[go: up one dir, main page]

JP3392025B2 - Light deflection device - Google Patents

Light deflection device

Info

Publication number
JP3392025B2
JP3392025B2 JP33132597A JP33132597A JP3392025B2 JP 3392025 B2 JP3392025 B2 JP 3392025B2 JP 33132597 A JP33132597 A JP 33132597A JP 33132597 A JP33132597 A JP 33132597A JP 3392025 B2 JP3392025 B2 JP 3392025B2
Authority
JP
Japan
Prior art keywords
hemisphere
partial
surface portion
deflecting
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33132597A
Other languages
Japanese (ja)
Other versions
JPH11149049A (en
Inventor
隆行 八木
肇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP33132597A priority Critical patent/JP3392025B2/en
Priority to EP98121705A priority patent/EP0916984A1/en
Priority to US09/191,534 priority patent/US6154302A/en
Publication of JPH11149049A publication Critical patent/JPH11149049A/en
Application granted granted Critical
Publication of JP3392025B2 publication Critical patent/JP3392025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、任意の多点間を光
波によって自由接続する光インターコネクションなどに
好適に用いられる光偏向装置に関し、特に集積回路素子
内及び素子間、機器内及び機器間相互間等における光の
接続もしくは光配線、並びに、伝送データを光信号のま
まに切り替える光交換、さらには光情報処理等に応用さ
れる光インターコネクション用光偏向装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical deflecting device suitably used for optical interconnection or the like in which arbitrary multipoints are freely connected by a lightwave, and more particularly, in an integrated circuit device and between devices, between devices and between devices. The present invention relates to an optical connection device or optical wiring for mutual connection, optical switching for switching transmission data as optical signals, and an optical deflection device for optical interconnection applied to optical information processing and the like.

【0002】[0002]

【従来の技術】従来、接続経路の再構成可能な(プログ
ラマブル)光インターコネクションに用いられる光偏向
装置としては、ホログラムあるいは液晶スイッチアレイ
などが検討されてきた。しかし、回折方向の可変なホロ
グラムは光書き込み型の空間光変調器で構成可能である
が、液晶もしくは光学結晶に干渉露光を施す必要があ
り、装置構成も複雑である。その他に、2方向切換えの
液晶スイッチアレイによる方法もあるが、多段もしくは
繰り返しスイッチングが必要であるので、装置構成は極
めて大掛かりである。更には液晶であるので高速性にも
劣る。
2. Description of the Related Art Conventionally, holograms or liquid crystal switch arrays have been studied as optical deflectors used for reconfigurable (programmable) optical interconnection of connection paths. However, although a hologram having a variable diffraction direction can be configured by an optical writing type spatial light modulator, it is necessary to perform interference exposure on a liquid crystal or an optical crystal, and the device configuration is complicated. Besides, there is also a method using a liquid crystal switch array for switching in two directions, but since it requires multistage or repeated switching, the device configuration is extremely large. Furthermore, since it is a liquid crystal, it is inferior in high speed.

【0003】[0003]

【発明が解決しようとする課題】以上の様な光の回折現
象もしくは屈折率の変化を応用した光偏向機構に対し
て、マイクロメカニクス技術に基づきマイクロミラーを
作製し、該マイクロミラーを傾けて光の偏向を図る手法
が提案されている。例えば、L. J. Hornbe
ck等により、ミラーとなる薄い金属板を静電力により
一軸回転変位させることによって、入射光の反射方向を
変える空間光変調器が提案されている(米国特許5,0
61,049号、特開平4−230722号参照)。ま
た、年吉等にょり、同様の駆動原理に基づきミラーを一
軸回転変位させ光ファイバー間の光接続を行った光クロ
スコネクタが提案されている(H. Toshiyoshi et al,.
"Fabrication and Operation of Electrostatic Micro
Torsion Mirrors for OpticalSwitches", Technical D
igest of The l4th SENSOR SYMPOSIUM, pp.275-277, 19
96参照)。これらの薄膜板を用いたミラーは、光偏向装
置を小型化できると共に偏向角を大きく取ることができ
る。しかしながら、光偏向方向が2値化されているため
(伸びに対して一次的に変化するバネ力と距離に対して
逆2乗の関係で変化する電磁力の釣合の中で薄膜板を動
かすので細かく制御できない)、2方向切換えの光スイ
ッチとなっており、任意の方向に偏向を行うには多段に
装置を配置しスイッチングを行う必要がある。
With respect to the light deflection mechanism applying the diffraction phenomenon of light or the change of the refractive index as described above, a micromirror is manufactured based on the micromechanics technology, and the micromirror is tilted to produce an optical beam. The method of aiming at the bias of is proposed. For example, L. J. Hornbe
ck et al. proposes a spatial light modulator that changes the reflection direction of incident light by uniaxially rotating and displacing a thin metal plate serving as a mirror by an electrostatic force (US Pat. No. 5,0).
61,049, JP-A-4-230722). In addition, Toshiyoshi et al. Proposed an optical cross connector in which the mirror is uniaxially displaced based on the same driving principle to optically connect the optical fibers (H. Toshiyoshi et al ,.
"Fabrication and Operation of Electrostatic Micro
Torsion Mirrors for OpticalSwitches ", Technical D
igest of The l4th SENSOR SYMPOSIUM, pp.275-277, 19
96). Mirrors using these thin film plates can make the optical deflector compact and have a large deflection angle. However, since the light deflection direction is binarized (the thin film plate is moved in the balance of the spring force which changes temporarily with respect to the elongation and the electromagnetic force which changes with the inverse square of the distance). Since it is a two-way switching optical switch, it is necessary to arrange devices in multiple stages and perform switching in order to perform deflection in any direction.

【0004】更に、薄膜板以外のミラーを用いた他の例
としては、特開平7−333528号に、光学オイルが
満たされた溝にミラーとなる平面部を有する半球体を、
平面部に対向配置した接触式または非接触式の駆動機構
により回転させる光偏向装置が提案されている。これ
は、半球体を自在に回転させることにより入射光を任意
の方向に偏向することが可能であり、多段スイッチング
を行う必要がない特徴を有している。
Further, as another example of using a mirror other than a thin film plate, Japanese Patent Laid-Open No. 7-333528 discloses a hemisphere having a plane portion serving as a mirror in a groove filled with optical oil.
There has been proposed an optical deflecting device that is rotated by a contact type or non-contact type drive mechanism that is disposed so as to face a flat surface portion. This has a feature that incident light can be deflected in an arbitrary direction by freely rotating a hemisphere, and it is not necessary to perform multistage switching.

【0005】しかしながら、この光偏向装置において、
半球体の平面部に作用する力にて生じるトルクにより半
球体を回転し、これを所望の位置にて停止させるために
は、回転方向とは逆の方向に同等のトルクを与える必要
がある(図8(a)参照)。回転の為のトルク(F1×
r1)と回転を停止するトルク(F2×r2)が異なる
と、半球体は合成されたトルクの方向に回転する。回転
を停止する為には、半球体の平面部全面に加わる全ての
トルクの合成をゼロにする必要がある。また、回転自在
な半球体では平面部上の作用点の位置(r1、r2)は
必ずしも定位置ではなく、半球体の回転角θに応じて作
用点は夫々位置(r1+δr、r2+δr)へと変わる
(図8(b)参照)。
However, in this optical deflector,
In order to rotate the hemisphere by the torque generated by the force acting on the flat surface of the hemisphere and stop the hemisphere at a desired position, it is necessary to apply an equal torque in the direction opposite to the rotation direction ( FIG. 8A). Torque for rotation (F1 x
If the torque (F2 × r2) for stopping the rotation is different from r1), the hemisphere rotates in the direction of the combined torque. In order to stop the rotation, it is necessary to make the composition of all the torques applied to the entire flat surface of the hemisphere zero. In the case of a rotatable hemisphere, the positions (r1, r2) of the points of action on the plane are not necessarily fixed positions, and the points of action change to positions (r1 + δr, r2 + δr) depending on the rotation angle θ of the hemisphere. (See FIG. 8B).

【0006】確かに、この光偏向装置の接触式の駆動機
構では、トルクで停止させずに、平面部を強く押さえ半
球面を溝に押し当てることで、作用点の位置の変化に係
りなく、半球体の回転を停止することは可能である。し
かし、この場合、平面部、半球面と溝の接点に過度の力
が加えられることとなり、半球体や溝の塑性変形や破損
等が起こる可能性があり、光偏向装置の耐久性が低下す
る原因となる。また、接触式の駆動機構では、電磁アク
チュエータ等の可動部を有する必要があり、装置が複雑
になって、小型化、アレイ化には不利である。さらに、
こうした可動部を有する駆動機構は、光学オイルの溝部
への封止を困難にするという問題がある。
Certainly, in the contact-type drive mechanism of this optical deflecting device, the flat surface portion is strongly pressed against the groove and the hemispherical surface is pressed against the groove without stopping by the torque, so that the position of the action point does not change. It is possible to stop the rotation of the hemisphere. However, in this case, excessive force is applied to the contact points between the flat surface portion, the hemispherical surface, and the groove, which may cause plastic deformation or damage of the hemispherical body or the groove, which reduces the durability of the optical deflector. Cause. Further, the contact-type drive mechanism needs to have a movable part such as an electromagnetic actuator, which complicates the device and is disadvantageous in downsizing and arraying. further,
The drive mechanism having such a movable part has a problem that it is difficult to seal the optical oil in the groove.

【0007】これに対して、非接触式の駆動機構は、小
型化、アレイ化に有利であり、可動部をなくすることも
可能な為に光学オイルの封止も容易である。しかしなが
ら、非接触式の駆動機構では、静電力や磁力等の力(F
1、F2)は半球体の平面部との距離に依存すると共に
上述した様に作用点(r1、r2)も移動するので、、
力(F1、F2)及び作用点(r1、r2)が共に半球
体の回転角に依存することとなり、半球体の回転角の制
御を行うことが困難である。その反面、上で述べた様な
利点を持つ。しかし、結局、半球体の回転停止の為のト
ルク制御を考えると、非接触式の駆動機構では、静電力
や磁力等の力(F1、F2)が半球体の平面部との距
離、すなわち半球体の回転角に依存し、また、図8に示
したように作用点(r1、r2)も回転角に依存してい
るために、考慮すべきパラメーターが多くトルクの制御
が難しいという問題がある。
On the other hand, the non-contact type drive mechanism is advantageous in downsizing and arraying, and since the moving part can be eliminated, the optical oil can be easily sealed. However, in the non-contact drive mechanism, a force (F
1, F2) depends on the distance from the plane part of the hemisphere and the action points (r1, r2) also move as described above,
Both the forces (F1, F2) and the points of action (r1, r2) depend on the rotation angle of the hemisphere, and it is difficult to control the rotation angle of the hemisphere. On the other hand, it has the advantages described above. However, after all, considering the torque control for stopping the rotation of the hemisphere, in the non-contact type drive mechanism, the force (F1, F2) such as electrostatic force or magnetic force is the distance from the plane portion of the hemisphere, that is, the hemisphere. Since it depends on the rotation angle of the body, and the action points (r1, r2) also depend on the rotation angle as shown in FIG. 8, there are many parameters to be considered and it is difficult to control the torque. .

【0008】従って、本発明の目的は、上記従来技術の
有する題点に鑑みなされたものであり、その目的は、
(1)光ビームの偏向角を大きくとれ、(2)入射光を任意
の方向に偏向することが可能であり、(3)半球体などの
光偏向用部材の回転方向及び光ビームの偏向角の制御が
容易であり、(4)小型化且つ一次元或は二次元にアレイ
化が容易な、光偏向装置を提供することにある。
It is therefore an object of the present invention has been made in view of the problems point included in the above prior art, and its object is
(1) The deflection angle of the light beam can be set large, (2) the incident light can be deflected in any direction, and (3) the rotation direction of the light deflection member such as a hemisphere and the deflection angle of the light beam. It is an object of the present invention to provide an optical deflecting device which can be easily controlled, and (4) can be miniaturized and can be easily arrayed in one or two dimensions.

【0009】[0009]

【課題を解決する為の手段と作用】上記目的を達成する
本発明の光偏向装置は、入射する光ビームを偏向する偏
向面部と該偏向面部を包む様にこれと対向して形成され
た球面の一部から成る部分球面部を有する部分球体と、
部分球体が回転するに際しこれを回転自在に支持する支
持体と、支持体と部分球体の間の空隙に満たされた誘電
性液体と、部分球体を回転させる為の駆動手段を有し、
該駆動手段は、部分球体を回転させる力が部分球面部の
表面に作用する様に、部分球体の部分球面部の表面上に
誘電性液体の作用によって形成された異なる電荷で帯電
された帯電特性の異なる2つの領域と、支持体または支
持体を介して部分球体と対向する位置に設けられて部分
球面部付近に電場を生じさせる為の駆動電極からなる
とを特徴とする。この構成では、支持体と部分球体の間
の空隙を誘電性液体で満たして、帯電特性の異なる領域
を異なる電荷で帯電させ、支持体側に配置された電極と
の間に生じる静電力を用いて部分球体の回転を制御す
る。そして、部分球体への電気配線は不必要であるの
で、構成がそれだけ簡単になる。また、駆動電極を支持
体側に設けることにより、新たに駆動電極を設けた基板
を用意し、支持体と接続する構成を取ることも可能とな
る。これにより、該基板上に制御用駆動回路を集積する
ことが可能となり、構成が簡単になる。
The optical deflecting device of the present invention for achieving the above object is a deflecting surface portion for deflecting an incident light beam, and a spherical surface formed so as to face the deflecting surface portion so as to surround the deflecting surface portion. A partial spherical body having a partial spherical surface portion consisting of a part of
A support that rotatably supports the partial sphere as it rotates , and a dielectric filled in the space between the support and the partial sphere.
And a driving means for rotating the partial sphere,
The drive means is arranged on the surface of the partial spherical surface of the partial spherical body so that the force for rotating the partial spherical body acts on the surface of the partial spherical surface.
Charged with different charges created by the action of a dielectric liquid
Two regions with different charging characteristics and a support or support.
Part that is provided at a position facing the partial sphere through the holding body
It is characterized by comprising a driving electrode for generating an electric field in the vicinity of the spherical portion . In this configuration, between the support and the partial sphere
Fill the voids with a dielectric liquid and
Are charged with different charges, and the electrodes arranged on the support side
Control the rotation of the partial sphere by using the electrostatic force generated between
It And the electrical wiring to the partial sphere is unnecessary
Then, the configuration becomes that simple. Also supports drive electrodes
Substrate with a new drive electrode provided on the body side
It is also possible to prepare a structure and connect it to the support.
It Thereby, the control drive circuit is integrated on the substrate.
It becomes possible and the configuration becomes simple.

【0010】以上の構成によれば、半球体などの部分球
体を回転させる力を部分球面(半球面)に作用させること
により、トルクを与える作用点が常に部分球体面上にあ
り、作用点の回転中心からの距離の変化が抑制さる。
このことにより、部分球体の回転方向及び偏向角の制御
が容易となる。さらに、本発明の光偏向装置では非接触
にて部分球体の駆動を行うと共に駆動機構が比較的簡単
な構成である為に、小型化、アレイ化に好適となる。さ
らに、本発明の光偏向装置では、部分球体の回転制御の
範囲を比較的大きくできるので、偏向角を大きく取れ、
任意の方向に光偏向することが可能となる。
According to the above construction, by applying a force for rotating a partial sphere such as a hemisphere to the partial spherical surface (hemispherical surface), the point of application of torque is always on the surface of the partial sphere. change in the distance from the rotational center Ru is suppressed.
This facilitates control of the rotation direction and deflection angle of the partial sphere. Further, in the optical deflecting device of the present invention, the partial sphere is driven in a non-contact manner and the driving mechanism has a relatively simple structure, which is suitable for downsizing and arraying. Furthermore, in the optical deflecting device of the present invention, since the range of rotation control of the partial sphere can be made relatively large, a large deflection angle can be obtained,
It is possible to deflect light in any direction.

【0011】以下の様な具体的態様が好適には採用可能
である。支持体は、部分球面部がその一部をなす球の中
心の回りに部分球体を回転自在に支持するように構成さ
れている。こうすれば光ビームの偏向制御が容易且つ正
確に行なわれる。部分球体の支持の仕方としては、次の
様な態様がある。支持体には凹部が形成されていて、こ
こに部分球体が回転自在に支持される。この場合、部分
球体の回転支持を滑らか且つ制御性良く行なう為に、部
分球体は凹部に空隙を介して支持され、該空隙を液体で
満たすのが良い。また、同じく部分球体の回転支持を滑
らか且つ制御性良く行なう為に、支持体に部分球面部に
対応した形状(半球状などの部分球面状)の凹部を形成
するのが良い。こうすれば、部分球体の球心を通る方向
の力が部分球体に加わっても、部分球体がこの力の方向
にずれない様にこの方向の動きを凹部が受け止めて、部
分球体の好適な回転運動を保証するからである。しか
し、こうした好適な回転運動を保証するなら凹部はこの
形状に限る必要はなく、円錐状、円筒状などであっても
よい。
The following specific embodiments can be preferably adopted. The support is configured to rotatably support the partial sphere around the center of the sphere of which the partial spherical portion is a part. In this way, the deflection control of the light beam can be performed easily and accurately. There are the following modes for supporting the partial sphere. A recess is formed in the support, and the partial sphere is rotatably supported therein. In this case, in order to smoothly and rotatably support the partial sphere, it is preferable that the partial sphere is supported by the concave portion through the void, and the void is filled with the liquid. Further, similarly, in order to smoothly and rotatably support the partial sphere, it is preferable to form a recess having a shape corresponding to the partial spherical portion (partial spherical shape such as hemispherical shape) on the support. In this way, even if a force in the direction passing through the center of the partial sphere is applied to the partial sphere, the concave part receives the movement in this direction so that the partial sphere does not shift in the direction of this force, and the suitable rotation of the partial sphere This is because it guarantees exercise. However, the recess need not be limited to this shape as long as it ensures such a preferable rotational movement, and may be conical, cylindrical, or the like.

【0012】偏向面部は、典型的には、平面部から成
る。必要なら、偏向面部は平面部以外の凹面、凸面など
であっても良いが、平面部とすれば光ビームの偏向制御
がやり易くなる。また、部分球面部は、典型的には、半
球面部から成る。こうすれば、部分球体の回転支持を行
ない易くなると共に、部分球体の作成も比較的容易とな
る。
The deflecting surface portion typically comprises a flat surface portion. If necessary, the deflecting surface portion may be a concave surface or a convex surface other than the flat surface portion, but if the flat surface portion is used, the deflection control of the light beam can be easily performed. Further, the partial spherical surface portion is typically a hemispherical surface portion. This makes it easier to support the rotation of the partial sphere and also relatively easy to create the partial sphere.

【0013】[0013]

【0014】[0014]

【0015】[0015]

【0016】さらにまた、光ビームの偏向は反射で行な
ったり、屈折で行なったりする。前者の場合、平面部な
どの偏向面部に光ビームを反射・偏向する為の反射層が
形成されており、光ビームを偏向面部側、あるいは、部
分球体側から偏向面部に入射し、偏向面部に設けた反射
層にて反射・偏向を行う。後者の場合、部分球体は偏向
する光ビームに対して透過性であり、且つ偏向面部と偏
向面部に接する空間(所定の屈折率を持つ液体で満たさ
れている場合もある)との屈折率が異なっており、スネ
ルの法則による界面での屈折によって光偏向を行う。光
入射側と出射側が部分球体を挟んで互いに反対になるの
で、都合の良い場合もある。
Furthermore, the deflection of the light beam is performed by reflection or refraction. In the former case, a reflecting layer for reflecting / deflecting the light beam is formed on the deflecting surface portion such as a flat surface portion, and the light beam is incident on the deflecting surface portion from the deflecting surface portion side or the partial sphere side, and Reflection / deflection is performed by the provided reflection layer. In the latter case, the partial sphere is transparent to the deflecting light beam, and the refractive index between the deflecting surface portion and the space in contact with the deflecting surface portion (which may be filled with a liquid having a predetermined refractive index) is Light is deflected by refraction at the interface according to Snell's law. Since the light incident side and the light emitting side are opposite to each other with the partial sphere in between, it may be convenient in some cases.

【0017】[0017]

【発明の実施の形態】以下、本発明の光偏向装置を図1
乃至図7の図面に示す実施例を用いて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An optical deflecting device of the present invention will be described below with reference to FIG.
A detailed description will be given with reference to the embodiment shown in the drawing of FIG.

【0018】(第1実施例)図1は本発明の第1実施例
となる光偏向装置の側断面図である。本実施例の光偏向
装置は、入射する光ビームを偏向する平面部2を有する
半球体1と、該半球体1が回転するに際し空隙を介して
これを半球状の凹部3a中で回転自在に安定的に支持す
る支持体3と、半球体1を回転させる為の駆動手段を有
する。駆動手段は、半球体1を回転させる為に半球体1
の球面上に帯電特性の異なる帯電領域7a、7b(図1
に示す様に、帯電領域7aはぐるりと帯状に形成され、
帯電領域7bは底部に椀状に形成されている)を設け、
帯電領域7a、7b付近に電界を印加する為に駆動電極
8を支持体3下部に設けている。光偏向は、平面部2上
に設けた反射層4にて行う。空隙には誘電性液体5が満
たされており、誘電性液体5の封止を行う為に、半球体
1上部に半球体1の回転を阻害しない為のスベーサ9を
設け、半球体1上部を平行平板状の基板6にて塞いでい
る。
(First Embodiment) FIG. 1 is a side sectional view of an optical deflector according to a first embodiment of the present invention. The optical deflector of this embodiment has a hemisphere 1 having a flat surface portion 2 for deflecting an incident light beam, and when the hemisphere 1 rotates, the hemisphere 1 is rotatable in a hemispherical recess 3a through a gap. It has a support 3 for stable support and a drive means for rotating the hemisphere 1. The driving means is for rotating the hemisphere 1 to rotate the hemisphere 1.
Charging regions 7a and 7b having different charging characteristics on the spherical surface of
As shown in, the charging area 7a is formed in a strip shape,
The charging area 7b is provided in the shape of a bowl at the bottom),
A drive electrode 8 is provided below the support 3 in order to apply an electric field in the vicinity of the charging areas 7a and 7b. The light is deflected by the reflective layer 4 provided on the plane portion 2. The void is filled with the dielectric liquid 5, and in order to seal the dielectric liquid 5, a spacer 9 for preventing the rotation of the hemisphere 1 is provided on the upper part of the hemisphere 1 and the upper part of the hemisphere 1 is covered. It is closed by a parallel plate-shaped substrate 6.

【0019】本発明の光偏向装置の第1実施例の駆動手
段の詳細を以下に説明する。シリコーンオイルなどの誘
電性液体5中の粒子(半球体1)には、粒子と液体の間
で電荷の授受が行われて電気二重層が形成され、粒子は
正または負に帯電される。本実施例の半球体1は、上述
した様に、球面上に液体5中での帯電特性が異なる帯電
領域7a、7bを持つ。球面が異なる材料(後述する様
に、MgF2と石英ガラス)で構成されることで、液体
5中での半球体1の表面電荷量も帯電領域7a、7bで
異なり、半球体1は電気的モーメントを有する(そのベ
クトルの方向は半球体1の球心を通って図1の上下方向
である)。この半球体1に駆動電極8にて電場を印加す
ると、半球体1にはその電荷の極方向(電気的モーメン
トのベクトルの方向)を電界方向に揃えようとするトル
クが働く。半球体1の表面にのみ電荷が存在するので、
トルクの作用点の半球体1の回転中心からの距離は、常
に半球体1の半径と一致している。この後、半球体1が
回転し電界方向に半球体1の電荷の極方向が揃うとトル
クがなくなり、回転が停止する。回転が停止した後に電
界を切っても、半球体1と凹部3aとの摩擦作用などに
より半球体1は同一位置に停止されており、位置が保存
される。駆動電極8による電界方向を変えると、その電
界方向に極方向を揃える様にトルクが同様に発生し半球
体1は再び回転を行う。以上のの駆動手段を用いると、
半球体1への電気的配線は不要である。
The details of the driving means of the first embodiment of the optical deflecting device of the present invention will be described below. An electric double layer is formed in particles (hemisphere 1) in a dielectric liquid 5 such as silicone oil by exchanging charges between the particles and the liquid, and the particles are positively or negatively charged. As described above, the hemisphere 1 of the present embodiment has the charging areas 7a and 7b on the spherical surface, which have different charging characteristics in the liquid 5. By being made of materials having different spherical surfaces (MgF 2 and quartz glass, as will be described later), the surface charge amount of the hemisphere 1 in the liquid 5 is also different in the charging regions 7a and 7b, and the hemisphere 1 is electrically charged. Has a moment (the direction of the vector is the vertical direction of FIG. 1 through the center of the hemisphere 1). When an electric field is applied to the hemisphere 1 by the drive electrode 8, a torque is applied to the hemisphere 1 so as to align the polar direction of the electric charge (the direction of the vector of the electric moment) with the electric field direction. Since the electric charge exists only on the surface of the hemisphere 1,
The distance from the center of rotation of the hemisphere 1 at the point of torque application always matches the radius of the hemisphere 1. After that, when the hemisphere 1 rotates and the polar directions of the charges of the hemisphere 1 are aligned in the direction of the electric field, the torque disappears and the rotation stops. Even if the electric field is cut off after the rotation is stopped, the hemisphere 1 is stopped at the same position due to the frictional action between the hemisphere 1 and the recess 3a, and the position is saved. When the electric field direction by the drive electrode 8 is changed, torque is similarly generated so that the polar direction is aligned with the electric field direction, and the hemisphere 1 rotates again. Using the above driving means,
No electrical wiring to the hemisphere 1 is required.

【0020】図2に、光偏向装置を上面からみた時の半
球体1に対する駆動電極8a、8b、8c、8d、8e
の配置の一例を示す。この駆動電極8a、8b、8c、
8d、8eの5点配置に基づいて、図3を用いて本実施
例の光偏向装置の駆動方法を、より詳細に説明する。誘
電性液体5中でマイナス帯電をする帯電領域7bとプラ
ス帯電をする帯電領域7aを設けた半球体1に、図3
(a)のように中央の駆動電極8bにプラス電圧、その
他の駆動電極(手前と向こう側の8d、8eは不図示)
にはマイナス電圧を印加することで、電界を及ぼす。こ
の時、帯電領域7bは駆動電極8bに電荷の極方向を揃
えて半球体1は図3(a)の如く真っ直ぐに立った状態
なり、反射層4に角度θで入射した入射光はθの出射角
度で反射される。
FIG. 2 shows the drive electrodes 8a, 8b, 8c, 8d and 8e for the hemisphere 1 when the optical deflector is viewed from above.
An example of the arrangement of The drive electrodes 8a, 8b, 8c,
Based on the five-point arrangement of 8d and 8e, the driving method of the optical deflecting device of this embodiment will be described in more detail with reference to FIG. As shown in FIG. 3, the hemisphere 1 is provided with a charging area 7b that is negatively charged and a charging area 7a that is positively charged in the dielectric liquid 5.
As shown in (a), a positive voltage is applied to the central drive electrode 8b, and other drive electrodes (8d and 8e on the front side and the other side are not shown)
An electric field is exerted by applying a negative voltage to. At this time, the charged region 7b is aligned with the drive electrode 8b in the polar direction of the charge, and the hemisphere 1 is in a state of standing upright as shown in FIG. 3A, and the incident light incident on the reflective layer 4 at the angle θ is θ. It is reflected at the exit angle.

【0021】次に、図3(b)のようにスイッチSW
1、SW2を切換え、左側の駆動電極8aにプラス電圧
を他の駆動電極(8d、8eは不図示)にマイナス電圧
を印加すると、同じく帯電領域7bの電荷の極方向が電
界方向に揃うように半球体1が球心を中心に紙面内で右
方向に回転し、半球体1は一定の角度(α)の回転角を
取る。これにより反射光は図3(a)に比べ角度(2
α)更に偏向される。スイッチを切換え、再び図3
(a)に示すようにスイッチSW1、SW2を設定する
ことで、半球体1は図3(a)の位置に戻る。以上の方
法を用いて半球体1を種々の位置に駆動することが可能
である。例えば、、駆動電極8aと駆動電極8bに独立
にプラス電圧を印加し、他の駆動電極にマイナス電圧を
印加することにより、半球体1は図3(a)の位置と図
3(b)の位置の間の状態になり、偏向角度(2α)以
下の角度を得ることも可能である。どの様な電圧印加状
態でどの様な偏向角を得られるかは予め計測しておい
て、その記憶情報に基づいて半球体1の回転状態を制御
して所望の偏向角を得る様にすればよい。
Next, as shown in FIG. 3B, the switch SW
When 1 and SW2 are switched and a positive voltage is applied to the left drive electrode 8a and a negative voltage is applied to the other drive electrodes (8d and 8e are not shown), the polar directions of the charges in the charging region 7b are also aligned in the electric field direction. The hemisphere 1 rotates to the right in the plane of the drawing around the spherical center, and the hemisphere 1 takes a rotation angle of a constant angle (α). As a result, the reflected light has an angle (2
α) It is further deflected. Switch the switch, and again
By setting the switches SW1 and SW2 as shown in (a), the hemisphere 1 returns to the position shown in FIG. 3 (a). It is possible to drive the hemisphere 1 to various positions using the above method. For example, by applying a positive voltage to the drive electrode 8a and the drive electrode 8b independently and applying a negative voltage to the other drive electrodes, the hemisphere 1 is moved to the position shown in FIG. 3 (a) and the position shown in FIG. 3 (b). It is also possible to obtain a state between the positions and obtain an angle equal to or smaller than the deflection angle (2α). What kind of voltage application state and what kind of deflection angle can be obtained are measured in advance, and the rotation state of the hemisphere 1 is controlled based on the stored information to obtain a desired deflection angle. Good.

【0022】次に、本実施例の光偏向装置の作製工程の
一例を示す。半球体1には、石英ガラスからなる100
μm程度の直径の発光ダイオードのコリメータレンズ用
のマイクロビーズを使用し、研磨加工によりビーズの一
端を研磨して平面部2を形成する。この半球体1の平面
部2を接着テープにて固定し、半球体1の球面上にMg
2をスパッタリング法により真空蒸着して帯電領域7
aを形成する。この後に、フォトレジストを半球体1の
表面に塗布し、フォトリソグラフィプロセスを用いて半
球体球面の一部(帯電領域7aに相当する部分か帯電領
域7bに相当する部分)のフォトレジストを露光現像
し、帯電領域7bに相当する部分上のMgF2をArを
用いたイオンエッチングにて除去する。こうして石英ガ
ラスを一部露出させ、帯電領域7bを形成する。次に、
半球体1の球面側を接着テープにて固定し、平面側の接
着テープを剥がし、平面部2に電子ビーム蒸着法により
反射層4となるAl(アルミニウム)を成膜する。この
後、接着テープを剥がし、フォトレジストを除去して、
図1に示す帯電特性の異なる帯電領域7a、7bを有し
平面部2に反射層4を設けた石英ガラスからなる半球体
1を形成する。
Next, an example of a manufacturing process of the optical deflecting device of this embodiment will be described. The hemisphere 1 has 100 made of quartz glass.
Micro beads for a collimator lens of a light emitting diode having a diameter of about μm are used, and one end of the beads is polished by a polishing process to form the flat surface portion 2. The flat portion 2 of the hemisphere 1 is fixed with an adhesive tape, and Mg is placed on the spherical surface of the hemisphere 1.
Charged area 7 is formed by vacuum deposition of F 2 by a sputtering method.
a is formed. After that, a photoresist is applied to the surface of the hemisphere 1, and a photolithography process is used to expose and develop the photoresist on a part of the spherical surface of the hemisphere (a part corresponding to the charged region 7a or a part corresponding to the charged region 7b). Then, the MgF 2 on the portion corresponding to the charged area 7b is removed by ion etching using Ar. In this way, the quartz glass is partially exposed to form the charging area 7b. next,
The spherical surface side of the hemisphere 1 is fixed with an adhesive tape, the adhesive tape on the flat surface side is peeled off, and Al (aluminum) to be the reflective layer 4 is formed on the flat surface portion 2 by the electron beam evaporation method. After this, peel off the adhesive tape, remove the photoresist,
A hemisphere 1 made of quartz glass having charging regions 7a and 7b having different charging characteristics shown in FIG. 1 and having a reflecting layer 4 on a flat surface 2 is formed.

【0023】支持体3にも石英ガラスを用い、石英ガラ
スの下面に透明導電膜であるITOを真空蒸着法により
成膜し、フォトリソグラフィプロセスとエッチングによ
り、図1と図2に示す様な駆動電極8a〜8eを形成す
る。この石英ガラス上面に、Cr(クロム)とAu
(金)を順次電子ビーム蒸着法にて成膜し、マスクを形
成する。フォトリソグラフィプロセスとエッチングによ
りCr−Auマスクの一部を円形状にパターニングして
除去し、パターニング除去部を通して、フッ酸水溶液に
より石英ガラスを等方性エッチングして半球状凹部3a
を支持体3に形成する。この後、Cr−Auマスクを除
去し図1に示す支持体3を形成する。この支持体3の凹
部3aに、反射層4と帯電領域7a、7bを形成した半
球体1を入れ、同時にシリコーンオイルからなる誘電性
液体5を入れる。最後に、中貫きのガラスからなるスペ
ーサ9を、支持体3に接着剤を用いて貼り付け、基板6
にてスペーサ上部を接着剤にて封止し、誘電性液体5及
び半球体1を図1に示す如く密閉する。
Quartz glass is also used as the support 3, and ITO, which is a transparent conductive film, is formed on the lower surface of the quartz glass by a vacuum vapor deposition method, and the driving as shown in FIGS. 1 and 2 is performed by a photolithography process and etching. The electrodes 8a to 8e are formed. On top of this quartz glass, Cr (chrome) and Au
(Gold) is sequentially deposited by an electron beam evaporation method to form a mask. A part of the Cr-Au mask is patterned and removed into a circular shape by a photolithography process and etching, and the quartz glass is isotropically etched with an aqueous solution of hydrofluoric acid through the patterning and removing portion to form a hemispherical recess 3a.
Are formed on the support 3. After that, the Cr-Au mask is removed to form the support 3 shown in FIG. Into the recess 3a of the support 3, the reflecting layer 4 and the hemisphere 1 having the charged regions 7a and 7b are put, and at the same time, the dielectric liquid 5 made of silicone oil is put. Finally, the spacer 9 made of glass having a hollow structure is attached to the support 3 with an adhesive to form the substrate 6
Then, the upper part of the spacer is sealed with an adhesive, and the dielectric liquid 5 and the hemisphere 1 are sealed as shown in FIG.

【0024】このようにして作製した光偏向装置の駆動
電極8aと他の駆動電極の間に+100Vの電圧を印加
した。これにより、上で説明した様に半球体1が回転
し、図3(b)に示す角度(α)が20°となった。こ
うして、図3(a)の偏向角より、反射光を更に40°
偏向することが可能となった。半球体1の回転が停止し
た後に、電圧印加を開放したところ、半球体1はシリコ
ーンオイル5を介しての凹部3aとの摩擦作用などによ
り動かず、反射光の偏向角は変化しなかった。次に、右
側の駆動電極8cと他の電極の間に+100Vの電圧を
印加した。この結果、角度(α)は−20°となり、反
射光を、図3(a)の偏向角より、−40°偏向でき
た。同じく回転が停止した後に、電圧印加を開放したと
ころ、偏向角は変化しなかった。以上より、本実施例の
光偏向装置を用いて、80°の光偏向を行うことができ
た。また、上記と同様の手順にて、駆動電極8dや、駆
動電極8eに電圧印加することにより前記偏向方向とは
直角の方向(紙面垂直方向)に、80°の光偏向を行う
ことができた。
A voltage of +100 V was applied between the drive electrode 8a and the other drive electrodes of the optical deflector thus manufactured. As a result, the hemisphere 1 was rotated as described above, and the angle (α) shown in FIG. 3B became 20 °. Thus, the reflected light is further 40 ° from the deflection angle of FIG.
It became possible to deflect. When the voltage application was released after the rotation of the hemisphere 1 was stopped, the hemisphere 1 did not move due to the frictional action with the recess 3a through the silicone oil 5 and the deflection angle of the reflected light did not change. Next, a voltage of +100 V was applied between the right drive electrode 8c and the other electrode. As a result, the angle (α) was −20 °, and the reflected light could be deflected by −40 ° from the deflection angle shown in FIG. Similarly, when the voltage application was released after the rotation was stopped, the deflection angle did not change. From the above, it was possible to perform optical deflection of 80 ° by using the optical deflector of the present embodiment. In addition, by applying a voltage to the drive electrode 8d and the drive electrode 8e in the same procedure as described above, it was possible to perform optical deflection of 80 ° in a direction perpendicular to the deflection direction (direction perpendicular to the paper surface). .

【0025】(第2実施例)図4は本発明の第2実施例
となる光偏向装置の側断面図である。本実施例の光偏向
装置も、半球体11が回転するに際し空隙を介してこれ
を回転自在に支持する半球状凹部13aを持つ支持体1
3と、半球体11を回転させる為の駆動手段を有する。
駆動手段は、半球体11の球面に帯電特性の異なる帯電
領域17a、17bを設け、支持体13下部に電界を印
加する為の駆動電極18を設けている。基本的構成は第
1実施例と同じであるが、第2実施例では、半球体11
の平面部12(ここには反射層はない)に支持体13の
下面からの入射光を導き、空隙に満たした誘電性液体1
5の屈折率と半球体11の材料の屈折率の差を利用して
入射光の偏向を透過にて行う。
(Second Embodiment) FIG. 4 is a side sectional view of an optical deflector according to a second embodiment of the present invention. The optical deflector of this embodiment also has a support 1 having a hemispherical recess 13a that rotatably supports the hemisphere 11 through a gap when the hemisphere 11 rotates.
3 and a driving means for rotating the hemisphere 11.
The driving means is provided with charging regions 17 a and 17 b having different charging characteristics on the spherical surface of the hemisphere 11, and a driving electrode 18 for applying an electric field below the support 13. The basic structure is the same as in the first embodiment, but in the second embodiment, the hemisphere 11
The dielectric liquid 1 that guides the incident light from the lower surface of the support 13 to the flat surface portion 12 (there is no reflection layer here) and fills the voids
The incident light is deflected by using the difference between the refractive index of 5 and the refractive index of the material of the hemisphere 11.

【0026】半球体11の上部は、半球体11の回転を
阻害しない為のスペーサ19を設け、基板16にて塞が
れている。
A spacer 19 for preventing the rotation of the hemisphere 11 is provided on the upper part of the hemisphere 11 and is closed by a substrate 16.

【0027】本実施例の光偏向装置も、第1実施例と同
様の駆動手段により半球体11を回転させる。すなわ
ち、液体15中での表面電荷量の異なる半球体11の帯
電領域17a、17bにより形成された電気的モーメン
トに、駆動電極18にて電場を印加し、電荷の極方向を
電界方向に揃えようとするトルクにより半球体11を回
転させる。この時、第1実施例で述べた様に、トルクの
作用点の回転中心からの距離は半球体11の半径と一致
している。また、回転が停止した後に電界を切っても半
球体11は同一位置に停止されており、位置が保存され
ている。電界方向を変えるとその電界方向に極方向を揃
える様にトルクが同様に発生し、半球体11の回転が再
び行なわれる。この駆動手段を用いると、第1実施例と
同様に、半球体11への電気的配線が不要である。
The optical deflector of this embodiment also rotates the hemisphere 11 by the same driving means as in the first embodiment. That is, an electric field is applied by the drive electrode 18 to the electric moment formed by the charged regions 17a and 17b of the hemisphere 11 having different surface charge amounts in the liquid 15 so that the polar directions of the charges are aligned with the electric field direction. The hemisphere 11 is rotated by the torque At this time, as described in the first embodiment, the distance from the center of rotation of the point of torque application matches the radius of the hemisphere 11. Further, even if the electric field is cut off after the rotation is stopped, the hemisphere 11 is stopped at the same position, and the position is saved. When the electric field direction is changed, torque is similarly generated so that the electric field direction is aligned with the polar direction, and the hemisphere 11 is rotated again. When this driving means is used, no electrical wiring to the hemisphere 11 is required, as in the first embodiment.

【0028】第2実施例における偏向の原理を述べる。
今、上記駆動手段を用いて、支持体13下部からの入射
光に対して半球体11を角度(α)回転させる。誘電性
液体15の屈折率をn1、半球体11の屈折率をn2とす
ると、スネルの法則より図4の入射光からの偏向角
(β)は以下の式のようになる。 β=sin-1(n2・sinα/n1)−α 具体例について述べる。半球体11に屈折率が1.9の
100μm直径の発光ダイオードのコリメータレンズ用
のマイクロビーズを使用し、前記半球体11には反射層
を設けず、また誘電性液体15として屈折率が1.33
のメチルアルコールを用いた以外は第1実施例と同様の
作製工程にて、本実施例の光偏向装置を作製する。半球
体11に対する駆動電極18a、18b、18c、18
d、18e(18d、18eは不図示)の配置は第1実
施例と同様とする。駆動電極18aと他の駆動電極の間
に+100Vの電圧を印加すると、半球体11が回転
し、図4に示す角度(α)が20°となった。回転が停
止した後に、電圧印加を開放しても、角度(α)は変化
しなかった。この結果、これらの具体的な数値を上記式
に代入して、この式より、βは9°となり、出射光は入
射光に対して9°偏向することができた。
The principle of deflection in the second embodiment will be described.
Now, using the driving means, the hemisphere 11 is rotated by an angle (α) with respect to the incident light from the lower portion of the support 13. Assuming that the refractive index of the dielectric liquid 15 is n 1 and the refractive index of the hemisphere 11 is n 2 , the deflection angle (β) from the incident light in FIG. 4 is given by the following formula according to Snell's law. β = sin −1 (n 2 · sin α / n 1 ) −α A specific example will be described. Micro beads for a collimator lens of a 100 μm diameter light emitting diode having a refractive index of 1.9 are used for the hemisphere 11, no reflective layer is provided on the hemisphere 11, and the refractive index of the dielectric liquid 15 is 1. 33
The optical deflecting device of this embodiment is manufactured by the same manufacturing process as that of the first embodiment except that the above-mentioned methyl alcohol is used. Drive electrodes 18a, 18b, 18c, 18 for the hemisphere 11
The arrangement of d and 18e (18d and 18e are not shown) is similar to that of the first embodiment. When a voltage of +100 V was applied between the drive electrode 18a and the other drive electrodes, the hemisphere 11 rotated and the angle (α) shown in FIG. 4 became 20 °. After the rotation was stopped, even if the voltage application was released, the angle (α) did not change. As a result, by substituting these specific numerical values into the above equation, β was 9 ° from this equation, and the emitted light could be deflected by 9 ° with respect to the incident light.

【0029】(第3実施例)図5は本発明の第3実施例
となる光偏向装置の側断面図である。本実施例では、駆
動電極28が半球体21を支持する支持体23の凹部2
3aの面に形成され、駆動電極28上に絶縁層30が形
成されている。これ以外は第1実施例と同様の構成とな
っている。
(Third Embodiment) FIG. 5 is a side sectional view of an optical deflector according to a third embodiment of the present invention. In this embodiment, the drive electrode 28 supports the hemisphere 21 and the recess 2 of the support 23.
An insulating layer 30 is formed on the surface 3 a and on the drive electrode 28. Other than this, the configuration is similar to that of the first embodiment.

【0030】本実施例の光偏向装置も、入射する光ビー
ムを偏向する平面部22を有する半球体21と、該半球体21
が回転するに際し空隙を介してこれを回転自在に支持す
る凹部23aを持つ支持体23を有し、半球体21を回転させ
る為に半球体21の球面上に帯電特性の異なる帯電領域27
a、27bを設けている。第1実施例と同様、平面部22上に
は反射層24を設けて、光の偏向を反射にて行う。また、
半球体21の上部に半球体21の回転を阻害しない為のス
ーサ29を設け、空隙には誘電性液体25が満たされてお
り、誘電性液体25の封止を行う為に、基板26にて塞いで
いる。本実施例の光偏向装置も第1実施例と同様の駆動
手段により半球体21を回転させる。
The optical deflector of this embodiment also has a hemisphere 21 having a plane portion 22 for deflecting an incident light beam, and the hemisphere 21.
Has a support 23 having a concave portion 23a that rotatably supports it via a gap when rotating, and a charging region 27 having different charging characteristics on the spherical surface of the hemisphere 21 for rotating the hemisphere 21.
a and 27b are provided. Similar to the first embodiment, a reflection layer 24 is provided on the flat surface portion 22 to deflect light by reflection. Also,
The scan Bae <br/> p o 29 for not inhibiting the rotation of the hemisphere 21 to the upper hemisphere 21 is provided, the gap is filled dielectric liquid 25 performs sealing of the dielectric liquid 25 Therefore, it is blocked by the substrate 26. The optical deflector of this embodiment also rotates the hemisphere 21 by the same driving means as in the first embodiment.

【0031】本実施例の光偏向装置の作製工程は、第1
実施例に示した作製工程と、支持体23を形成する工程
のみが異なる。以下に支持体23の作製工程を説明す
る。支持体23となる石英ガラス上面にCr(クロム)
とAu(金)を順次電子ビーム蒸着法にて成膜してマス
クを形成し、フォトリソグラフィプロセスとエッチング
によりCr−Auマスクの一部を円形状にパターニング
して除去し、パターニング除去部を通して、フッ酸水溶
液により石英ガラスを等方性エッチングする。この後、
Cr−Auマスクを除去して、支持体23に半球体21
を支持する半球状凹部23aを形成する。次に、この半
球状凹部23aの内面に、Al(アルミニウム)をスパ
ッタ法により成膜し、フォトリソグラフィプロセスとエ
ッチングにより図5のごとく駆動電極28を形成する
(この駆動電極28の配置はほぼ図2の様にすればよ
い)。この駆動電極28上に二酸化シリコンをスパッタ
法により形成し絶縁層30を形成する。
The manufacturing process of the optical deflecting device of this embodiment is as follows.
Only the manufacturing process shown in the embodiment differs from the process of forming the support 23. The manufacturing process of the support 23 will be described below. Cr (chromium) is formed on the upper surface of the quartz glass that becomes the support 23.
And Au (gold) are sequentially formed by an electron beam vapor deposition method to form a mask, and a part of the Cr—Au mask is patterned and removed into a circular shape by a photolithography process and etching. The quartz glass is isotropically etched with an aqueous solution of hydrofluoric acid. After this,
The Cr-Au mask is removed and the hemisphere 21 is attached to the support 23.
To form a hemispherical concave portion 23a. Next, Al (aluminum) is deposited on the inner surface of the hemispherical recess 23a by a sputtering method, and a drive electrode 28 is formed by a photolithography process and etching as shown in FIG. You can do like 2). Silicon dioxide is formed on the drive electrode 28 by a sputtering method to form an insulating layer 30.

【0032】本実施例の光偏向装置では、駆動電極28
を支持体23の半球状凹部23aの球面上に形成するこ
とにより、第1実施例に比べて、半球体21の帯電領域
27a、27bと駆動電極28との距離が短くなり、半
球体21を回転させるに要する電圧を低下させることが
可能となった。
In the optical deflector of this embodiment, the drive electrode 28
Is formed on the spherical surface of the hemispherical concave portion 23a of the support member 23, the distance between the charging regions 27a and 27b of the hemispherical body 21 and the drive electrode 28 becomes shorter than that in the first embodiment, and the hemispherical body 21 is formed. It has become possible to reduce the voltage required for rotation.

【0033】(第4実施例)図6は本発明の第4実施例
となる光偏向装置の側断面図である。本実施例の光偏向
装置も、入射する光ビームを偏向する平面部32を有す
る半球体31と、該半球体31が回転するに際し空隙を
介してこれを回転自在に支持する支持体33を有する。
しかし、本実施例では、半球体31を回転させる為に半
球体31の球面の下部に可動電極37を設け、支持体3
3の下部に電界を印加する為の駆動電極38を設けてい
る。更に、可動電極37に電圧印加する為に、半球体3
1を支持する支持体33の半球状凹部33aの面に固定
電極40が形成され(固定電極40には、例えば、半球
状凹部33aの面に沿って外から配線がなされてい
る)、半球体31は、可動電極37を固定電極40に接
触させながら回転する。固定電極40と駆動電極38の
間に電圧が印加できるように、これらは電源に接続され
ている。固定電極40と駆動電極38に電圧を印加する
と、固定電極40に接する可動電極37と駆動電極38
との間に電圧が印加され、静電引力(静電力)によりト
ルクが生じ半球体31が回転する。この際、可動電極3
7の表面にのみ電荷が生じ、これと駆動電極38の所望
の部分間での静電引力によりトルクが生じるので、上記
実施例と同様に、トルクの作用点の回転中心からの距離
は半球体31の半径と一致している。この回転により平
面部32が傾き、該平面部32上に設けた反射層34が
入射光を反射し光を偏向する。固定電極40は、半球体
31が回転しても、常に可動電極37が固定電極40に
接触するように配置されている。
(Fourth Embodiment) FIG. 6 is a side sectional view of an optical deflector according to a fourth embodiment of the present invention. The light deflecting device of this embodiment also has a hemisphere 31 having a flat portion 32 for deflecting an incident light beam, and a support 33 that rotatably supports the hemisphere 31 through a gap when the hemisphere 31 rotates. .
However, in this embodiment, in order to rotate the hemisphere 31, the movable electrode 37 is provided below the spherical surface of the hemisphere 31, and the support 3 is provided.
A drive electrode 38 for applying an electric field is provided on the lower part of 3. Further, in order to apply a voltage to the movable electrode 37, the hemisphere 3
A fixed electrode 40 is formed on the surface of the hemispherical recess 33a of the support body 33 that supports 1 (for example, the fixed electrode 40 is provided with wiring from the outside along the surface of the hemispherical recess 33a), and the hemisphere is formed. 31 rotates while bringing the movable electrode 37 into contact with the fixed electrode 40. These are connected to a power supply so that a voltage can be applied between the fixed electrode 40 and the drive electrode 38. When a voltage is applied to the fixed electrode 40 and the drive electrode 38, the movable electrode 37 and the drive electrode 38 that are in contact with the fixed electrode 40
A voltage is applied between and, and torque is generated by the electrostatic attractive force (electrostatic force) to rotate the hemisphere 31. At this time, the movable electrode 3
Since electric charges are generated only on the surface of No. 7 and a torque is generated by this and electrostatic attraction between desired portions of the drive electrode 38, the distance from the center of rotation of the point of action of torque is the same as in the above embodiment. It matches the radius of 31. This rotation causes the plane portion 32 to tilt, and the reflection layer 34 provided on the plane portion 32 reflects incident light and deflects the light. The fixed electrode 40 is arranged so that the movable electrode 37 is always in contact with the fixed electrode 40 even if the hemisphere 31 rotates.

【0034】以下に、本実施例の光偏向装置の作製工程
を示す。半球体31には、石英ガラスからなる100μ
m直径の発光ダイオードのコリメータレンズ用のマイク
ロビーズを使用し、研磨加工によりビーズの一端を研磨
して平面部32を形成する。この半球体31の平面部3
2を接着テープにて固定し、フォトレジストを半球体3
1の表面に塗布し、フォトリソグラフィプロセスを用い
て半球体球面の一部のフォトレジストを露光現像し、半
球体の一部(底部)を露出する。この後に、Pt(白
金)をスパッタ法により真空蒸着する。次に、半球体3
1の球面側を接着テープにて固定し、平面部32側の接
着テープを剥がし、平面部32に電子ビーム蒸着法によ
り反射層34となるAl(アルミニウム)を成膜する。
この後、接着テープを剥がし、フォトレジストを除去し
てフォトレジスト上に成膜されたPtをリフトオフし、
可動電極37を形成する。
The manufacturing process of the optical deflecting device of this embodiment will be described below. The hemisphere 31 is made of quartz glass and has a thickness of 100 μm.
Micro beads for a collimator lens of a light emitting diode having a diameter of m are used, and one end of the beads is polished by polishing to form a flat portion 32. Flat part 3 of this hemisphere 31
2 is fixed with adhesive tape, and the photoresist is a hemisphere 3
1 is applied to the surface, and a part of the hemisphere (bottom) is exposed by exposing and developing a part of the photoresist on the spherical surface of the hemisphere using a photolithography process. After that, Pt (platinum) is vacuum-deposited by a sputtering method. Next, hemisphere 3
The spherical surface side of 1 is fixed with an adhesive tape, the adhesive tape on the flat surface portion 32 side is peeled off, and Al (aluminum) to be the reflective layer 34 is formed on the flat surface portion 32 by an electron beam evaporation method.
After that, the adhesive tape is peeled off, the photoresist is removed, and the Pt film formed on the photoresist is lifted off.
The movable electrode 37 is formed.

【0035】支持体33としては、第1実施例の支持体
を用い、半球体31を支持する半球状凹部33aの面に
Ta(タンタル)を電子ビーム蒸着法により成膜し、フ
ォトリソグラフィプロセスとエッチングにより固定電極
40を形成する。可動電極37と固定電極40は常に接
触しており、半球体31の回転時には両者は摺動するた
め、これらには機械硬度の高い材料を用いた。
As the support 33, the support of the first embodiment is used, and Ta (tantalum) is deposited by the electron beam evaporation method on the surface of the hemispherical recess 33a supporting the hemisphere 31, and the photolithography process is performed. The fixed electrode 40 is formed by etching. Since the movable electrode 37 and the fixed electrode 40 are always in contact with each other and both slide when the hemisphere 31 rotates, a material having high mechanical hardness is used for these.

【0036】このようにして作製した光偏向装置におい
て、前記第1実施例と同様に、シリコーンオイルの誘電
性液体にて半球体31と支持体33との空隙を満たし、
駆動電極38と固定電極40に電圧を印加したところ
(複数に分かれた駆動電極38のどれ(複数の駆動電極
38を選ぶ場合もある)と固定電極40との間に電圧を
印加するかは、電圧印加状態と偏向角の関係を予め計測
して記憶しておいた情報に基づき、所望の偏向角を実現
すべく選択すればよい)、半球体31は駆動電極38と
可動電極37の間で生じた静電引力(静電力)により回
転した。静電引力が半球体31の球心を通る様になった
所で半球体31は止まり、この位置を保持する。本実施
例では誘電性液体を必ずしも必要としないので、シリコ
ーンオイルを入れずに、同様に駆動電極38と固定電極
40間に電圧を印加したところ、半球体31は同様に回
転することができた。この様に、本実施例の光偏向装置
では、駆動電極38と可動電極37間の静電引力により
トルクを発生させることにより、必ずしも誘電性液体は
必要でなく、半球体31を回転させることが可能であっ
た。
In the thus-fabricated optical deflector, as in the case of the first embodiment, the dielectric liquid of silicone oil fills the gap between the hemisphere 31 and the support 33,
When a voltage is applied to the drive electrode 38 and the fixed electrode 40 (which of the drive electrodes 38 divided into a plurality (the drive electrodes 38 may be selected in some cases) and the voltage is applied between the fixed electrode 40, It suffices to select the desired deflection angle based on the information stored by previously measuring and storing the relationship between the voltage application state and the deflection angle). It was rotated by the generated electrostatic attraction (electrostatic force). The hemisphere 31 stops at the place where the electrostatic attraction passes through the spherical center of the hemisphere 31, and holds this position. Since the dielectric liquid is not always necessary in this embodiment, when a voltage was applied between the drive electrode 38 and the fixed electrode 40 without adding silicone oil, the hemispheres 31 could rotate similarly. . As described above, in the optical deflecting device of the present embodiment, the torque is generated by the electrostatic attraction between the drive electrode 38 and the movable electrode 37, so that the dielectric liquid is not necessarily required and the hemisphere 31 can be rotated. It was possible.

【0037】(第5実施例)図7に、第1実施例の光偏
向装置を二次元的にアレイ配置した光偏向器アレイの斜
視図を示す。光偏向器アレイに用いる半球体は、第1実
施例と同様の平面部に反射層を有する半球体51を用い
た。支持体としては、第1実施例と同様の作製工程にて
作製した半球体51を支持する半球状凹部がアレイ状に
形成されている支持体53であり、この例では、支持体
53の下部には駆動電極を設けていない。駆動電極55
は、別に用意した回転制御基板60の上に形成した。本
実施例の光偏向器アレイでも、誘電性液体を支持体53
の半球状凹部と半球体51の空隙に満たしている。そし
て、回転制御基板60と、各半球体51に対応して孔6
1を有するスペーサ59にて、半球体51が各半球状凹
部毎に配置された支持体53を挟み、これらを接着し、
さらに、スペーサ59上面を基板56にて封止してい
る。この光偏向器アレイは、各々の半球体51を独立に
回転でき、これにより各半球体51に入射する光ビーム
の偏向角の制御が独立に可能であり、入射光を各光偏向
器毎に二次元平面に偏向することが可能である。勿論、
光偏向装置を一次元的にアレイ配置することも可能であ
る。
(Fifth Embodiment) FIG. 7 is a perspective view of an optical deflector array in which the optical deflecting devices of the first embodiment are arranged in a two-dimensional array. As the hemisphere used for the optical deflector array, the hemisphere 51 having a reflection layer on the same plane as in the first embodiment was used. The support is a support 53 in which hemispherical recesses for supporting the hemispheres 51 manufactured in the same manufacturing process as the first embodiment are formed in an array, and in this example, the lower part of the support 53 is used. No drive electrode is provided in the. Drive electrode 55
Was formed on a separately prepared rotation control substrate 60. Also in the optical deflector array of this embodiment, the dielectric liquid is used as the support 53.
The hemispherical concave portion and the space of the hemisphere 51 are filled. The rotation control board 60 and the holes 6 corresponding to the hemispheres 51 are formed.
With the spacer 59 having 1, the hemispheres 51 sandwich the support bodies 53 arranged in the respective hemispherical recesses, and these are adhered,
Further, the upper surface of the spacer 59 is sealed with the substrate 56. In this optical deflector array, each hemisphere 51 can be rotated independently, whereby the deflection angle of the light beam incident on each hemisphere 51 can be controlled independently, and the incident light can be controlled for each optical deflector. It is possible to deflect in a two-dimensional plane. Of course,
It is also possible to arrange the light deflection devices in a one-dimensional array.

【0038】[0038]

【発明の効果】以上説明したように、本発明の光偏向装
置では、部分球体を回転させる力を部分球面に作用さ
せ、トルクを与える作用点が常に部分球体の球心から半
径の位置となり、作用点の回転中心からの距離が変化す
ることがない。このことにより、部分球体の回転方向及
び回転角の制御が容易となり、装置が簡単となって、小
型化、アレイ化に好適である。更に、部分球体を比較的
大きく駆動できるので、光偏向角を大きく取れ、任意の
方向に光偏向することが可能な光偏向装置を提供するこ
とが可能となった。さらにまた、本発明の部分球体の駆
動手段が非接触式であるので、誘電性液体など液体を部
分球体の周りに封止することが容易となった。
As described above, in the optical deflecting device of the present invention, the force for rotating the partial sphere is applied to the partial spherical surface, and the point of application of the torque is always located at the radius from the spherical center of the partial sphere. The distance from the center of rotation of the point does not change. This facilitates control of the rotation direction and rotation angle of the partial sphere, simplifies the device, and is suitable for downsizing and arraying. Furthermore, since it is possible to drive the partial sphere relatively large, it is possible to provide a light deflection device capable of obtaining a large light deflection angle and capable of performing light deflection in an arbitrary direction. Furthermore, since the driving means of the partial sphere of the present invention is a non-contact type, it becomes easy to seal a liquid such as a dielectric liquid around the partial sphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の光偏向装置の側断面図で
ある。
FIG. 1 is a side sectional view of a light deflecting device according to a first embodiment of the invention.

【図2】本発明の第1実施例の駆動電極の上面から見た
配置図である。
FIG. 2 is a layout view of the drive electrode according to the first embodiment of the present invention as viewed from above.

【図3】本発明の第1実施例の光偏向装置の駆動手段及
び動作を説明する側断面図である。
FIG. 3 is a side sectional view for explaining the driving means and operation of the optical deflecting device of the first embodiment of the present invention.

【図4】本発明の第2実施例の光偏向装置による光偏向
の原理を説明する側断面図である。
FIG. 4 is a side sectional view for explaining the principle of light deflection by the light deflecting device of the second embodiment of the present invention.

【図5】本発明の第3実施例の光偏向装置の側断面図で
ある。
FIG. 5 is a side sectional view of an optical deflecting device according to a third embodiment of the present invention.

【図6】本発明の第4実施例の光偏向装置の側断面図で
ある。
FIG. 6 is a side sectional view of an optical deflecting device according to a fourth embodiment of the present invention.

【図7】本発明の第5実施例の光偏向器アレイの分解斜
視図である。
FIG. 7 is an exploded perspective view of an optical deflector array according to a fifth embodiment of the present invention.

【図8】従来例の光偏向装置の駆動機構を説明する図で
ある。
FIG. 8 is a diagram illustrating a drive mechanism of a conventional optical deflector.

【符号の説明】[Explanation of symbols]

1、11、21、31、51 半球体 2、12、22、32 平面部 3、13、23、33、53 支持体 3a、13a、23a、33a 半球状凹部 4、24、34 反射層 5、15、25 誘電性液体 6、16、26、56 基板 7、17、27 帯電領域 8、18、28、38、55 駆動電極 9、19、29、59 スペーサ 30 絶縁層 37 可動電極 40 固定電極 60 回転制御基板 61 孔 1, 11, 21, 31, 51 hemisphere 2, 12, 22, 32 Plane part 3, 13, 23, 33, 53 Support 3a, 13a, 23a, 33a Hemispherical recess 4, 24, 34 Reflective layer 5,15,25 Dielectric liquid 6, 16, 26, 56 substrate 7, 17, 27 charged area 8, 18, 28, 38, 55 drive electrodes 9, 19, 29, 59 Spacer 30 insulating layer 37 movable electrode 40 fixed electrode 60 rotation control board 61 holes

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−60902(JP,A) 特開 平7−333528(JP,A) 特開 平9−318888(JP,A) 実開 平4−67615(JP,U) (58)調査した分野(Int.Cl.7,DB名) G02B 26/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-55-60902 (JP, A) JP-A-7-333528 (JP, A) JP-A-9-318888 (JP, A) 67615 (JP, U) (58) Fields surveyed (Int.Cl. 7 , DB name) G02B 26/08

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入射する光ビームを偏向する偏向面部と該
偏向面部を包む様にこれと対向して形成された球面の一
部から成る部分球面部を有する部分球体と、部分球体が
回転するに際しこれを回転自在に支持する支持体と、支
持体と部分球体の間の空隙に満たされた誘電性液体と、
部分球体を回転させる為の駆動手段を有し、該駆動手段
は、部分球体を回転させる力が部分球面部の表面に作用
する様に、部分球体の部分球面部の表面上に誘電性液体
の作用によって形成された異なる電荷で帯電された帯電
特性の異なる2つの領域と、支持体または支持体を介し
て部分球体と対向する位置に設けられて部分球面部付近
に電場を生じさせる為の駆動電極からなることを特徴と
する光偏向装置。
1. A partial spherical body having a deflecting surface portion for deflecting an incident light beam and a partial spherical surface portion formed of a part of a spherical surface facing the deflecting surface portion so as to surround the deflecting surface portion, and the partial spherical body rotates. At the time of this, a support that rotatably supports this, a dielectric liquid filled in the space between the support and the partial sphere,
A driving means for rotating the partial sphere is provided, and the driving means applies a dielectric liquid on the surface of the partial spherical portion of the partial sphere so that the force for rotating the partial sphere acts on the surface of the partial spherical portion. Driving for forming an electric field in the vicinity of the partial spherical surface by being provided at a position facing the partial sphere through the support or the two regions formed by the action and having different charging characteristics. An optical deflector comprising an electrode.
【請求項2】支持体は、部分球面部がその一部をなす球
の中心の回りに部分球体を回転自在に支持するように構
成されていることを特徴とする請求項1記載の光偏向装
置。
2. The optical deflector according to claim 1, wherein the support body is configured to rotatably support the partial sphere around a center of a sphere of which the partial spherical portion is a part. apparatus.
【請求項3】支持体には凹部が形成されていて、ここに
部分球体を回転自在に支持していることを特徴とする請
求項1または2記載の光偏向装置。
3. The optical deflector according to claim 1, wherein the support has a recess formed therein, and the partial sphere is rotatably supported in the recess.
【請求項4】支持体には部分球面部に対応した形状の凹
部が形成されていて、ここに部分球体を回転自在に支持
していることを特徴とする請求項1乃至3の何れかに記
載の光偏向装置。
4. The support body is formed with a concave portion having a shape corresponding to the partial spherical surface portion, and the partial spherical body is rotatably supported therein, according to any one of claims 1 to 3. The optical deflector described.
【請求項5】偏向面部は平面部から成ることを特徴とす
る請求項1乃至4の何れかに記載の光偏向装置。
5. The optical deflector according to claim 1, wherein the deflecting surface portion is a flat surface portion.
【請求項6】部分球面部は半球面部から成ることを特徴
とする請求項1乃至5の何れかに記載の光偏向装置。
6. The optical deflector according to claim 1, wherein the partial spherical surface portion is a hemispherical surface portion.
【請求項7】前記偏向面部に光ビームを反射・偏向する
為の反射層が形成されていることを特徴とする請求項1
乃至6の何れかに記載の光偏向装置。
7. A reflection layer for reflecting / deflecting a light beam is formed on the deflecting surface portion.
7. The optical deflector according to any one of 6 to 6.
【請求項8】前記部分球体が中実体で、偏向する光ビー
ムを透過させる材料からなり、且つ偏向面部と偏向面部
に接する空間との屈折率が異なっていることを特徴とす
る請求項1乃至7の何れかに記載の光偏向装置。
8. The partial sphere is solid, is made of a material that transmits a deflecting light beam, and the deflecting surface portion and a space in contact with the deflecting surface portion have different refractive indexes. 7. The optical deflector according to any one of 7.
【請求項9】前記駆動電極は、支持体側の部分球面部と
対向する5箇所に設けられていることを特徴とする請求
項1乃至8の何れかに記載の光偏向装置。
9. The optical deflecting device according to claim 1, wherein the drive electrodes are provided at five locations facing the partial spherical surface portion on the support side.
【請求項10】請求項1乃至9の何れかに記載の光偏向
装置を複数個有し、部分球体およびそれを駆動する駆動
手段が一次元或は二次元アレイ状に配置されてなること
を特徴とする光偏向装置。
10. A plurality of optical deflecting devices according to claim 1, wherein the partial spheres and driving means for driving the partial spheres are arranged in a one-dimensional or two-dimensional array. Characteristic light deflection device.
JP33132597A 1997-11-15 1997-11-15 Light deflection device Expired - Fee Related JP3392025B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP33132597A JP3392025B2 (en) 1997-11-15 1997-11-15 Light deflection device
EP98121705A EP0916984A1 (en) 1997-11-15 1998-11-13 Light deflection device and array thereof
US09/191,534 US6154302A (en) 1997-11-15 1998-11-13 Light deflection device and array thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33132597A JP3392025B2 (en) 1997-11-15 1997-11-15 Light deflection device

Publications (2)

Publication Number Publication Date
JPH11149049A JPH11149049A (en) 1999-06-02
JP3392025B2 true JP3392025B2 (en) 2003-03-31

Family

ID=18242430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33132597A Expired - Fee Related JP3392025B2 (en) 1997-11-15 1997-11-15 Light deflection device

Country Status (1)

Country Link
JP (1) JP3392025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128186A (en) * 2011-12-17 2013-06-27 Toyota Central R&D Labs Inc Electromagnetic wave control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844953B2 (en) * 2003-03-12 2005-01-18 Hewlett-Packard Development Company, L.P. Micro-mirror device including dielectrophoretic liquid
CN113138460B (en) * 2021-05-17 2025-03-14 北京京东方显示技术有限公司 Imager and imaging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128186A (en) * 2011-12-17 2013-06-27 Toyota Central R&D Labs Inc Electromagnetic wave control device

Also Published As

Publication number Publication date
JPH11149049A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US6154302A (en) Light deflection device and array thereof
US7215452B2 (en) Light deflecting method and apparatus efficiently using a floating mirror
US6046840A (en) Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US5665997A (en) Grated landing area to eliminate sticking of micro-mechanical devices
US6201644B1 (en) Light deflection device and array thereof
US7298542B2 (en) Microelectromechanical device with reset electrode
KR100582142B1 (en) Reflective spatial light modulator
JP2004078136A (en) Optical deflection method and device, method for manufacturing optical deflecting device, optical information processor provided with the optical deflecting device, image forming device image projecting and display device and optical transmitting device
EP1116063A1 (en) A double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
KR20040111336A (en) Architecture of a reflective spatial light modulator
JP2000214397A (en) Optical polarizer
JP3392025B2 (en) Light deflection device
JP3132707B2 (en) Light beam deflector
JPH11326794A (en) Light deflecting device using rotary body
JPH11160635A (en) Optical element and manufacturing method thereof and device using it
KR20060018683A (en) Constant Power Driven Scanning Micromirror and Manufacturing Method Thereof
JPH09318888A (en) Microactuator
KR20040025206A (en) Electrostatic dual axis micro mirror and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees