JP3386700B2 - Control method when the number of indoor units operating changes in multi-room air conditioner - Google Patents
Control method when the number of indoor units operating changes in multi-room air conditionerInfo
- Publication number
- JP3386700B2 JP3386700B2 JP26722897A JP26722897A JP3386700B2 JP 3386700 B2 JP3386700 B2 JP 3386700B2 JP 26722897 A JP26722897 A JP 26722897A JP 26722897 A JP26722897 A JP 26722897A JP 3386700 B2 JP3386700 B2 JP 3386700B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- indoor
- frequency
- combustion amount
- air conditioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 22
- 239000003507 refrigerant Substances 0.000 claims description 153
- 238000002485 combustion reaction Methods 0.000 claims description 84
- 239000007788 liquid Substances 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 description 53
- 238000001816 cooling Methods 0.000 description 13
- 230000007423 decrease Effects 0.000 description 10
- 238000005057 refrigeration Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 239000003921 oil Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000010981 drying operation Methods 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/008—Refrigerant heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0233—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/021—Inverters therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は1台の室外機に複数
台の室内機を接続した多室形空気調和機に関し、さらに
詳しくは、室内機の運転台数増加により室内からの総合
要求負荷が増大した場合の制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit, and more specifically, the total required load from the inside of the room is increased by increasing the number of operating indoor units. Control method when increased.
【0002】[0002]
【従来の技術】近年、1台の室外機に複数台の室内機を
接続した多室形空気調和機が、室外の省スペース性や美
観上の点で一般家庭の消費者にも受け入れられつつあ
る。また、1台の室外機に1台の室内機を接続した1室
形空気調和機を複数組設置するのに比べ、多室形空気調
和機はコストの点でも有利であることから、消費者の需
要も徐々に増大しつつある。2. Description of the Related Art In recent years, a multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit has been accepted by general household consumers in terms of space saving and aesthetics. is there. In addition, compared to installing multiple sets of one-room air conditioners in which one indoor unit is connected to one outdoor unit, the multi-room air conditioner is advantageous in terms of cost, so Demand is gradually increasing.
【0003】この多室形空気調和機では、各室内機の要
求能力の総和に応じて圧縮機の能力を制御するととも
に、各室内機につながる液管に設けられた流量調整弁の
開度を対応する室内機の要求能力に応じて個別に制御し
ている。In this multi-room air conditioner, the capacity of the compressor is controlled according to the sum of the required capacities of the indoor units, and the opening of the flow rate adjusting valve provided in the liquid pipe connected to each indoor unit is controlled. It is controlled individually according to the required capacity of the corresponding indoor unit.
【0004】しかしながら、このような多室形空気調和
機では、各流量調整弁の開度制御が室内機ごとに分離し
ているため、暖房運転時、しかも各室内機の要求能力に
大きな差がある場合、種々の問題を生じていた。However, in such a multi-room air conditioner, since the opening control of each flow rate adjusting valve is separated for each indoor unit, there is a large difference in the required capacity of each indoor unit during heating operation. In some cases, it caused various problems.
【0005】例えば、流量調整弁による流量制御が各室
内機の下流側で行われるため、要求能力の小さい室内機
に多量の液冷媒が溜まりやすく、冷凍サイクル全体の冷
媒循環量が不足したり、冷媒循環量の不足により、各電
動膨張弁の開度を制御するだけでは冷媒加熱器における
冷媒過熱度を一定に制御することができないという事態
が生じていた。For example, since the flow rate control by the flow rate adjusting valve is performed on the downstream side of each indoor unit, a large amount of liquid refrigerant tends to accumulate in the indoor unit having a small required capacity, and the refrigerant circulation amount of the entire refrigeration cycle becomes insufficient. Due to the shortage of the circulation amount of the refrigerant, there has been a situation in which the degree of superheat of the refrigerant in the refrigerant heater cannot be controlled to be constant only by controlling the opening degree of each electric expansion valve.
【0006】このような事態を解消するため、冷媒加熱
器の加熱量を減少して暖房能力を落としたり、流量調整
弁の最小限界開度を大きくして各室内機の暖房能力比を
大きく取れなくすると空気調和機の仕様が低下するとい
う問題があった。In order to solve such a situation, the heating amount of the refrigerant heater is reduced to lower the heating capacity, or the minimum limit opening of the flow rate adjusting valve is increased to obtain a large heating capacity ratio of each indoor unit. There was a problem that the specifications of the air conditioner would be reduced if it was lost.
【0007】このような問題点に鑑み、特開平5−26
530号公報は、室内機の暖房要求に大きな差があった
場合でも熱源側室外熱交換器の冷媒過熱度を所定値に保
つように制御して常に適正な暖房能力を確保することが
できる空気調和機を提供している。In view of these problems, Japanese Patent Laid-Open No. 5-26
Japanese Patent No. 530 discloses an air system capable of always maintaining a proper heating capacity by controlling the refrigerant superheat degree of a heat source side outdoor heat exchanger to a predetermined value even when there is a large difference in heating requirements for indoor units. We provide a harmony machine.
【0008】この空気調和機には、ガスバーナ、燃焼用
ファン、比例弁、点火器、火炎検知器等を有する冷媒加
熱器が設けられており、暖房運転時、ガスバーナの燃焼
火炎によって冷媒を加熱する。また、暖房運転時におい
て、要求能力の差が設定値より大きいときに室内機の要
求能力の大きい方に対応する二方弁を開き小さいほうに
対応する二方弁を閉じるとともに、各室内熱交換器に流
入する冷媒の温度が各室内機の要求能力に基づく所定の
関係となるように流量調整弁の開度を制御している。さ
らに、各室内熱交換器での過冷却度が等しくなるように
各電動膨張弁の合計開度を一定に保ちながら各電動膨張
弁の開度を制御している。This air conditioner is provided with a refrigerant heater having a gas burner, a combustion fan, a proportional valve, an igniter, a flame detector, etc., and heats the refrigerant by the combustion flame of the gas burner during heating operation. . Also, during heating operation, when the difference in required capacity is larger than the set value, the two-way valve corresponding to the one with the larger required capacity of the indoor unit is opened and the two-way valve corresponding to the smaller one is closed, and each indoor heat exchange is performed. The opening of the flow rate adjusting valve is controlled so that the temperature of the refrigerant flowing into the container has a predetermined relationship based on the required capacity of each indoor unit. Further, the opening degree of each electric expansion valve is controlled while keeping the total opening degree of each electric expansion valve constant so that the degree of subcooling in each indoor heat exchanger becomes equal.
【0009】[0009]
【発明が解決しようとする課題】最近では、経済性の面
で有利な石油冷媒加熱式多室形空気調和機も検討されて
いるが、複数台の室内機を1台の室外機に接続した多室
形空気調和機は使用冷媒量が多く、ガスバーナの燃焼火
炎による冷媒加熱に比べて石油冷媒加熱器の制御は容易
でないという問題がある。特に、加熱量と冷媒循環量の
バランス制御は重要で、多室形空気調和機においては、
冷媒循環量の変動が大きく、加熱量が冷媒循環量より大
きいと冷媒加熱器の温度異常や排熱温度上昇という問題
を惹起する一方、加熱量に比べて冷媒循環量が大きいと
圧縮機の信頼性が低下したり入力上昇という問題が発生
する。Recently, a petroleum-refrigerant heating type multi-room air conditioner, which is advantageous in terms of economy, has been studied, but a plurality of indoor units are connected to one outdoor unit. The multi-chamber air conditioner has a problem in that the amount of refrigerant used is large and the control of the petroleum refrigerant heater is not easy as compared with the case of heating the refrigerant by the combustion flame of the gas burner. In particular, it is important to control the balance between the heating amount and the refrigerant circulation amount, and in a multi-room air conditioner,
If the amount of refrigerant circulation fluctuates greatly and the amount of heating is greater than the amount of refrigerant circulation, it causes problems such as abnormal temperature of the refrigerant heater and rise in exhaust heat temperature, while if the amount of refrigerant circulation is larger than the amount of heat, the reliability of the compressor is increased. There is a problem that the input is lowered or the input is increased.
【0010】また、石油冷媒加熱器の燃焼器にはアルミ
ニウム等の熱容量が大きい材料が使用されており、燃焼
量を大きく変化させても冷媒加熱量の変動が少ないこと
から加熱量の制御が容易ではない。Further, since a material having a large heat capacity such as aluminum is used for the combustor of the petroleum refrigerant heater, the heating amount of the refrigerant is easily controlled because the refrigerant heating amount does not fluctuate even if the combustion amount is largely changed. is not.
【0011】特に、室内機の運転台数が変化すると室内
からの総合要求負荷が大きく変動し、加熱量と冷媒循環
量のバランスが崩れやすいという問題がある。In particular, when the number of operating indoor units changes, the total required load from the inside of the room fluctuates greatly, and there is a problem that the balance between the heating amount and the refrigerant circulation amount tends to collapse.
【0012】本発明は、従来技術の有するこのような問
題点に鑑みてなされたものであり、室内機の運転台数が
増加した場合でも室内からの要求負荷に応じた効率の良
い燃焼量及び冷媒循環量の制御が可能な多室形空気調和
機の室内機運転台数変化時の制御方法を提供することを
目的としている。The present invention has been made in view of the above problems of the prior art. Even when the number of operating indoor units is increased, an efficient combustion amount and a refrigerant corresponding to the required load from the room are provided. An object of the present invention is to provide a control method when the number of operating indoor units of a multi-room air conditioner capable of controlling the circulation amount changes.
【0013】[0013]
【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1に記載の発明は、容量可変
形圧縮機と四方弁と室外熱交換器と冷媒加熱器とを有す
る1台の室外機と、室内熱交換器を有し並列に接続され
た複数台の室内機とを、上記室外機に設けられ主に冷媒
液が流れる液側主管から分岐した液側分岐管と上記室外
機に設けられ主に冷媒ガスが流れるガス側主管から分岐
したガス側分岐管を介して接続し、弁開度を電気的に制
御可能な電動膨張弁を上記液側分岐管に取り付けるとと
もに、各室内機が設置される室内の温度を任意に設定す
る室内温度設定手段と、室内温度を検出する室内温度検
出手段と、上記室内温度設定手段により設定された温度
と上記室内温度検出手段が検出した室内温度との差温を
算出する差温演算手段と、上記室内機の各々の定格容量
を記憶する定格容量記憶手段と、所定周期毎に上記圧縮
機の周波数と上記冷媒加熱器の目標燃焼量を算出する周
波数・燃焼量演算手段とを有する多室形空気調和機の室
内機運転台数変化時の制御方法であって、暖房運転中に
おける室内機運転台数の増加により室内からの総合要求
負荷が増加した場合、圧縮機周波数を徐々に増加して冷
媒循環量を増加させ、所定時間経過後、運転信号を受け
た室内機に対応する上記電動膨張弁を開制御するととも
に上記冷媒加熱器の燃焼量を徐々に増加させるようにし
たことを特徴とする多室形空気調和機の室内機運転台数
変化時の制御方法である。In order to achieve the above object, the invention according to claim 1 of the present invention comprises a variable capacity compressor, a four-way valve, an outdoor heat exchanger and a refrigerant heater. A liquid-side branch pipe obtained by branching a single outdoor unit having the same and a plurality of indoor units having an indoor heat exchanger connected in parallel from the liquid-side main pipe provided in the outdoor unit and through which the refrigerant liquid mainly flows. And an electric expansion valve, which is provided in the outdoor unit and is connected via a gas side branch pipe branched from a gas side main pipe through which a refrigerant gas mainly flows, and whose valve opening degree can be electrically controlled, is attached to the liquid side branch pipe. At the same time, an indoor temperature setting means for arbitrarily setting the temperature of the room in which each indoor unit is installed, an indoor temperature detecting means for detecting the indoor temperature, a temperature set by the indoor temperature setting means, and the indoor temperature detecting means. Temperature calculation to calculate the temperature difference between the room temperature detected by A stage, a rated capacity storage means for storing the rated capacity of each of the indoor units, and a frequency / combustion amount calculation means for calculating the frequency of the compressor and the target combustion amount of the refrigerant heater for each predetermined cycle. This is a control method when the number of operating indoor units of a multi-room air conditioner changes, and when the total required load from the interior increases due to an increase in the number of operating indoor units during heating operation, the compressor frequency is gradually increased. The amount of refrigerant circulation is increased by a predetermined amount of time, and after a lapse of a predetermined time, the electric expansion valve corresponding to the indoor unit receiving the operation signal is controlled to be opened, and the combustion amount of the refrigerant heater is gradually increased. Is a control method when the number of operating indoor units of the multi-room air conditioner changes.
【0014】また、請求項2に記載の発明は、冷媒循環
量の増加と同時かあるいは所定時間遅延して運転信号を
受けた室内機の室内ファンを作動させるようにしたこと
を特徴とする。The invention according to claim 2 is characterized in that the indoor fan of the indoor unit that receives the operation signal is operated at the same time as the increase of the refrigerant circulation amount or after a delay of a predetermined time.
【0015】また、請求項3に記載の発明は、上記圧縮
機周波数の増加率より上記冷媒加熱器の燃焼量の増加率
を小さく設定したことを特徴とする。The invention according to claim 3 is characterized in that the increasing rate of the combustion amount of the refrigerant heater is set smaller than the increasing rate of the compressor frequency.
【0016】さらに、請求項4に記載の発明は、上記冷
媒加熱器の燃焼量をステップ状に増加させ、その平均増
加率を上記圧縮機周波数の増加率より小さく設定したこ
とを特徴とする。Further, the invention according to claim 4 is characterized in that the combustion amount of the refrigerant heater is increased stepwise and the average increase rate is set smaller than the increase rate of the compressor frequency.
【0017】また、請求項5に記載の発明は、上記電動
膨張弁の開制御と上記冷媒加熱器の燃焼量増加を同時に
行うようにしたことを特徴とする。The invention according to claim 5 is characterized in that the opening control of the electric expansion valve and the increase of the combustion amount of the refrigerant heater are simultaneously performed.
【0018】また、請求項6に記載の発明は、上記電動
膨張弁の開制御より遅延して上記冷媒加熱器の燃焼量を
増加させるようにしたことを特徴とする。Further, the invention according to claim 6 is characterized in that the amount of combustion in the refrigerant heater is increased with a delay from the opening control of the electric expansion valve.
【0019】また、請求項7に記載の発明は、上記圧縮
機周波数を上記周波数・燃焼量演算手段により算出した
値と同じかあるいは大きい値に設定して冷媒循環量を増
加させるようにしたことを特徴とする。Further, in the invention described in claim 7, the compressor frequency is set to a value equal to or larger than a value calculated by the frequency / combustion amount calculating means to increase the refrigerant circulation amount. Is characterized by.
【0020】また、請求項8に記載の発明は、上記冷媒
加熱器の燃焼量増加より所定時間経過後、圧縮機周波数
を上記周波数・燃焼量演算手段で算出した値まで減少さ
せるようにしたことを特徴とする。Further, in the invention according to claim 8, the compressor frequency is reduced to a value calculated by the frequency / combustion amount calculating means after a predetermined time has elapsed since the combustion amount of the refrigerant heater was increased. Is characterized by.
【0021】[0021]
【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。図1は、本発明にか
かる多室形空気調和機の冷凍サイクル図の1例であり、
1台の室外機2に複数台(例えば2台)の室内機4a,
4bを接続した場合を示している。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an example of a refrigeration cycle diagram of a multi-room air conditioner according to the present invention,
A plurality of (for example, two) indoor units 4a in one outdoor unit 2,
The case where 4b is connected is shown.
【0022】図1において、室外機2にはインバータ駆
動の容量(周波数)可変形圧縮機6(以下単に圧縮機と
称す)と、室外熱交換器8と、冷暖房切換用の四方弁1
0とが設けられる一方、室内機4a,4bには室内熱交
換器12a,12bがそれぞれ設けられている。また、
室外機2と室内機4a,4bとは、室外機2内に設けら
れた液側主管14より分岐した液側分岐管16a,16
b及び室外機2内に設けられたガス側主管18より分岐
したガス側分岐管20a,20bとで接続されており、
液側分岐管16a,16bには、例えばステッピングモ
ータ等により弁開度をパルス制御可能な電動膨張弁22
a,22bがそれぞれ介装されている。In FIG. 1, an outdoor unit 2 has an inverter-driven variable capacity (frequency) type compressor 6 (hereinafter simply referred to as a compressor), an outdoor heat exchanger 8, and a four-way valve 1 for switching between heating and cooling.
0 is provided, while indoor heat exchangers 12a and 12b are provided in the indoor units 4a and 4b, respectively. Also,
The outdoor unit 2 and the indoor units 4a, 4b are divided into liquid side branch pipes 16a, 16 branched from a liquid side main pipe 14 provided in the outdoor unit 2.
b and the gas side branch pipes 20a and 20b branched from the gas side main pipe 18 provided in the outdoor unit 2,
The liquid side branch pipes 16a and 16b are provided with an electric expansion valve 22 whose valve opening can be pulse-controlled by, for example, a stepping motor or the like.
a and 22b are respectively interposed.
【0023】さらに、液側主管14より分岐し、二方弁
24が取り付けられた冷媒加熱用配管26が冷媒加熱器
28に巻回されており、この冷媒加熱用配管26は、圧
縮機6の吸入側に設けられたアキュムレータ30と吸入
管31を介して連通している。冷媒加熱器28近傍に
は、冷媒加熱器28に所定量の燃料油を送給する電磁ポ
ンプ32が設けられており、冷媒加熱器28に燃焼用空
気を送給するバーナモータ34が冷媒加熱器28に隣接
して設けられている。また、室内機4a,4bには各室
内機4a,4bが設置されている部屋の室温を検出する
室内温度センサ36a,36b、及び、居住者が希望す
る運転モード(冷房または暖房)と室温と運転あるいは
停止を設定できる運転設定回路38a,38bが設けら
れている。図中、42,44は逆止弁を、46は補助絞
りを示している。Further, a refrigerant heating pipe 26 branching from the liquid side main pipe 14 and having a two-way valve 24 attached thereto is wound around a refrigerant heater 28. The refrigerant heating pipe 26 is connected to the compressor 6. It communicates with an accumulator 30 provided on the suction side through a suction pipe 31. An electromagnetic pump 32 for supplying a predetermined amount of fuel oil to the refrigerant heater 28 is provided near the refrigerant heater 28, and a burner motor 34 for supplying combustion air to the refrigerant heater 28 includes a refrigerant heater 28. Is provided adjacent to. In addition, the indoor units 4a and 4b have indoor temperature sensors 36a and 36b that detect the room temperature of the room in which the indoor units 4a and 4b are installed, and an operation mode (cooling or heating) and room temperature that the occupant desires. Operation setting circuits 38a and 38b capable of setting operation or stop are provided. In the figure, 42 and 44 are check valves, and 46 is an auxiliary throttle.
【0024】上記構成の冷凍サイクルにおいて、冷房
時、圧縮機6から吐出された冷媒は、四方弁10より室
外熱交換器8へと流れて、ここで室外空気と熱交換して
凝縮液化し、次に補助絞り46を通過することにより減
圧されて冷媒は蒸発しやすい状態となり、液側主管14
より液側分岐管16a,16bへと分岐する。電動膨張
弁22a,22bの弁開度は、後述する制御方法でそれ
ぞれの部屋に見合った開度となるように制御されるた
め、冷媒もそれぞれの負荷に応じた流量で低圧となって
室内熱交換器12a,12bへと流れて蒸発した後、ガ
ス側分岐管20a,20bよりガス側主管18、四方弁
10を通過し、アキュムレータ30を介して再び圧縮機
6に吸入される。また、圧縮機周波数は、総合負荷レベ
ルに応じて後述する制御方法で決定される。In the refrigeration cycle having the above structure, during cooling, the refrigerant discharged from the compressor 6 flows from the four-way valve 10 to the outdoor heat exchanger 8 where it exchanges heat with outdoor air to be condensed and liquefied. Next, the pressure is reduced by passing through the auxiliary throttle 46, and the refrigerant easily evaporates.
It branches to the liquid side branch pipes 16a and 16b. The valve openings of the electric expansion valves 22a and 22b are controlled by the control method described later so as to have openings corresponding to the respective rooms, so that the refrigerant also becomes a low pressure at a flow rate corresponding to each load and the indoor heat is reduced. After flowing to the exchangers 12a and 12b and evaporating, they pass through the gas side branch pipes 20a and 20b, the gas side main pipe 18 and the four-way valve 10, and are again sucked into the compressor 6 via the accumulator 30. Further, the compressor frequency is determined by a control method described later according to the total load level.
【0025】一方、暖房運転がスタートすると、当初二
方弁24は所定時間閉止しているので、逆止弁42から
室外熱交換器8を介して逆止弁44に至る冷媒は圧縮機
6により回収される(冷媒回収サイクル)。冷媒回収サ
イクルが終了すると、二方弁24が開き、圧縮機6から
吐出された高温高圧の冷媒は、四方弁10を通過してガ
ス側主管18よりガス側分岐管20a,20bへと分岐
し、室内熱交換器12a,12bへと流れて凝縮液化
し、液側分岐管16a,16b上の電動膨張弁22a,
22bで減圧されて中間圧となる。電動膨張弁22a,
22bの弁開度は、冷房時と同様に後述する制御方法で
それぞれの部屋の負荷に見合った開度となるように制御
されるため、冷媒もそれぞれの負荷に応じた流量で室内
熱交換器12a,12bを流れる。中間圧となった冷媒
は、液側主管14より冷媒加熱用配管26に導かれ、二
方弁24を介してさらに冷媒加熱器28に導かれる。冷
媒加熱器28は後述する加熱方法で制御されているの
で、冷媒加熱器28により所定の温度に加熱されること
によりガス化した冷媒はアキュムレータ30を介して再
び圧縮機6に吸入される。On the other hand, when the heating operation is started, the two-way valve 24 is initially closed for a predetermined time, so that the refrigerant from the check valve 42 to the check valve 44 via the outdoor heat exchanger 8 is compressed by the compressor 6. Recovered (refrigerant recovery cycle). When the refrigerant recovery cycle ends, the two-way valve 24 opens, and the high-temperature and high-pressure refrigerant discharged from the compressor 6 passes through the four-way valve 10 and branches from the gas-side main pipe 18 to the gas-side branch pipes 20a and 20b. , To the indoor heat exchangers 12a and 12b to be condensed and liquefied, and the electric expansion valve 22a on the liquid side branch pipes 16a and 16b,
The pressure is reduced at 22b to an intermediate pressure. Electric expansion valve 22a,
The valve opening degree of 22b is controlled to be an opening degree commensurate with the load of each room by the control method described later similarly to the case of cooling, so that the refrigerant also has a flow rate corresponding to each load in the indoor heat exchanger. It flows through 12a and 12b. The intermediate pressure refrigerant is guided from the liquid side main pipe 14 to the refrigerant heating pipe 26, and further to the refrigerant heater 28 via the two-way valve 24. Since the refrigerant heater 28 is controlled by the heating method described later, the refrigerant which is gasified by being heated to a predetermined temperature by the refrigerant heater 28 is sucked into the compressor 6 again via the accumulator 30.
【0026】次に、圧縮機周波数、燃焼量及び電動膨張
弁開度の制御法について説明する。図2は圧縮機周波
数、燃焼量及び電動膨張弁開度の制御の流れを示すブロ
ック図で、図3は室内温度Trと設定温度Tsとの差温
ΔTの温度ゾーン分割図である。Next, a method of controlling the compressor frequency, the combustion amount and the electric expansion valve opening degree will be described. FIG. 2 is a block diagram showing the flow of control of the compressor frequency, the combustion amount, and the electric expansion valve opening, and FIG. 3 is a temperature zone division diagram of the temperature difference ΔT between the indoor temperature Tr and the set temperature Ts.
【0027】まず、室内機4aにおいて、室内温度セン
サ36aの出力(室内温度)を室内温度検出回路48よ
り温度信号として差温演算回路50に送出し、また設定
判別回路52にて運転設定回路38aで設定された設定
温度及び運転モードを判別して差温演算回路50に送出
して、ここで差温△T(=Tr−Ts)を算出し、図3
に示す周波数No.に変換してこれを差温信号とする。First, in the indoor unit 4a, the output (indoor temperature) of the indoor temperature sensor 36a is sent from the indoor temperature detection circuit 48 as a temperature signal to the differential temperature calculation circuit 50, and the setting determination circuit 52 operates the operation setting circuit 38a. The set temperature and operation mode set in step 3 are discriminated and sent to the temperature difference calculation circuit 50, where the temperature difference ΔT (= Tr−Ts) is calculated,
Frequency No. shown in. Is converted into the differential temperature signal.
【0028】また、ON−OFF判別回路54にて、運
転設定回路38aで設定された室内機4aの運転(O
N)または停止(OFF)を判別する。さらに、定格容
量記憶回路56に室内機4aの定格容量を記憶してお
き、これらの定格容量信号、差温信号、運転モード信
号、ON−OFF判別信号を信号送出回路58より室外
機2の信号受信回路60へ送出する。室内機4bからも
同様の信号が信号受信回路60へ送出される。信号受信
回路60で受信した信号は、圧縮機周波数・燃焼量演算
回路62と膨張弁開度演算回路64へ送出される。ただ
し、異なった運転モード信号が存在する場合、最初に運
転を開始した室内機の運転モードが優先され、異なった
運転モードの室内機は停止しているとみなしてON−O
FF判別信号はOFFを送出する。Further, in the ON-OFF discrimination circuit 54, the operation of the indoor unit 4a set by the operation setting circuit 38a (O
N) or stop (OFF) is determined. Further, the rated capacity of the indoor unit 4a is stored in the rated capacity storage circuit 56, and the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF determination signal are sent from the signal sending circuit 58 to the signal of the outdoor unit 2. It is sent to the receiving circuit 60. A similar signal is sent from the indoor unit 4b to the signal receiving circuit 60. The signal received by the signal receiving circuit 60 is sent to the compressor frequency / combustion amount calculating circuit 62 and the expansion valve opening calculating circuit 64. However, when different operation mode signals are present, the operation mode of the indoor unit that first started operation is prioritized, and it is considered that the indoor units in different operation modes are stopped, and the ON-O
The FF discrimination signal is sent OFF.
【0029】圧縮機周波数・燃焼量演算回路62にて室
内機4a,4bのそれぞれの定格容量信号、差温信号、
運転モード信号、ON−OFF判別信号より下記表1に
示す負荷係数テーブル66から負荷レベル係数を読み出
し、この負荷レベル係数の総和に定数を乗じ、さらに補
正値を加えることにより圧縮機6の周波数を決定する。In the compressor frequency / combustion amount calculation circuit 62, the rated capacity signal and the differential temperature signal of the indoor units 4a and 4b,
The load level coefficient is read from the load coefficient table 66 shown in Table 1 below from the operation mode signal and the ON-OFF determination signal, the sum of the load level coefficients is multiplied by a constant, and the correction value is added to determine the frequency of the compressor 6. decide.
【表1】 [Table 1]
【0030】詳述すれば、冷房・ドライ運転において
は、2台の室内機4a,4bの差温信号である周波数N
o.からそれぞれの負荷レベル係数Ln1,Ln2を負
荷係数テーブル66から求め、室内側の総合負荷レベル
Lnφを計算で導きだし、その値を圧縮機6の運転周波
数に設定して室外機2に要求される初期設定を行う。More specifically, in the cooling / drying operation, the frequency N which is a temperature difference signal between the two indoor units 4a and 4b
o. From the load coefficient table 66, the respective load level coefficients Ln1 and Ln2 are obtained, the total indoor load level Lnφ is derived by calculation, and the value is set to the operating frequency of the compressor 6 to be requested by the outdoor unit 2. Perform initial settings.
【0031】一方、暖房運転においては、2台の室内機
4a,4bの周波数No.からそれぞれの負荷レベル係
数Ln1,Ln2を負荷係数テーブル66から求め、室
内側の総合負荷レベルLnφを計算で導きだし、その値
を室外機2の負荷レベルLnkに設定し、この室外運転
負荷レベルLnkの値を圧縮機6の運転周波数に設定し
て室外機2に要求される初期設定を行う。
A.冷房・ドライ運転の場合の制御計算式
1)1室運転の場合
Lnφ=a1×(Ln1あるいはLn2)+b1
2)2室運転の場合
(i)Ln1+Ln2<34の時
Lnφ=a1×(Ln1+Ln2)+b1
(ii)Ln1+Ln2≧34の時
Lnφ=a2×(Ln1+Ln2)+b2
ただし、a1>a2、b1<b2
上記制御計算式から求められたLnφを圧縮機6の運転
周波数に設定する。
Comp Hz=Lnφ
B.暖房運転の場合の制御計算式
1)1室の場合
Lnφ=a3×(Ln1あるいはLn2)+b3
2)2室の場合
Lnφ=a4×(Ln1+Ln2)+b4
ただし、a3>a4、b3<b4On the other hand, in the heating operation, the frequency Nos. Of the two indoor units 4a and 4b are set. From the load coefficient table 66, the respective load level coefficients Ln1 and Ln2 are calculated, and the indoor total load level Lnφ is derived by calculation. The value is set as the load level Lnk of the outdoor unit 2, and this outdoor operation load level Lnk is set. Is set to the operating frequency of the compressor 6 to perform the initial setting required for the outdoor unit 2. A. Control calculation formula for cooling / drying operation 1) Single room operation Lnφ = a1 × (Ln1 or Ln2) + b1 2) Double room operation (i) Ln1 + Ln2 <34 Lnφ = a1 × (Ln1 + Ln2) + b1 (Ii) When Ln1 + Ln2 ≧ 34, Lnφ = a2 × (Ln1 + Ln2) + b2 where a1> a2, b1 <b2 Lnφ obtained from the above control calculation formula is set as the operating frequency of the compressor 6. Comp Hz = Lnφ B. Control calculation formula for heating operation 1) In the case of one room Lnφ = a3 × (Ln1 or Ln2) + b3 2) In the case of two rooms Lnφ = a4 × (Ln1 + Ln2) + b4 However, a3> a4, b3 <b4
【0032】上記制御計算式から求められたLnφをL
nkに置き換え、Lnkの値を圧縮機6の運転周波数に
設定する。
Lnk=Lnφ、 Comp Hz=Lnk
なお、上記a1〜a4及びb1〜b4は、圧縮機6の容
量、配管径等により決定される実験値である。Lnφ obtained from the above control calculation formula is L
Replace with nk and set the value of Lnk to the operating frequency of the compressor 6. Lnk = Lnφ, Comp Hz = Lnk Note that the above a1 to a4 and b1 to b4 are experimental values determined by the capacity of the compressor 6, the pipe diameter, and the like.
【0033】図4及び図5は、a1=30/12、b1
=−8、a2=13/12、b2=37、a3=15/
17、b3=0.5、a4=5/13、b4=25.2と
した場合の上記制御計算式をグラフにしたものである。4 and 5, a1 = 30/12, b1
= -8, a2 = 13/12, b2 = 37, a3 = 15 /
17 is a graph showing the above control calculation formula when 17, b3 = 0.5, a4 = 5/13, and b4 = 25.2.
【0034】図4に示されるように、冷房・ドライ運転
時で1室運転の場合の圧縮機6の最小運転周波数は28
Hzに設定するとともに、2室運転の場合の圧縮機6の
最小運転周波数は低周波数保護が動作しない32Hzに
設定する一方、最大運転周波数は98Hzに設定してい
る。As shown in FIG. 4, the minimum operating frequency of the compressor 6 during the single room operation during the cooling / drying operation is 28.
The maximum operating frequency is set to 98 Hz while the minimum operating frequency of the compressor 6 in the case of the two-room operation is set to 32 Hz while the low frequency protection does not operate.
【0035】また、図5に示されるように、暖房運転時
で1室及び2室運転の場合の圧縮機6の最小運転周波数
はそれぞれ20Hz及び41Hzに設定する一方、最大
運転周波数はそれぞれ49Hz及び61Hzに設定して
いる。一例として、室内機4a,4bからの信号が下記
表2の場合について説明する。Further, as shown in FIG. 5, the minimum operating frequency of the compressor 6 in the one-room and two-chamber operation during the heating operation is set to 20 Hz and 41 Hz, respectively, while the maximum operating frequency is set to 49 Hz and It is set to 61 Hz. As an example, the case where the signals from the indoor units 4a and 4b are shown in Table 2 below will be described.
【表2】
表1と表2より、室内機4a,4bの負荷レベル係数L
n1,Ln2はそれぞれ34及び31となり、圧縮機6
の周波数Hzは、
Hz=Lnφ=5/13×(34+31)+25.2≒
50
となる。この演算結果を周波数信号として圧縮機駆動回
路(図示せず)に送出して圧縮機6の周波数制御を行
う。以後、所定周期毎に室内機4a,4bのそれぞれの
定格容量信号、差温信号、運転モード信号、ON−OF
F判別信号より室外機2の圧縮機周波数・燃焼量演算回
路62で演算を行い、演算結果を必要に応じて補正し、
補正後の値を周波数信号として圧縮機駆動回路に送出し
て圧縮機6の周波数制御を行う。[Table 2] From Table 1 and Table 2, the load level coefficient L of the indoor units 4a, 4b
n1 and Ln2 are 34 and 31, respectively, and the compressor 6
The frequency Hz is: Hz = Lnφ = 5/13 × (34 + 31) + 25.2≈
50. The result of this calculation is sent as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 6. After that, the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OF of each of the indoor units 4a and 4b are set every predetermined period.
From the F discrimination signal, the compressor frequency / combustion amount calculation circuit 62 of the outdoor unit 2 performs calculation, corrects the calculation result as necessary,
The corrected value is sent as a frequency signal to the compressor drive circuit to control the frequency of the compressor 6.
【0036】このように、運転台数に応じて所定の計算
式により圧縮機6の周波数を決定しており、1室運転時
の低周波数運転では、より低い運転周波数で圧縮機6を
運転することで低入力運転が可能となり、総合負荷レベ
ルの増大とともに高い運転周波数で圧縮機6を運転する
ことで配管による圧力損失を考慮してより高い冷媒循環
量を確保し、高効率運転を実現している。また、2室暖
房運転時は、室内要求負荷が1室運転と同じであって
も、冷媒を搬送する配管容積が大きいことから、より高
い周波数で運転する必要がある。ただし、ある点からは
1室運転の配管圧損が非常に大きくなることから、1室
運転の方が圧縮機周波数を大きくとる必要がある。In this way, the frequency of the compressor 6 is determined by a predetermined calculation formula according to the number of operating machines, and the compressor 6 should be operated at a lower operating frequency in low frequency operation during single room operation. The low input operation becomes possible, and by operating the compressor 6 at a high operating frequency as the total load level increases, a higher refrigerant circulation amount is secured in consideration of the pressure loss due to the piping, and high efficiency operation is realized. There is. Further, during the two-room heating operation, even if the indoor required load is the same as the one-room operation, the volume of the pipe for carrying the refrigerant is large, and therefore it is necessary to operate at a higher frequency. However, from a certain point, the pipe pressure loss in the single-chamber operation becomes very large, and therefore, it is necessary to set the compressor frequency higher in the single-chamber operation.
【0037】膨張弁開度演算回路64においても同様
に、室内機4a,4bのそれぞれの定格容量信号、差温
信号、運転モード信号、ON−OFF判別信号より表3
に示される負荷係数テーブル66から負荷レベル係数を
選択し、さらに室内機4a,4bのそれぞれの定格容量
より下記表4に示される定格容量毎の弁初期開度テーブ
ル70から読み出す。なお、弁初期開度は、異なった定
格容量の室内機の組合せでも、各室内機が所定の能力制
御ができるように決定する。Similarly, in the expansion valve opening calculation circuit 64, Table 3 is obtained from the rated capacity signal, the temperature difference signal, the operation mode signal, and the ON-OFF discrimination signal of each indoor unit 4a, 4b.
A load level coefficient is selected from the load coefficient table 66 shown in FIG. 4 and is read from the valve initial opening table 70 for each rated capacity shown in Table 4 below based on the rated capacity of each indoor unit 4a, 4b. The initial valve opening is determined so that each indoor unit can perform a predetermined capacity control even if indoor units having different rated capacities are combined.
【表3】 [Table 3]
【表4】 [Table 4]
【0038】電動膨張弁22a,22bの弁開度は、そ
れぞれの負荷レベル係数に弁初期開度を乗じたものであ
る。
膨張弁開度=P0(負荷レベル係数)×初期パルスThe valve opening degrees of the electric expansion valves 22a and 22b are obtained by multiplying the respective load level coefficients by the valve initial opening degree. Expansion valve opening = P0 (load level coefficient) x initial pulse
【0039】圧縮機周波数算出の場合と同様に、室内機
4a,4bからの信号が表2の場合について説明する。
室内機4a,4bの負荷レベル係数はそれぞれ0.95
及び0.85であり、また弁初期開度はそれぞれ180
及び230である。したがって、電動膨張弁22a,2
2bの弁開度は171、219となる(小数点以下第1
位を四捨五入)。この演算結果を膨張弁開度信号として
膨張弁駆動回路(図示せず)に送出する。Similar to the case of calculating the compressor frequency, the case where the signals from the indoor units 4a and 4b are shown in Table 2 will be described.
The load level coefficients of the indoor units 4a and 4b are each 0.95.
And 0.85, and the initial valve opening is 180
And 230. Therefore, the electric expansion valves 22a, 2
The valve openings of 2b are 171, 219 (the first decimal place
Round to the nearest). The result of this calculation is sent to an expansion valve drive circuit (not shown) as an expansion valve opening signal.
【0040】したがって、電動膨張弁22a,22bの
弁開度はそれぞれ171パルス及び219パルスとな
り、以後、所定周期毎に、差温信号、運転モード信号、
ON−OFF判別信号より電動膨張弁22a,22bの
弁開度を算出し、これらの演算結果を必要に応じて補正
した後、膨張弁開度信号として膨張弁駆動回路に送出す
る。Therefore, the valve opening degrees of the electric expansion valves 22a and 22b become 171 pulses and 219 pulses, respectively, and thereafter, at every predetermined cycle, a differential temperature signal, an operation mode signal,
The valve opening degrees of the electric expansion valves 22a and 22b are calculated from the ON-OFF discrimination signal, and the calculation results of these are corrected if necessary, and then sent to the expansion valve drive circuit as an expansion valve opening signal.
【0041】次に、暖房時における燃焼量制御について
多室形空気調和機特有の問題とともに説明する。暖房時
における冷媒加熱器28の冷媒出口温度は、冷媒加熱器
28の温度(燃焼量)と配管を流れる冷媒温度(冷媒循
環量)との関係により温度バランスし、冷媒循環量に比
べ燃焼量が大きいと冷媒出口温度が上昇する一方、冷媒
循環量に比べ燃焼量が小さいと冷媒出口温度が下降す
る。このような現象は、多室形空気調和機においては、
次のような理由により発生する。
・接続される配管長の変化幅が大きく、配管長の変化に
対する冷媒循環量の変化が大きく、冷媒加熱器の冷媒出
口温度が大きく変化する。
・封入される冷媒量が多いことから冷媒量の変化も大き
く、運転台数変化時等、特に冷媒循環量が大きく変化す
る。この冷媒循環量変化が冷媒加熱器の温度に微妙な影
響を与える。
・1室形空気調和機に比べ、最大能力運転による冷凍サ
イクル変化が大きい。また、最小能力運転による微調整
制御を要求され、冷凍サイクル制御時に燃焼量と冷媒循
環量のバランスが崩れやすく、冷媒温度が大きく変化す
る。Next, the control of the combustion amount during heating will be described together with the problems peculiar to the multi-room air conditioner. The refrigerant outlet temperature of the refrigerant heater 28 during heating is temperature balanced by the relationship between the temperature of the refrigerant heater 28 (combustion amount) and the temperature of the refrigerant flowing through the pipe (refrigerant circulation amount), and the combustion amount is higher than the refrigerant circulation amount. When it is larger, the refrigerant outlet temperature rises, while when the combustion amount is smaller than the refrigerant circulation amount, the refrigerant outlet temperature falls. Such a phenomenon occurs in a multi-room air conditioner,
It occurs for the following reasons. The change width of the connected pipe length is large, the change of the refrigerant circulation amount with respect to the change of the pipe length is large, and the refrigerant outlet temperature of the refrigerant heater changes greatly. -Since the amount of the enclosed refrigerant is large, the change in the amount of the refrigerant is large, and especially when the number of operating vehicles changes, the amount of refrigerant circulation changes greatly. This change in the refrigerant circulation amount has a delicate influence on the temperature of the refrigerant heater.・ The change in the refrigeration cycle due to the maximum capacity operation is larger than that of the single room air conditioner. Further, fine adjustment control by minimum capacity operation is required, the balance between the combustion amount and the refrigerant circulation amount is likely to be lost during the refrigeration cycle control, and the refrigerant temperature greatly changes.
【0042】また、冷媒出口温度の上昇あるいは下降に
より次のような問題を惹起する可能性がある。
(i)冷媒出口温度が上昇した場合
・能力の低下(熱交換器の効率低下)。
・温度上昇が大きくなると、冷媒加熱器及び圧縮機の保
護のため冷媒加熱器及び圧縮機を停止する。その結果、
バーナのON−OFF制御の繰り返しによるヒータある
いはリレーの寿命が短縮したり快適性が悪化する。
・温度が異常上昇すると、冷凍サイクルのオイルが炭化
し、圧縮機のオイル潤滑が不可能となり圧縮機が故障す
る。また、冷媒加熱器本体のアルミニウム及び加熱器に
巻回された銅管が変形する虞れがある。
・排気ガスの温度が高くなる。
(ii)冷媒出口温度が低下した場合
・過熱度の低下に起因する圧縮機の液圧縮(液バック)
による軸摩耗。
・冷媒加熱器内部に結露が発生し、結露水が硫黄と混じ
り合うことにより硫酸が発生し、アルミ腐食を惹起する
虞れがある。
・入力上昇。Further, the following problems may occur due to the rise or fall of the refrigerant outlet temperature. (I) When the refrigerant outlet temperature rises: The capacity is reduced (heat exchanger efficiency is reduced). -When the temperature rises significantly, the refrigerant heater and compressor are stopped to protect the refrigerant heater and compressor. as a result,
Repeated ON-OFF control of the burner shortens the life of the heater or relay or deteriorates comfort. -If the temperature rises abnormally, the oil in the refrigeration cycle will be carbonized, making it impossible to lubricate the compressor, and the compressor will malfunction. Further, the aluminum of the refrigerant heater main body and the copper tube wound around the heater may be deformed. -Exhaust gas temperature rises. (Ii) When the refrigerant outlet temperature decreases ・ Compressor liquid compression (liquid back) due to a decrease in superheat
Shaft wear due to. -Condensation may occur inside the refrigerant heater, and the condensed water may mix with sulfur to generate sulfuric acid, which may cause aluminum corrosion.・ Increased input.
【0043】上記問題を回避するため、本発明にかかる
多室形空気調和機においては燃焼量制御を以下のように
行っている。各室内機4a,4bでは、吸い込み温度と
設定温度の差から圧縮機6の周波数No.を設定し、室
外機2へ出力する。室外機2では、各室内機4a,4b
の周波数No.と能力ランクから負荷レベル係数Ln
1,Ln2を導き、総合負荷レベルLnφを算出する。
さらに、算出されたLnφをLnkに置き換え、室外運
転負荷レベルとして、Lnkから燃焼量の目標値(K
値)を次の計算式により算出する。
・目標値の決定
1)1室運転時の燃焼量
K=−(256−K1max)/(Lnk1max−Lnk1
min)×(Lnk−Lnk1min)+256
2)2室運転時の燃焼量
K=−K2min/(Lnk2max−Lnk2min)×(L
nk−Lnk2min)+K2min In order to avoid the above problem, in the multi-room air conditioner according to the present invention, the combustion amount control is performed as follows. In each of the indoor units 4a and 4b, the frequency No. Is set and output to the outdoor unit 2. In the outdoor unit 2, each indoor unit 4a, 4b
Frequency No. And load rank coefficient Ln from ability rank
1 and Ln2 are derived to calculate the total load level Lnφ.
Further, the calculated Lnφ is replaced with Lnk, and the outdoor operation load level is calculated from Lnk to the target value of the combustion amount (K
Value) is calculated by the following formula. -Determination of target value 1) Combustion amount during one-chamber operation K =-(256-K1 max ) / (Lnk1 max -Lnk1
min ) x (Lnk-Lnk1 min ) + 256 2) Combustion amount K = -K2 min / (Lnk2 max- Lnk2 min ) x (L
nk-Lnk2 min ) + K2 min
【0044】ここで、K1max、K2min、Lnk
1min、Lnk1max、Lnk2min、Lnk2maxは、例
えば次のように決定される。
K1max: 69
K2min: 145
Lnk1min:20
Lnk1max:42
Lnk2min:42
Lnk2max:61Here, K1 max , K2 min , Lnk
1 min , Lnk1 max , Lnk2 min , and Lnk2 max are determined as follows, for example. K1 max : 69 K2 min : 145 Lnk1 min : 20 Lnk1 max : 42 Lnk2 min : 42 Lnk2 max : 61
【0045】図6は上記制御計算式をグラフにしたもの
であり、冷媒循環量に対応した燃焼量の目標値を、例え
ば図7に示されるように燃焼量となる灯油送油量を考慮
して決定する。すなわち、燃焼量の目標値が計算により
求められると、求められた燃焼量目標値に応じて電磁ポ
ンプ32の周波数及びバーナモータ34の回転数の初期
設定を行い、適切な灯油送油量及び空気量を設定する。
また、各室内機4a,4bの周波数No.から各室内機
4a,4bに連結されている電動膨張弁22a,22b
の初期設定を行うことから、圧縮機周波数の制御は冷房
と同じ制御方式となる。また、燃焼量の決定は、圧縮機
周波数の駆動範囲と同一で、かつ、圧縮機周波数と同一
の初期設定を行うことができる。FIG. 6 is a graph of the above control calculation formula. In consideration of the target value of the combustion amount corresponding to the refrigerant circulation amount, for example, the kerosene oil feed amount which becomes the combustion amount as shown in FIG. To decide. That is, when the target value of the combustion amount is calculated, the frequency of the electromagnetic pump 32 and the rotation speed of the burner motor 34 are initialized according to the calculated target value of the combustion amount, and the appropriate kerosene oil feed amount and air amount are set. To set.
Moreover, the frequency No. of each indoor unit 4a, 4b. From the electric expansion valves 22a, 22b connected to the indoor units 4a, 4b
Since the initial setting is performed, the control of the compressor frequency is the same as the control method for cooling. Further, the determination of the combustion amount can be performed in the same drive range of the compressor frequency and the same initial setting as the compressor frequency.
【0046】ここで、1室の最高燃焼量と2室の最小燃
焼量との関係は、同じ圧縮機周波数であれば、運転台数
が少ない方が高い燃焼量を出すように設定している。こ
れは、1室運転の方が冷媒循環量に対する配管圧損が大
きく、同一圧縮機周波数であれば、1室運転の方が燃焼
量を高くする必要があるからである。Here, the relationship between the maximum combustion amount of one chamber and the minimum combustion amount of two chambers is set so that the smaller the number of operating units, the higher the combustion amount at the same compressor frequency. This is because the pipe pressure loss with respect to the refrigerant circulation amount is larger in the one-chamber operation, and it is necessary to increase the combustion amount in the one-chamber operation at the same compressor frequency.
【0047】このように、各部屋の要求能力の総和に応
じて圧縮機周波数を制御するとともに、各部屋毎の負荷
に応じて各電動膨張弁22a,22bの開度を決定する
ため、必要な能力を必要な部屋に配分することができ
る。したがって、冷凍サイクルをきめ細かく最適に制御
しながら、快適性の向上及び省エネルギを図ることがで
きる。In this way, the compressor frequency is controlled according to the total required capacity of each room, and the opening degree of each electric expansion valve 22a, 22b is determined according to the load of each room. Ability can be distributed to the required rooms. Therefore, it is possible to improve comfort and save energy while finely and optimally controlling the refrigeration cycle.
【0048】次に、室内機4a,4bのうち1台が当初
暖房運転されており、その後別の1台が暖房運転された
場合の運転台数変化制御について図8のフローチャート
及び図9のタイミングチャートを参照して説明する。Next, regarding the change control of the number of operating units when one of the indoor units 4a and 4b is initially in heating operation and the other one is in heating operation thereafter, the flowchart of FIG. 8 and the timing chart of FIG. Will be described with reference to.
【0049】室内機4a,4bが設置されている部屋を
A室及びB室とし、A室の室内機4aのみが暖房運転中
にB室の室内機4bの暖房運転をスタートし、スタート
直後にB室に対応する電動膨張弁22bを開制御する
と、A室の室内機4aのみならずB室の室内機4bにも
冷媒が流れだし、冷媒加熱器28を流れる冷媒量が減少
する。その結果、加熱量と冷媒循環量のバランスが崩れ
冷媒加熱器28の冷媒出口温度が異常上昇する可能性が
ある。The rooms in which the indoor units 4a and 4b are installed are A room and B room. Only the indoor unit 4a in the A room starts the heating operation of the indoor unit 4b in the B room, and immediately after the start. When the electric expansion valve 22b corresponding to the B room is controlled to be opened, the refrigerant starts flowing not only to the indoor unit 4a of the A room but also to the indoor unit 4b of the B room, and the amount of the refrigerant flowing through the refrigerant heater 28 decreases. As a result, the balance between the heating amount and the refrigerant circulation amount may be lost, and the refrigerant outlet temperature of the refrigerant heater 28 may rise abnormally.
【0050】このような冷媒温度の異常上昇を回避する
ため、A室の暖房運転時(ステップS1)、B室の室内
機4bの運転信号を受信すると(ステップS2)、室内
機4bの室内ファンを作動させる(ステップS3)とと
もに、圧縮機周波数を徐々に増加させることにより高周
波数61Hzかあるいは室内の要求負荷から決定される
値に制御して(ステップS4)冷媒循環量をまず増加さ
せる。また、運転信号受信時からの経過時間T1をカウ
ントしておき、T1が所定時間(例えば30秒)に達す
ると(ステップS5及びS6)、室内機4bに対応する
電動膨張弁22bを開制御する(ステップS7)ととも
に、電磁ポンプ32の周波数及びバーナモータ34の回
転数を徐々に増加させる(ステップS8及びS9)こと
により冷媒加熱器28の燃焼量を徐々に上昇させる。な
お、冷媒温度が異常上昇しないよう電磁ポンプ32の周
波数及びバーナモータ34の回転数の増加率は圧縮機6
の周波数の増加率より小さく設定している。また、燃焼
量は電動膨張弁22bの開制御と同時か、あるいは、多
少遅延して上昇させてもよいが、電動膨張弁22bの開
制御よりも前に上昇させると、やはり冷媒加熱器28の
冷媒出口温度が異常上昇する危険性がある。In order to avoid such an abnormal rise in the refrigerant temperature, when the operation signal for the indoor unit 4b in the room B is received during the heating operation of the room A (step S1) (step S2), the indoor fan of the indoor unit 4b is received. Is operated (step S3) and the compressor frequency is gradually increased to a high frequency of 61 Hz or a value determined from the required load in the room (step S4) to increase the refrigerant circulation amount first. Further, the elapsed time T1 from the time of receiving the operation signal is counted, and when T1 reaches a predetermined time (for example, 30 seconds) (steps S5 and S6), the electric expansion valve 22b corresponding to the indoor unit 4b is controlled to be opened. Along with (step S7), the frequency of the electromagnetic pump 32 and the rotation speed of the burner motor 34 are gradually increased (steps S8 and S9) to gradually increase the combustion amount of the refrigerant heater 28. The frequency of the electromagnetic pump 32 and the rate of increase of the rotational speed of the burner motor 34 are set so that the refrigerant temperature does not rise abnormally.
It is set smaller than the frequency increase rate. The combustion amount may be increased at the same time as the opening control of the electric expansion valve 22b or with some delay, but if it is increased before the opening control of the electric expansion valve 22b, the combustion amount of the refrigerant heater 28 is also increased. There is a risk that the refrigerant outlet temperature will rise abnormally.
【0051】さらに、運転信号受信時からの経過時間T
2が所定時間(例えば180秒)に達すると(ステップ
S10及びS11)、圧縮機周波数を室内の要求負荷か
ら決定される値までステップ状に減少させる。Further, the elapsed time T from the reception of the driving signal
When 2 reaches a predetermined time (for example, 180 seconds) (steps S10 and S11), the compressor frequency is stepwise reduced to a value determined from the indoor required load.
【0052】なお、図8のフローチャート及び図9のタ
イミングチャートにおいて、圧縮機周波数の上昇と室内
ファンの作動とを同時に行うようにしたが、圧縮機周波
数の上昇タイミングより所定時間経過後室内ファンを作
動させるようにすることもできる。また、冷媒加熱器2
8の燃焼量を徐々に上昇させるようにしたが、燃焼量を
ステップ状に上昇させてもよく、この場合、燃焼量の平
均上昇率(増加率)を圧縮機周波数の増加率より小さく
すればよい。In the flowchart of FIG. 8 and the timing chart of FIG. 9, the compressor frequency is raised and the indoor fan is operated at the same time. However, the indoor fan is turned on after a predetermined time has elapsed from the compressor frequency rising timing. It can also be activated. Also, the refrigerant heater 2
Although the combustion amount of 8 is gradually increased, the combustion amount may be increased stepwise. In this case, if the average increase rate (increase rate) of the combustion amount is made smaller than the increase rate of the compressor frequency. Good.
【0053】次に、A室とB室の室内機4a,4bが共
に暖房運転中に、B室の室内機4bが停止した場合の運
転台数変化制御について図10のフローチャート及び図
11のタイミングチャートを参照して説明する。Next, regarding the control for changing the number of operating units when the indoor units 4a and 4b in the room A and the room B are both in the heating operation and the indoor unit 4b in the room B is stopped, the flowchart of FIG. 10 and the timing chart of FIG. Will be described with reference to.
【0054】A室及びB室の2室暖房運転時(ステップ
S21)、室内機4bの停止信号を受信すると(ステッ
プS22)、電磁ポンプ32の周波数及びバーナモータ
34の回転数を徐々に低下させることにより冷媒加熱器
28の燃焼量が低下するよう制御する(ステップS23
及びS24)。また、室内機4bの停止信号受信時から
の経過時間T1をカウントしておき、T1が所定時間
(例えば60秒)に達すると(ステップS25及びS2
6)、室内機4bに対応する電動膨張弁22bの開度を
閉方向に制御する(ステップS27)。During the two-room heating operation of the room A and the room B (step S21), when the stop signal of the indoor unit 4b is received (step S22), the frequency of the electromagnetic pump 32 and the rotation speed of the burner motor 34 are gradually reduced. Is controlled so that the combustion amount of the refrigerant heater 28 is reduced (step S23).
And S24). Further, the elapsed time T1 from the time when the stop signal of the indoor unit 4b is received is counted, and when T1 reaches a predetermined time (for example, 60 seconds) (steps S25 and S2).
6) The opening degree of the electric expansion valve 22b corresponding to the indoor unit 4b is controlled in the closing direction (step S27).
【0055】さらに、停止信号受信時からの経過時間T
2が所定時間(例えば90秒)に達すると(ステップS
28及びS29)、室内機4bの室内ファンを停止させ
(ステップS30)、停止信号受信時からの経過時間T
3が所定時間(例えば210秒)に達すると(ステップ
S31及びS32)、圧縮機周波数を室内の総合要求負
荷に基づいて圧縮機周波数・燃焼量演算回路62により
算出した値までステップ状に低下させて冷媒循環量を減
少させることにより加熱量と冷媒循環量とのバランスを
とり、冷媒加熱器28の冷媒出口温度の異常を回避す
る。Furthermore, the elapsed time T from the reception of the stop signal
2 reaches a predetermined time (for example, 90 seconds) (step S
28 and S29), the indoor fan of the indoor unit 4b is stopped (step S30), and the elapsed time T from when the stop signal is received is T.
When 3 reaches a predetermined time (for example, 210 seconds) (steps S31 and S32), the compressor frequency is reduced stepwise to the value calculated by the compressor frequency / combustion amount calculation circuit 62 based on the total indoor load demand. By reducing the refrigerant circulation amount, the heating amount and the refrigerant circulation amount are balanced, and the abnormality of the refrigerant outlet temperature of the refrigerant heater 28 is avoided.
【0056】なお、室内ファン停止の遅延時間は燃焼器
の熱容量に依存し、燃焼器の熱容量が大きければ遅延時
間を長くする必要がある。The delay time for stopping the indoor fan depends on the heat capacity of the combustor, and if the heat capacity of the combustor is large, it is necessary to lengthen the delay time.
【0057】図12乃至図15は、本発明にかかる多室
形空気調和機において、運転台数が変化した場合の種々
のデータを示すグラフであり、図12及び図13は1室
運転から2室運転に切り替わった場合を、図14及び図
15は2室運転から1室運転に切り替わった場合を示し
ている。FIGS. 12 to 15 are graphs showing various data when the number of operating units changes in the multi-room air conditioner according to the present invention. FIGS. 12 and 13 show from one-room operation to two-room operation. 14 and 15 show the case where the operation is switched to the operation, and the case where the operation is switched from the two-room operation to the one-room operation.
【0058】さらに詳述すると、図12は、定格容量
3.2kwの室内機が作動中に定格容量2.2kwの別の
室内機が作動した場合を示しており、圧縮機周波数、燃
焼量の目標値(K値)等の諸元は次のように変化してい
る。
2.2kw:ON、3.2kw風量:Hi、圧縮機周波
数:36→61Hz
2.2kw弁開度:80→350、燃焼量(K値):
98→80
圧縮機周波数:61→54HzMore specifically, FIG. 12 shows a case where another indoor unit having a rated capacity of 2.2 kw operates while an indoor unit having a rated capacity of 3.2 kw is operating. Specifications such as the target value (K value) are changing as follows. 2.2kw: ON, 3.2kw air volume: Hi, compressor frequency: 36 → 61Hz 2.2kw valve opening: 80 → 350, combustion amount (K value):
98 → 80 Compressor frequency: 61 → 54Hz
【0059】図12に示されるように、1室運転から2
室運転に切り替わったことで、冷媒循環量に影響を与え
る圧縮機出口の高圧はからにかけて大きく変化(減
少)しているが、圧縮機周波数を61Hzまで増加させ
るとともに、多少遅延して新たに始動した室内機に対応
する電動膨張弁を開制御する一方、電磁ポンプの周波数
を徐々に増加して燃焼量を上昇させているので、冷媒循
環量と燃焼量とのバランスが大きく崩れることもなく、
圧縮機の吸入温度(冷媒加熱器の出口温度)及び吐出温
度は多少低下しているものの極端な低下は見られない。As shown in FIG. 12, from one room operation to 2
Due to switching to room operation, the high pressure at the compressor outlet, which affects the refrigerant circulation amount, changes (decreases) significantly from to, but the compressor frequency is increased to 61 Hz and a new delay is made to start anew. While controlling the opening of the electric expansion valve corresponding to the indoor unit, the frequency of the electromagnetic pump is gradually increased to increase the combustion amount, so that the balance between the refrigerant circulation amount and the combustion amount is not greatly disturbed.
Although the suction temperature of the compressor (the outlet temperature of the refrigerant heater) and the discharge temperature are slightly lowered, no extreme decrease is observed.
【0060】また、図13は、定格容量2.2kwの室
内機が作動中に定格容量3.2kwの別の室内機が作動
した場合を示しており、圧縮機周波数、燃焼量の目標値
(K値)等の諸元は次のように変化している。
3.2kw:ON、圧縮機周波数:24→61Hz
3.2kw弁開度:80→480
〜燃焼量(K値):40までステップ状に減少FIG. 13 shows a case where another indoor unit having a rated capacity of 3.2 kw operates while an indoor unit having a rated capacity of 2.2 kw is operating, and the target values of the compressor frequency and the combustion amount ( Specifications such as K value) are changing as follows. 3.2 kw: ON, compressor frequency: 24 → 61 Hz 3.2 kw valve opening: 80 → 480-combustion amount (K value): decrease in steps from 40
【0061】図13に示されるように、電磁ポンプの周
波数がステップ状に増加することにより燃焼量が大きく
変化しているが、電磁ポンプ周波数の増加の前に圧縮機
周波数を61Hzまで増加させた後、新たに始動した室
内機に対応する電動膨張弁を開制御しているので、高圧
は大きく変動せず、吸入温度及び吐出温度も極端には変
動していない。As shown in FIG. 13, the combustion amount greatly changes as the frequency of the electromagnetic pump increases stepwise, but the compressor frequency was increased to 61 Hz before the increase of the electromagnetic pump frequency. After that, since the electric expansion valve corresponding to the newly started indoor unit is controlled to open, the high pressure does not fluctuate significantly, and the suction temperature and the discharge temperature do not fluctuate extremely.
【0062】図14は、定格容量2.2kwと3.2kw
の2台の室内機が作動中に定格容量2.2kwの室内機
が停止した場合を示しており、圧縮機周波数、燃焼量の
目標値(K値)等の諸元は次のように変化している。
燃焼量(K値):80→98
2.2kw弁開度:350→80
2.2kw:OFF、3.2kw風量:Lo
圧縮機周波数:48→42HzFIG. 14 shows the rated capacities of 2.2 kw and 3.2 kw.
The figure shows the case where the indoor unit with the rated capacity of 2.2 kw stopped during the operation of the two indoor units, and the specifications of the compressor frequency and the target value (K value) of the combustion amount changed as follows. is doing. Combustion amount (K value): 80 → 98 2.2kw Valve opening: 350 → 80 2.2kw: OFF, 3.2kw Air volume: Lo Compressor frequency: 48 → 42Hz
【0063】図14からわかるように、高圧の変動は大
きいが、図11のタイミングチャートに基づいて各機器
を制御することにより、吸入温度及び吐出温度の急激な
変動が抑制されている。As can be seen from FIG. 14, the high-pressure fluctuation is large, but by controlling each device based on the timing chart of FIG. 11, rapid fluctuations of the suction temperature and the discharge temperature are suppressed.
【0064】図15は、定格容量2.2kwと3.2kw
の2台の室内機が作動中に定格容量3.2kwの室内機
が停止した場合を示しており、圧縮機周波数、燃焼量の
目標値(K値)等の諸元は次のように変化している。
燃焼量(K値):40→最大値
3.2kw弁開度:480→80
3.2kw:OFF
圧縮機周波数:58→52HzFIG. 15 shows the rated capacities of 2.2 kw and 3.2 kw.
The figure shows a case in which the indoor unit with a rated capacity of 3.2 kw stopped during operation of the two indoor units, and the specifications of the compressor frequency and the target value (K value) of the combustion amount changed as follows. is doing. Combustion amount (K value): 40 → maximum value 3.2kw Valve opening: 480 → 80 3.2kw: OFF Compressor frequency: 58 → 52Hz
【0065】この場合は電磁ポンプの周波数が減少した
ことにより燃焼量の変動が大きいが、図11のタイミン
グチャートに基づいた制御を行うことにより、高圧、吸
入温度及び吐出温度の急激な変動が抑制されている。In this case, the fluctuation of the combustion amount is large due to the decrease of the frequency of the electromagnetic pump. However, the control based on the timing chart of FIG. 11 suppresses the rapid fluctuation of the high pressure, the suction temperature and the discharge temperature. Has been done.
【0066】なお、上記実施形態は、1台の室外機に2
台の室内機を接続した場合を例にとり説明したが、本発
明の多室形空気調和機における室内機の台数は必ずしも
2台に限定されるものではなく、室内機が3台以上の場
合でも同様の考え方に基づいて略同じ制御方式によりシ
ステムを制御することができる。The above embodiment has two outdoor units.
Although the description has been given by taking the case of connecting two indoor units as an example, the number of indoor units in the multi-room air conditioner of the present invention is not necessarily limited to two, and even when the number of indoor units is three or more. The system can be controlled by substantially the same control method based on the same idea.
【0067】[0067]
【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。本
発明のうちで請求項1に記載の発明によれば、暖房運転
中における室内機運転台数の増加により室内からの総合
要求負荷が増加した場合、圧縮機周波数を徐々に増加し
て冷媒循環量を増加させ、所定時間経過後、運転信号を
受けた室内機に対応する電動膨張弁を開制御するととも
に冷媒加熱器の燃焼量を徐々に増加させるようにしたの
で、所定の冷媒循環量を確保することができるととも
に、加熱量<冷媒循環による吸熱量(冷却量)の関係を
保ちつつ燃焼量を増加させることで燃焼による加熱と冷
媒循環による吸熱との熱量バランスをとることができ、
冷媒加熱器の異常温度上昇を防止することができる。ま
た、冷媒加熱器の温度低下による耐久性低下、加熱器内
部の腐食、圧縮機への液バック現象の発生を回避するこ
とができる。Since the present invention is constructed as described above, it has the following effects. According to the first aspect of the present invention, when the total required load from the inside of the room increases due to an increase in the number of operating indoor units during the heating operation, the compressor frequency is gradually increased to increase the refrigerant circulation amount. After a lapse of a predetermined time, the electric expansion valve corresponding to the indoor unit that receives the operation signal is controlled to open and the combustion amount of the refrigerant heater is gradually increased, so that a predetermined refrigerant circulation amount is secured. It is possible to balance the heat quantity between the heating by combustion and the heat absorption by the refrigerant circulation by increasing the combustion quantity while maintaining the relationship of the heating quantity <the heat absorption quantity (cooling quantity) due to the refrigerant circulation,
An abnormal temperature rise of the refrigerant heater can be prevented. Further, it is possible to avoid deterioration of durability due to temperature decrease of the refrigerant heater, corrosion of the inside of the heater, and occurrence of liquid back phenomenon to the compressor.
【0068】さらに、運転信号を受けた室内機に対応す
る電動膨張弁を開制御することにより運転信号を受けた
室内機を冷媒が通過し、その影響で冷媒加熱器を流れる
冷媒循環量が瞬時に低下しても加熱量<吸熱量の関係を
維持し、冷媒加熱器の冷媒循環量を確保しながら多室へ
の適切な冷媒循環が可能となる。Further, by controlling the opening of the electric expansion valve corresponding to the indoor unit that receives the operation signal, the refrigerant passes through the indoor unit that receives the operation signal, and due to the influence, the amount of refrigerant circulation flowing through the refrigerant heater is instantaneous. Even if the temperature drops to 0, the relationship of the heating amount <the endothermic amount is maintained, and proper refrigerant circulation to multiple chambers is possible while ensuring the refrigerant circulation amount of the refrigerant heater.
【0069】また、室内ファンの作動に伴う高圧の低下
により冷媒循環量が低下し、加熱量が冷媒循環量よりも
大きくなり冷媒加熱器の異常温度上昇を惹起する虞れも
あるが、請求項2に記載の発明によれば、冷媒循環量の
増加と同時かあるいは所定時間遅延して運転信号を受け
た室内機の室内ファンを作動させるようにしたので、加
熱量<吸熱量の関係を確保することができる。Further, there is a possibility that the refrigerant circulation amount decreases due to the decrease in the high pressure due to the operation of the indoor fan, and the heating amount becomes larger than the refrigerant circulation amount, causing an abnormal temperature rise of the refrigerant heater. According to the invention described in 2, the indoor fan of the indoor unit that receives the operation signal is operated at the same time as the increase of the refrigerant circulation amount or after a predetermined time delay, so that the relationship of the heating amount <the heat absorption amount is secured. can do.
【0070】また、請求項3あるいは4に記載の発明に
よれば、圧縮機周波数の増加率より冷媒加熱器の燃焼量
の増加率を小さく設定したので、急激な加熱量上昇を防
止し、加熱量<冷媒循環による吸熱量(冷却量)の熱量
バランスを維持することができる。Further, according to the invention of claim 3 or 4, since the rate of increase of the combustion amount of the refrigerant heater is set smaller than the rate of increase of the compressor frequency, it is possible to prevent a rapid increase in the amount of heating and The heat quantity balance of the quantity <the amount of heat absorption (cooling quantity) due to the circulation of the refrigerant can be maintained.
【0071】さらに、請求項5あるいは6に記載の発明
によれば、電動膨張弁の開制御と同時かあるいは遅延し
て冷媒加熱器の燃焼量を増加させるようにしたので、運
転台数増加により冷媒循環量が急激に変動しても燃焼量
を変化させて燃焼による加熱と冷媒循環による吸熱との
熱量バランスを安定させることができ、冷媒加熱器の異
常温度上昇を防止することができる。Further, according to the invention of claim 5 or 6, since the combustion amount of the refrigerant heater is increased at the same time as or delaying the opening control of the electric expansion valve, the refrigerant is increased by increasing the number of operating units. Even if the circulation amount changes abruptly, the combustion amount can be changed to stabilize the heat amount balance between the heating by combustion and the heat absorption by the refrigerant circulation, and an abnormal temperature rise of the refrigerant heater can be prevented.
【0072】また、請求項7に記載の発明によれば、圧
縮機周波数を周波数・燃焼量演算手段により算出した値
と同じかあるいは大きい値に設定して冷媒循環量を増加
させるようにしたので、加熱量<冷媒循環による吸熱量
(冷却量)の関係を確保し、冷媒循環量が急激に変動し
ても冷媒加熱器の温度異常を惹起しないようにすること
ができる。Further, according to the invention described in claim 7, the compressor frequency is set to a value equal to or larger than the value calculated by the frequency / combustion amount calculating means to increase the refrigerant circulation amount. It is possible to secure the relationship of the heating amount <the amount of heat absorption (cooling amount) due to the circulation of the refrigerant so that the temperature abnormality of the refrigerant heater is not caused even when the amount of the refrigerant circulation suddenly changes.
【0073】また、請求項8に記載の発明によれば、冷
媒加熱器の燃焼量増加より所定時間経過後、圧縮機周波
数を周波数・燃焼量演算手段で算出した値まで減少させ
るようにしたので、加熱量<冷媒循環による吸熱量(冷
却量)の関係から冷媒加熱器の温度低下を防止すること
ができ、液バック現象を回避することができる。According to the eighth aspect of the invention, the compressor frequency is reduced to the value calculated by the frequency / combustion amount calculation means after a predetermined time has elapsed since the combustion amount of the refrigerant heater increased. From the relationship of heating amount <heat absorption amount (cooling amount) due to refrigerant circulation, it is possible to prevent the temperature of the refrigerant heater from lowering and avoid the liquid back phenomenon.
【図1】 本発明にかかる多室形空気調和機の冷凍サイ
クルの構成図である。FIG. 1 is a configuration diagram of a refrigeration cycle of a multi-room air conditioner according to the present invention.
【図2】 図1の多室形空気調和機における圧縮機周波
数、燃焼量及び電動膨張弁開度の制御ブロック図であ
る。FIG. 2 is a control block diagram of a compressor frequency, a combustion amount, and an electric expansion valve opening degree in the multi-room air conditioner of FIG.
【図3】 室内温度と設定温度との差温の温度ゾーン分
割図である。FIG. 3 is a temperature zone division diagram of a temperature difference between a room temperature and a set temperature.
【図4】 冷房・ドライ運転時の圧縮機周波数の決定に
使用される制御計算式の1例を示すグラフである。FIG. 4 is a graph showing an example of a control calculation formula used for determining the compressor frequency during cooling / dry operation.
【図5】 暖房運転時の圧縮機周波数の決定に使用され
る制御計算式の1例を示すグラフである。FIG. 5 is a graph showing an example of a control calculation formula used for determining a compressor frequency during heating operation.
【図6】 暖房運転時の燃焼量の目標値の決定に使用さ
れる制御計算式の1例を示すグラフである。FIG. 6 is a graph showing an example of a control calculation formula used for determining a target value of a combustion amount during heating operation.
【図7】 図6のグラフより決定された燃焼量の目標値
と灯油送油量との関係を示すグラフである。7 is a graph showing the relationship between the target value of the combustion amount determined from the graph of FIG. 6 and the kerosene oil feed amount.
【図8】 暖房運転時、1室運転より2室運転に運転台
数が変化した場合の制御を示すフローチャートである。FIG. 8 is a flowchart showing control when the number of operating units changes from one-chamber operation to two-chamber operation during heating operation.
【図9】 暖房運転時、1室運転より2室運転に運転台
数が変化した場合の制御を示すタイミングチャートであ
る。FIG. 9 is a timing chart showing control when the number of operating units changes from one-chamber operation to two-chamber operation during heating operation.
【図10】 暖房運転時、2室運転より1室運転に運転
台数が変化した場合の制御を示すフローチャートであ
る。FIG. 10 is a flowchart showing control when the number of operating units changes from two-chamber operation to one-chamber operation during heating operation.
【図11】 暖房運転時、2室運転より1室運転に運転
台数が変化した場合の制御を示すタイミングチャートで
ある。FIG. 11 is a timing chart showing control when the number of operating units changes from two-chamber operation to one-chamber operation during heating operation.
【図12】 1室運転から2室運転に切り替わり高圧変
化が大きい場合の種々のデータを示すグラフである。FIG. 12 is a graph showing various data when switching from one-chamber operation to two-chamber operation and the change in high pressure is large.
【図13】 1室運転から2室運転に切り替わり燃焼量
変化が大きい場合の種々のデータを示すグラフである。FIG. 13 is a graph showing various data when the combustion amount is changed from the one-chamber operation to the two-chamber operation.
【図14】 2室運転から1室運転に切り替わり高圧変
化が大きい場合の種々のデータを示すグラフである。FIG. 14 is a graph showing various data when the high pressure change is large after switching from the two-chamber operation to the one-chamber operation.
【図15】 2室運転から1室運転に切り替わり燃焼量
変化が大きい場合の種々のデータを示すグラフである。FIG. 15 is a graph showing various data when the two-chamber operation is switched to the one-chamber operation and the combustion amount change is large.
2 室外機 4a,4b 室内機 6 圧縮機 8 室外熱交換器 10 四方弁 12a,12b 室内熱交換器 14 液側主管 16a,16b 液側分岐管 18 ガス側主管 20a,20b ガス側分岐管 22a,22b 電動膨張弁 28 冷媒加熱器 32 電磁ポンプ 34 バーナモータ 36a,36b 室内温度センサ 38a,38b 運転設定回路 48 室内温度検出回路 50 差温演算回路 52 設定判別回路 54 ON−OFF判別回路 56 定格容量記憶回路 62 圧縮機周波数・燃焼量演算回路 64 膨張弁開度演算回路 66 負荷係数テーブル 70 弁初期開度テーブル 2 outdoor unit 4a, 4b indoor unit 6 compressor 8 outdoor heat exchanger 10 four-way valve 12a, 12b Indoor heat exchanger 14 Liquid side main pipe 16a, 16b Liquid side branch pipe 18 Gas side main pipe 20a, 20b Gas side branch pipe 22a, 22b Electric expansion valve 28 Refrigerant heater 32 Electromagnetic pump 34 burner motor 36a, 36b Indoor temperature sensor 38a, 38b operation setting circuit 48 Indoor temperature detection circuit 50 Differential temperature calculation circuit 52 setting discrimination circuit 54 ON-OFF discrimination circuit 56 Rated capacity memory circuit 62 Compressor frequency / combustion amount calculation circuit 64 Expansion valve opening calculation circuit 66 Load coefficient table 70 valve initial opening table
───────────────────────────────────────────────────── フロントページの続き (72)発明者 青 孝彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 増田 仁史 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平5−26530(JP,A) 特開 平9−145130(JP,A) 特開 平4−363555(JP,A) 特開 平4−80562(JP,A) 特開 平3−36449(JP,A) 特開 平4−359763(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 102 F25B 13/00 341 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takahiko Ao 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-5-26530 (JP, A) JP-A-9-145130 (JP, A) JP-A-4-363555 (JP, A) JP-A-4-80562 (JP, A) JP-A-3-36449 (JP, A) JP-A-4-359763 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F24F 11/02 102 F25B 13/00 341
Claims (8)
器と冷媒加熱器とを有する1台の室外機と、室内熱交換
器を有し並列に接続された複数台の室内機とを、上記室
外機に設けられ主に冷媒液が流れる液側主管から分岐し
た液側分岐管と上記室外機に設けられ主に冷媒ガスが流
れるガス側主管から分岐したガス側分岐管を介して接続
し、弁開度を電気的に制御可能な電動膨張弁を上記液側
分岐管に取り付けるとともに、各室内機が設置される室
内の温度を任意に設定する室内温度設定手段と、室内温
度を検出する室内温度検出手段と、上記室内温度設定手
段により設定された温度と上記室内温度検出手段が検出
した室内温度との差温を算出する差温演算手段と、上記
室内機の各々の定格容量を記憶する定格容量記憶手段
と、所定周期毎に上記圧縮機の周波数と上記冷媒加熱器
の目標燃焼量を算出する周波数・燃焼量演算手段とを有
する多室形空気調和機の室内機運転台数変化時の制御方
法であって、 暖房運転中における室内機運転台数の増加により室内か
らの総合要求負荷が増加した場合、圧縮機周波数を徐々
に増加して冷媒循環量を増加させ、所定時間経過後、運
転信号を受けた室内機に対応する上記電動膨張弁を開制
御するとともに上記冷媒加熱器の燃焼量を徐々に増加さ
せるようにしたことを特徴とする多室形空気調和機の室
内機運転台数変化時の制御方法。1. An outdoor unit having a variable capacity compressor, a four-way valve, an outdoor heat exchanger, and a refrigerant heater, and a plurality of indoor units having an indoor heat exchanger and connected in parallel. Through the gas-side branch pipe branched from the liquid-side main pipe provided in the outdoor unit and the liquid-side main pipe in which the refrigerant liquid mainly flows, and the gas-side main pipe mainly provided in the outdoor unit in which the refrigerant gas flows An electric expansion valve that can be electrically connected to control the valve opening is attached to the liquid side branch pipe, and an indoor temperature setting means for arbitrarily setting the temperature in the room where each indoor unit is installed, and an indoor temperature Indoor temperature detecting means for detecting, temperature difference calculating means for calculating the temperature difference between the temperature set by the indoor temperature setting means and the indoor temperature detected by the indoor temperature detecting means, and the rated capacity of each of the indoor units A rated capacity storage means for storing A control method at the time of changing the number of operating indoor units of a multi-room air conditioner having a frequency of a compressor and a frequency / combustion amount calculating means for calculating a target combustion amount of the refrigerant heater, the method comprising: When the total required load from the room increases due to the increase in the number of operating machines, the compressor frequency is gradually increased to increase the refrigerant circulation amount, and after a certain period of time, the above-mentioned electric motor corresponding to the indoor unit receiving the operation signal is received. A control method for changing the number of operating indoor units of a multi-room air conditioner, wherein the expansion valve is controlled to be opened and the combustion amount of the refrigerant heater is gradually increased.
時間遅延して運転信号を受けた室内機の室内ファンを作
動させるようにした請求項1に記載の多室形空気調和機
の室内機運転台数変化時の制御方法。2. The indoor unit for a multi-room air conditioner according to claim 1, wherein the indoor fan of the indoor unit that receives the operation signal is operated at the same time as the refrigerant circulation amount is increased or after a delay of a predetermined time. Control method when the number of operating vehicles changes.
加熱器の燃焼量の増加率を小さく設定した請求項1ある
いは2に記載の多室形空気調和機の室内機運転台数変化
時の制御方法。3. The control when changing the number of operating indoor units of the multi-room air conditioner according to claim 1 or 2, wherein the increasing rate of the combustion amount of the refrigerant heater is set smaller than the increasing rate of the compressor frequency. Method.
増加させ、その平均増加率を上記圧縮機周波数の増加率
より小さく設定した請求項1あるいは2に記載の多室形
空気調和機の室内機運転台数変化時の制御方法。4. The multi-room air conditioner according to claim 1, wherein the combustion amount of the refrigerant heater is increased stepwise, and the average increase rate is set smaller than the increase rate of the compressor frequency. Control method when the number of operating indoor units changes.
器の燃焼量増加を同時に行うようにした請求項1乃至4
のいずれか1項に記載の多室形空気調和機の室内機運転
台数変化時の制御方法。5. The opening control of the electric expansion valve and the increase of the combustion amount of the refrigerant heater are performed at the same time.
2. A control method for changing the number of operating indoor units of the multi-room air conditioner according to any one of 1.
記冷媒加熱器の燃焼量を増加させるようにした請求項1
乃至4のいずれか1項に記載の多室形空気調和機の室内
機運転台数変化時の制御方法。6. The combustion amount of the refrigerant heater is increased after a delay from the opening control of the electric expansion valve.
5. A control method when the number of operating indoor units of the multi-room air conditioner according to any one of 4 to 4 changes.
演算手段により算出した値と同じかあるいは大きい値に
設定して冷媒循環量を増加させるようにした請求項1乃
至6のいずれか1項に記載の多室形空気調和機の室内機
運転台数変化時の制御方法。7. The refrigerant circulation amount is increased by setting the compressor frequency to a value equal to or greater than a value calculated by the frequency / combustion amount calculating means. The control method for changing the number of operating indoor units of the multi-room air conditioner described in.
間経過後、圧縮機周波数を上記周波数・燃焼量演算手段
で算出した値まで減少させるようにした請求項1乃至6
のいずれか1項に記載の多室形空気調和機の室内機運転
台数変化時の制御方法。8. The compressor frequency is reduced to a value calculated by the frequency / combustion amount calculation means after a predetermined time has elapsed from the increase in the combustion amount of the refrigerant heater.
2. A control method for changing the number of operating indoor units of the multi-room air conditioner according to any one of 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26722897A JP3386700B2 (en) | 1997-09-30 | 1997-09-30 | Control method when the number of indoor units operating changes in multi-room air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26722897A JP3386700B2 (en) | 1997-09-30 | 1997-09-30 | Control method when the number of indoor units operating changes in multi-room air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11108423A JPH11108423A (en) | 1999-04-23 |
JP3386700B2 true JP3386700B2 (en) | 2003-03-17 |
Family
ID=17441928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26722897A Expired - Fee Related JP3386700B2 (en) | 1997-09-30 | 1997-09-30 | Control method when the number of indoor units operating changes in multi-room air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3386700B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101806839B1 (en) | 2011-07-26 | 2018-01-10 | 삼성전자주식회사 | Multi air conditioner and method for controlling the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002277097A (en) * | 2001-03-21 | 2002-09-25 | Daikin Ind Ltd | Refrigeration equipment |
JP6582800B2 (en) * | 2015-09-24 | 2019-10-02 | 株式会社デンソー | Heat exchange system |
KR102282285B1 (en) * | 2017-03-27 | 2021-07-28 | 한온시스템 주식회사 | Air conditioning system for automotive vehicles |
KR102332091B1 (en) * | 2017-09-14 | 2021-11-30 | 한온시스템 주식회사 | Air conditioning system for automotive vehicles |
-
1997
- 1997-09-30 JP JP26722897A patent/JP3386700B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101806839B1 (en) | 2011-07-26 | 2018-01-10 | 삼성전자주식회사 | Multi air conditioner and method for controlling the same |
Also Published As
Publication number | Publication date |
---|---|
JPH11108423A (en) | 1999-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11108485A (en) | Method for controlling air conditioner and outlet temperature of refrigerant heater | |
EP1524475B1 (en) | Apparatus and method for controlling the super-heating degree in a heat pump system | |
EP0692683B1 (en) | Air conditioning apparatus having an outdoor unit to which a plurality of indoor units are connected | |
US6701732B2 (en) | Air conditioner | |
US6102114A (en) | Multi-room air conditioning system | |
EP2587193B1 (en) | Air conditioner | |
JPH1068553A (en) | Air conditioner | |
CN212538209U (en) | Heat pump system, heat pump air conditioner comprising same and heat pump water heater | |
JP2000274859A (en) | Refrigeration equipment | |
JP3372199B2 (en) | Control method when the number of indoor units operating changes in multi-room air conditioner | |
JP3386700B2 (en) | Control method when the number of indoor units operating changes in multi-room air conditioner | |
JP5404229B2 (en) | Air conditioner | |
JPH11248282A (en) | Multi-room air conditioner | |
JP2955278B2 (en) | Multi-room air conditioning system | |
JP2888817B1 (en) | Refrigerant recovery control method in air conditioning system | |
JPH04340046A (en) | Air conditioner operation control device | |
JP3555575B2 (en) | Refrigeration equipment | |
JP2912604B1 (en) | Compressor control method in air conditioning system | |
JP3458293B2 (en) | Operation control device for multi-room air conditioner | |
JP2950805B2 (en) | Compressor control method in air conditioning system | |
JP2912605B1 (en) | Refrigerant circulation check method in air conditioning system | |
JP2003247742A (en) | Multi-chamber type air conditioner and control method thereof | |
JP2947254B1 (en) | Multi-room air conditioner | |
KR100395920B1 (en) | Control system for starting of air conditioner and control method thereof | |
JP2000028185A (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080110 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090110 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090110 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100110 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100110 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110110 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110110 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120110 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130110 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130110 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |