【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は,防汚性低反射率ガラ
ス、特にパーソナルコンピューターのディスプレー例え
ばCRTの前面ガラス等に用いる防汚性低反射率ガラス
に関する。
【0002】
【従来の技術】近年,OA化の急速な進展にともなっ
て,長時間にわたるCRT作業による目の疲労が問題に
なっている。この問題を軽減するために,CRT前面に
反射防止ガラスが使用されている。ガラスの反射率を小
さくする方法には,(i)低屈折率膜,(ii)多層干
渉膜および(iii)多孔質膜の利用がある。
【0003】低屈折率膜による反射率の低減は,光の干
渉効果に基づいている。理論的には,被膜の光学的膜厚
がλ/4(λは波長)で,かつ,波長λにおける被膜の
屈折率(nf)とガラスの屈折率(ng)がnf=ng 1/2
の関係にある時に,波長λにおける光の反射率は0にな
る。ngは約1.5であるから,nf=1.22を有する
材料が最適である。実際には,これに近い屈折率を有す
るMgF2(nf=1.38)あるいは氷晶石(AlF3
・3NaF, nf=1.33)が用いられている。
【0004】多層干渉膜は光の多層干渉理論に基づい
て,高屈折率膜および低屈折率膜を交互に積層したもの
で,単層膜に比べて反射率を広い波長域で低減すること
が可能である。材料的には,通常,低屈折率膜としてM
gF2,SiO2(nf=1.46)が高屈折率膜として
TiO2(nf=2.3)が用いられる。
【0005】また多孔質層としては,ガラス表面を無機
酸で処理した時に得られるスケルトン層が代表的なもの
としてあげられる。このスケルトン層は、1リットル当
り1〜4モルの濃度の珪弗化水素酸のシリカ過飽和水溶
液に珪酸塩ガラス基材を25〜50℃で1〜4時間浸漬
することにより基材の表面層中の酸化珪素以外の成分例
えばナトリウム、カリウムなどの成分を水溶液中に溶出
させて表面層から除去することにより形成する。
【0006】このようにして得られたスケルトン層の個
々のスケルトンの直径は数nm〜数十nmである。また
スケルトン層の厚みは、基材と珪弗化水素酸のシリカ過
飽和水溶液との接触時間を大きくすれば大となるが、1
0nm〜300nmが適当である。300nmを越える
とガラス物品の透明性が低下して好ましくない。
【0007】
【発明が解決しようとする課題】前記3者の反射防止性
能を比較すると,一般に,多層干渉膜および多孔質層が
特に優れている。
【0008】しかしながら,多層干渉膜は膜厚制御が困
難であるばかりでなく,コストが高い。これは,多層膜
であるが故に避け難い問題である。
【0009】一方,多孔質層は1層の処理で済むことか
ら,コスト的には有利であるが,表面凹凸形状のために
汚れが付き易く,例えば前面ガラス板に人の指が触れる
と指の油脂成分がガラス表面に付着し易くしかも落ちに
くいという欠点がある。しかも,無理に汚れを落とそう
とすれば,表面が傷つき易いということも問題である。
【0010】
【課題を解決するための手段】上述の様な多孔質層を有
する低反射ガラスが一般的に抱える汚れの問題点を克服
するために,本発明に係わる低反射ガラス物品は最表面
にフロロシランからなる防汚層を設けている。
【0011】防汚層を形成する材料としては,表面自由
エネルギーの低いもので,かつ,多孔質層表面との化学
結合性を有するものであれば,いかなるものでも使用す
ることができる。通常のシランカップリング剤,ポリオ
ルガノシロキサンなどもある程度の効果があり、使用す
ることが可能であるが,本発明者らは鋭意研究の結果,
中でもフロロシラン系の材料が特に有効であることを見
いだした。フロロシラン系の材料としては、片末端に少
なくとも1個の塩素を有するフロロシランなどを用いる
ことが可能であるが、ヘプタデカフルオロメチルジクロ
ロシラン、ヘプタデカフルオロトリクロロシラン等を特
に好適に使用することができる。
【0012】防汚層の膜付け方法としては,多孔質内部
への均一な膜形成の観点から,減圧CVD法が用いられ
る。
【0013】CVD処理時の真空度は,十分なフロロシ
ラン系の材料の蒸気圧が得られるように設定すれば良
い。従って,用いるフロロシラン系の材料の種類によっ
て異なるが,通常は1.3×10 3 Pa程度で十分であ
る。
【0014】防汚層と基板表面との反応を促進するため
には,CVD処理時に基板を加熱することが有効であ
る。加熱温度は,基板表面物質および処理剤の種類によ
って異なるが,SiO2表面を、片末端に少なくとも1
個の塩素を有するフロロシラン系処理剤で処理する場合
には80℃程度で十分である。この反応はSi−OH基
と塩素基を有するフロロシランの脱塩酸反応である。
【0015】防汚層は、単分子膜であることが好まし
い。
【0016】
【実施例】以下,図1に示した本発明の実施例に係わる
防汚性低反射ガラスについて詳細に説明する。図1は表
面に多孔性反射防止膜を形成したソーダライムガラスに
防汚処理を施した基板の断面を模式的に示している。1
はガラス基板,2は多孔質低反射率膜,3は防汚層であ
る。防汚層3を構成するマッチ棒形状はパーフルオル基
分子を表わし、そのマッチ棒の頭部分は基材とのシロキ
サン結合分子であって多孔質低反射率膜の孔に入りこん
でいる。
【0017】ソーダライムガラスの板を1.0%の弗酸
水溶液に30分間浸漬して表面の汚れを落とした後、水
洗した。次に35℃で、1リットル当り2.0モルの濃
度の珪弗化水素酸にシリカゲル粉末を飽和に達するま
で、すなわち1リットル当り20グラム溶解させ、さら
にほう酸を1リットル当り0.005モル添加してシリ
カ過飽和水溶液を調製した。この水溶液に上記ガラス基
材を100分浸漬してガラス板表面に厚みが約90nm
のスケルトン層を設けた。その後それを洗浄,乾燥させ
た。
【0018】約0.2gのヘキサデカフルオロデシルト
リクロロシラン(HDFDTCS)を入れたシャーレお
よび前記反射防止ガラス基板をチャンバー内にセットし
た。真空ポンプで2分間真空引きした後に,系を閉じて
80℃に加熱した。1時間反応させた後に,真空引きし
ながら99℃まで昇温し,コールドトラップで余分のH
DFDTCSを除去した。これにより図1に示すよう
な、ガラス基板、その表面上の厚み900nmの多孔質
ガラス反射防止膜被膜、およびその上のフルオロシラン
単分子膜からなる防汚性低反射率ガラスが得られた。な
お,再現性を調べるために,同じ実験を繰り返し,2つ
のサンプルを作製した。
【0019】図2は可視光反射率スペクトルである。通
常の無処理のソーダライムガラス1(1点鎖線)では,
反射率は8〜9%であるのに対して,表面に多孔質層を
形成せず防汚層のみを形成させたガラス板2(点線)
は,反射率は著しく減少(波長500nmでは0.21
%)していることがわかる。また,多孔質層の上に更に
防汚層を形成させた防汚性低反射率ガラス3(実線)は
その反射率低減効果は十分に維持されていることが明ら
かである(波長500nmでは0.72%)。
【0020】次に同じ人が、表面に多孔質層を形成した
ガラス板試料および多孔質層の上に更に防汚層を形成さ
せた防汚性低反射率ガラス板試料の表面を指で軽く触っ
て同時に左右の指紋をガラス上に付けたものを観察する
と、前者試料では指紋の跡がくっきりと見えるのに対し
て、後者試料では指紋の跡がかすかに見え、防汚処理の
有無による汚れの差異は明瞭であった。これより,防汚
処理を施すことによって,明らかに指紋が付き難くなっ
ていることがわかる。
【0021】上記防汚処理を行う前の低反射ガラスおよ
び上記防汚処理を行った低反射率ガラスに対する水(表
面張力72.8mNm-1)およびn−ヘキサデカン(表
面張力27.3mNm-1)の接触角を測定したところ、
上記防汚処理を行う前の低反射ガラスは、水の接触角は
0度、n−ヘキサデカンのそれは0度であり、それに対
して、上記防汚処理を行った低反射率ガラスに対する水
およびn−ヘキサデカンの接触角はそれぞれ120.9
度(標準偏差1.17)および80.7度(標準偏差
3.46)であった。いずれの接触角も防汚処理を施し
たサンプルの方が著しく大きくなっていることがわか
る。この結果から,防汚処理を施すことにより,水,油
等が付着し難くなることが明らかである。従って,親水
性および親油性の汚れに対して,防汚効果が発現される
ことが理解できる。
【0022】
【発明の効果】以上説明したように,本発明の防汚性低
反射率ガラスは,大きな反射防止機能を有すると同時
に,指紋などによる汚れが付着しにくく,優れた防汚機
能を有することが明らかである。
【0023】従って,本発明による防汚性低反射率ガラ
スは,コンピューター等のCRT前面ガラスに好適に使
用することが可能である。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antifouling low-reflection glass, and more particularly to an antifouling low-reflection glass used for a display of a personal computer such as a front glass of a CRT. . 2. Description of the Related Art In recent years, with the rapid progress of OA, eye fatigue due to long-term CRT work has become a problem. To alleviate this problem, anti-reflection glass is used on the front of the CRT. Methods for reducing the reflectance of glass include the use of (i) a low refractive index film, (ii) a multilayer interference film, and (iii) a porous film. [0003] The reduction of the reflectance by the low refractive index film is based on the light interference effect. Theoretically, the optical thickness of the coating is λ / 4 (λ is the wavelength), and the refractive index (n f ) of the coating and the refractive index ( ng ) of the glass at the wavelength λ are n f = ng 1/2
, The reflectance of light at the wavelength λ becomes zero. Since n g is about 1.5, a material having a n f = 1.22 is optimal. Actually, MgF 2 (n f = 1.38) having a refractive index close to this or cryolite (AlF 3
· 3NaF, n f = 1.33) is used. The multilayer interference film is formed by alternately laminating high-refractive-index films and low-refractive-index films based on the theory of multi-layer interference of light, and can reduce the reflectance over a wide wavelength range as compared with a single-layer film. It is possible. In terms of the material, usually, as a low refractive index film, M
gF 2 , SiO 2 (n f = 1.46) is used as a high refractive index film of TiO 2 (n f = 2.3). A typical example of the porous layer is a skeleton layer obtained when a glass surface is treated with an inorganic acid. The skeleton layer is immersed in a supersaturated aqueous solution of hydrosilicofluoric acid at a concentration of 1 to 4 mol per liter at 25 to 50 ° C. for 1 to 4 hours. It is formed by eluting components other than silicon oxide such as sodium and potassium into the aqueous solution and removing them from the surface layer. The diameter of each skeleton of the skeleton layer thus obtained is several nm to several tens nm. The thickness of the skeleton layer is increased by increasing the contact time between the substrate and the supersaturated aqueous solution of hydrosilicofluoric acid.
0 nm to 300 nm is appropriate. If it exceeds 300 nm, the transparency of the glass article is undesirably reduced. [0007] Comparing the antireflection performances of the above three, the multilayer interference film and the porous layer are generally particularly excellent. However, it is difficult to control the thickness of the multilayer interference film, and the cost is high. This is an inevitable problem because it is a multilayer film. On the other hand, the porous layer requires only one layer treatment, which is advantageous in terms of cost. However, the surface unevenness easily causes dirt. However, there is a drawback that the oil and fat component easily adheres to the glass surface and hardly falls off. In addition, there is a problem that the surface is easily damaged if the dirt is forcibly removed. [0010] In order to overcome the problem of dirt that the low-reflection glass having a porous layer as described above generally has, the low-reflection glass article according to the present invention has an outermost surface. Is provided with an antifouling layer made of fluorosilane. As the material for forming the antifouling layer, any material can be used as long as it has a low surface free energy and has a chemical bond with the surface of the porous layer. Conventional silane coupling agents, polyorganosiloxanes, and the like also have some effects and can be used, but the present inventors have conducted extensive studies and found that
Among them, a fluorosilane-based material was found to be particularly effective. As the fluorosilane-based material, fluorosilane having at least one chlorine atom at one end can be used, and heptadecafluoromethyldichlorosilane, heptadecafluorotrichlorosilane, and the like can be particularly preferably used. . [0012] As film with the method of the antifouling layer, from the viewpoint of uniform film formation on the multi-porous interior, a low pressure CVD method is used
You. The degree of vacuum during the CVD process may be set so that a sufficient vapor pressure of the fluorosilane-based material can be obtained. Therefore, although it depends on the kind of fluorosilane-based material to be used, about 1.3 × 10 3 Pa is usually sufficient. In order to promote the reaction between the antifouling layer and the substrate surface, it is effective to heat the substrate during the CVD process. The heating temperature varies depending on the kind of the substrate surface materials and treatment agents, at least the SiO 2 surface, at one end 1
In the case of treating with a fluorosilane-based treating agent having chlorine, about 80 ° C. is sufficient. This reaction is a dehydrochlorination reaction of fluorosilane having a Si-OH group and a chlorine group. The antifouling layer is preferably a monomolecular film. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an antifouling low-reflection glass according to an embodiment of the present invention shown in FIG. 1 will be described in detail. FIG. 1 schematically shows a cross section of a substrate obtained by subjecting a soda lime glass having a porous anti-reflection film formed on its surface to antifouling treatment. 1
Is a glass substrate, 2 is a porous low reflectance film, and 3 is an antifouling layer. The shape of the matchstick constituting the antifouling layer 3 represents a perfluoro group molecule, and the head portion of the matchstick is a siloxane-bonded molecule with the base material and penetrates the pores of the porous low reflectance film. A soda-lime glass plate was immersed in a 1.0% aqueous hydrofluoric acid solution for 30 minutes to remove surface stains, and then washed with water. Next, at 35 ° C., the silica gel powder is dissolved in hydrosilicofluoric acid at a concentration of 2.0 mol per liter until saturation is reached, that is, 20 g per liter, and 0.005 mol of boric acid is added per liter. Thus, a silica supersaturated aqueous solution was prepared. The glass substrate is immersed in this aqueous solution for 100 minutes, and the thickness of the glass substrate is about 90 nm.
Was provided. Thereafter, it was washed and dried. A Petri dish containing about 0.2 g of hexadecafluorodecyltrichlorosilane (HDDFTCS) and the antireflection glass substrate were set in a chamber. After evacuating with a vacuum pump for 2 minutes, the system was closed and heated to 80 ° C. After reacting for 1 hour, the temperature was raised to 99 ° C. while evacuating, and extra H
DFDTCS was removed. As a result, an antifouling low-reflection glass composed of a glass substrate, a 900-nm-thick porous glass antireflection coating on the surface thereof, and a fluorosilane monomolecular film thereon as shown in FIG. In order to check the reproducibility, the same experiment was repeated to produce two samples. FIG. 2 shows a visible light reflectance spectrum. In ordinary untreated soda lime glass 1 (dashed line)
Glass plate 2 having only an antifouling layer without forming a porous layer on the surface while the reflectance is 8 to 9% (dotted line)
Means that the reflectance is significantly reduced (0.21 at a wavelength of 500 nm).
%). Also, it is clear that the antifouling low-reflection glass 3 (solid line) in which an antifouling layer is further formed on the porous layer has a sufficiently reduced reflectance reducing effect (0 at a wavelength of 500 nm). .72%). Next, the same person lightly rubs the surface of the glass plate sample with the porous layer formed on the surface and the antifouling low reflectance glass plate sample with the antifouling layer further formed on the porous layer with a finger. When touching and observing the left and right fingerprints on the glass at the same time, the traces of the fingerprints are clearly visible in the former sample, but the fingerprint traces are faint in the latter sample. The difference was clear. From this, it can be seen that the antifouling treatment clearly makes it difficult to attach a fingerprint. Water (surface tension: 72.8 mNm -1 ) and n-hexadecane (surface tension: 27.3 mNm -1 ) for the low-reflection glass before the antifouling treatment and the low-reflection glass subjected to the antifouling treatment When we measured the contact angle of
The low-reflection glass before the antifouling treatment has a contact angle of water of 0 degree and that of n-hexadecane of 0 degree. The contact angles of hexadecane are each 120.9
Degrees (standard deviation 1.17) and 80.7 degrees (standard deviation 3.46). It can be seen that all of the contact angles of the sample subjected to the antifouling treatment are significantly larger. From these results, it is clear that water and oil, etc., are less likely to adhere by performing the antifouling treatment. Therefore, it can be understood that an antifouling effect is exhibited for hydrophilic and lipophilic stains. As described above, the antifouling low-reflection glass of the present invention has a large antireflection function, and at the same time, it is difficult for dirt due to fingerprints or the like to adhere to the glass. It is clear to have. Therefore, the antifouling low-reflection glass according to the present invention can be suitably used for a CRT front glass of a computer or the like.
【図面の簡単な説明】
【図1】 本発明の防汚性低反射ガラスの構成を示す説
明図である。
【図2】 本発明の防汚性低反射ガラスの可視光反射ス
ペクトルを表わす説明図である。
【符号の説明】
1 ガラス基板
2 反射防止(多孔質)膜
3 防汚層BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing a configuration of an antifouling low-reflection glass of the present invention. FIG. 2 is an explanatory diagram showing a visible light reflection spectrum of the antifouling low-reflection glass of the present invention. [Description of Signs] 1 Glass substrate 2 Antireflection (porous) film 3 Antifouling layer
─────────────────────────────────────────────────────
フロントページの続き
(56)参考文献 特開 平4−285035(JP,A)
特開 平4−130032(JP,A)
特開 平5−97478(JP,A)
特開 平5−330856(JP,A)
(58)調査した分野(Int.Cl.7,DB名)
C03C 15/00 - 23/00
B32B 1/00 - 35/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-285035 (JP, A) JP-A-4-130032 (JP, A) JP-A-5-97478 (JP, A) JP-A-5-97478 330856 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C03C 15/00-23/00 B32B 1/00-35/00