
フロントページの続き (56)参考文献 特開 平1−276032(JP,A) 特開 昭63−1923(JP,A) 特開 平5−248960(JP,A) 特開 昭62−172228(JP,A) 実開 昭55−57033(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01K 15/00 G01K 11/12 G01J 5/02 G01J 5/08 Continuation of front page (56) References JP-A 1-276032 (JP, A) JP-A 63-1923 (JP, A) JP-A 5-248960 (JP, A) JP-A 62-172228 (JP) , A) Shokai 55-57033 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01K 15/00 G01K 11/12 G01J 5/02 G01J 5/08
Claims (1)
た光ファイバと、この光ファイバの先端部が一方側に挿
入される中央有底部をもつ黒体炉と、この黒体炉の中央
有底部の他方側を測温する温度測定手段と、この温度測
定手段の出力に基いて黒体炉を加熱制御する制御手段と
を備えたことを特徴とする温度校正装置。(1) Claims: (1) An optical fiber which is obtained by removing a required length of the sheath of the end portion and fired, and a black having a central bottom portion into which the end portion of the optical fiber is inserted on one side. Body furnace, temperature measuring means for measuring the temperature of the other side of the central bottom portion of the black body furnace, and control means for controlling the heating of the black body furnace based on the output of the temperature measuring means, Temperature calibration device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08249094A JP3392936B2 (en) | 1994-03-29 | 1994-03-29 | Temperature calibration device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08249094A JP3392936B2 (en) | 1994-03-29 | 1994-03-29 | Temperature calibration device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07270256A JPH07270256A (en) | 1995-10-20 |
JP3392936B2 true JP3392936B2 (en) | 2003-03-31 |
Family
ID=13775946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08249094A Expired - Fee Related JP3392936B2 (en) | 1994-03-29 | 1994-03-29 | Temperature calibration device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3392936B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW476502U (en) * | 2000-11-07 | 2002-02-11 | Ind Tech Res Inst | Blackbody furnace |
KR100805911B1 (en) * | 2006-09-26 | 2008-02-21 | 한국표준과학연구원 | High precision mini blackbody for ear thermometer calibration |
US8757870B2 (en) * | 2007-03-22 | 2014-06-24 | Baker Hughes Incorporated | Location dependent calibration for distributed temperature sensor measurements |
CN104697671B (en) * | 2015-03-16 | 2017-10-13 | 东南大学 | A kind of temperature sensor response time measurement device and measuring method |
CN107179144B (en) * | 2017-06-21 | 2021-09-14 | 康威通信技术股份有限公司 | Portable optical fiber heating flexible device |
CN108257364B (en) * | 2017-12-29 | 2020-08-14 | 北京航天控制仪器研究所 | Method for improving alarm reliability of distributed optical fiber monitoring system |
CN111006792B (en) * | 2019-11-27 | 2021-08-24 | 北京交通大学 | A Fiber Bragg Grating Temperature Sensor Calibration Device Based on Electromagnetic Induction Heating |
CN113375814A (en) | 2020-03-10 | 2021-09-10 | 百度在线网络技术(北京)有限公司 | Infrared temperature measurement calibration method and device, electronic equipment and storage medium |
-
1994
- 1994-03-29 JP JP08249094A patent/JP3392936B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07270256A (en) | 1995-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dils | High‐temperature optical fiber thermometer | |
EP2295943B1 (en) | radiation thermometer calibration | |
US5820261A (en) | Method and apparatus for infrared pyrometer calibration in a rapid thermal processing system | |
JP3392936B2 (en) | Temperature calibration device | |
KR980700818A (en) | radiothermometer | |
US5247185A (en) | Regulated infrared source | |
Lee | The NBS photoelectric pyrometer and its use in realizing the International Practical Temperature Scale above 1063° C | |
Murthy et al. | Radiative Calibration of Heat Flux Sensors at NIST: An Overview | |
Levick et al. | A fibre-optic based laser absorption radiation thermometry (LART) instrument for surface temperature measurement | |
CN102865930B (en) | Based on proving installation and the using method of the Mg-based hydrogen storage ignition temperature of colourimetry | |
US4502792A (en) | Apparatus for calibrating a pyrometer | |
US4440510A (en) | Pyrometric gas temperature measurement system | |
JP3099470B2 (en) | Non-contact temperature measurement system for centrifuge | |
Adams et al. | The application of optical pyrometric and two-line atomic absorption techniques to the determination of temperatures in a graphite furnace atomizer | |
Kimes et al. | In situ calibration of lightpipe radiometers for rapid thermal processing between 300/spl deg/C to 700/spl deg/C | |
Fokine | High temperature miniature oven with low thermal gradient for processing fiber Bragg gratings | |
Willmott et al. | Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory | |
Chahine et al. | Temperature profile measurement of a graphite tube furnace using optical fibre and platinum thermocouples | |
JPH0854284A (en) | Temperature calibration device | |
Meyer | Effects of extraneous radiation on the performance of lightpipe radiation thermometers | |
JPS6155049B2 (en) | ||
Bonanno et al. | Fiber-optic sensors for long-wavelength pyrometry and thermometry in gas turbines | |
Kreider | Fiber-optic thermometry | |
JPH0662333U (en) | Temperature measuring device | |
Ahmed et al. | Approximating the ITS-90 between Zinc and Copper with an Infrared Thermometer at NIS-Egypt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080124 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110124 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110124 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120124 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140124 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |