JP3383823B2 - Battery separator, method of manufacturing the same, and battery using the same - Google Patents
Battery separator, method of manufacturing the same, and battery using the sameInfo
- Publication number
- JP3383823B2 JP3383823B2 JP09204798A JP9204798A JP3383823B2 JP 3383823 B2 JP3383823 B2 JP 3383823B2 JP 09204798 A JP09204798 A JP 09204798A JP 9204798 A JP9204798 A JP 9204798A JP 3383823 B2 JP3383823 B2 JP 3383823B2
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- battery separator
- fiber
- separator according
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ニッケル−カドミ
ウム電池、ニッケル−亜鉛電池、ニッケル−水素電池等
のアルカリ蓄電池用に好適な電池セパレータ、その製造
方法、およびこれを用いた電池に関するものである。TECHNICAL FIELD The present invention relates to a battery separator suitable for an alkaline storage battery such as a nickel-cadmium battery, a nickel-zinc battery and a nickel-hydrogen battery, a method for producing the same, and a battery using the same. .
【0002】[0002]
【従来の技術】通常、電池セパレータとしては、ナイロ
ンやポリプロピレン繊維からなる乾式法で製造された不
織布(以下、乾式不織布という)、湿式抄紙法で製造さ
れた不織布(以下、湿式不織布という)などが使用され
ているが、ナイロン繊維からなる不織布は耐アルカリ性
に劣ることから、ポリプロピレン等のポリオレフィン系
繊維からなる不織布が好ましく使用されている。2. Description of the Related Art Generally, as a battery separator, a non-woven fabric made of nylon or polypropylene fiber by a dry process (hereinafter referred to as a dry non-woven fabric), a non-woven fabric manufactured by a wet paper making process (hereinafter referred to as a wet non-woven fabric), etc. Although used, non-woven fabrics made of nylon fibers are inferior in alkali resistance, and therefore non-woven fabrics made of polyolefin fibers such as polypropylene are preferably used.
【0003】しかしながら、ポリオレフィン系繊維から
なる不織布は疎水性であり、電池セパレータに用いたと
きの濡れ性に劣るため、ポリオレフィン系繊維からなる
不織布を親水化処理する様々な方法が提案されている。
親水化処理方法としては、スルホン化処理、フッ素化処
理、コロナ放電処理、あるいはビニルモノマーのグラフ
ト重合処理などが挙げられるが、特に二次電池の自己放
電性の改良において、スルホン化処理が有用であり、様
々な方法が提案されている。例えば、特開平7−278
963号公報には、易スルホン化繊維としてガラス転移
温度が5℃以上低下したシンジオタクチックスチレン系
重合成分を用い、濃硫酸溶液中に浸漬しスルホン化した
電池用セパレータが提案されている。また、特開平8−
273654号公報には、ポリオレフィン系極細繊維が
絡合し、部分的に融着部を有するとともに親水化処理さ
れた不織布強力に優れた電池用セパレータを開示してい
る。However, since a nonwoven fabric made of polyolefin fibers is hydrophobic and is inferior in wettability when used as a battery separator, various methods of hydrophilizing a nonwoven fabric made of polyolefin fibers have been proposed.
Examples of the hydrophilic treatment method include sulfonation treatment, fluorination treatment, corona discharge treatment, and vinyl monomer graft polymerization treatment. Particularly, in improving the self-discharge property of the secondary battery, the sulfonation treatment is useful. Yes, various methods have been proposed. For example, JP-A-7-278
Japanese Patent No. 963 proposes a battery separator in which a syndiotactic styrene-based polymerization component having a glass transition temperature lowered by 5 ° C. or more is used as an easily sulfonated fiber and is immersed in a concentrated sulfuric acid solution to be sulfonated. In addition, JP-A-8-
Japanese Patent No. 273654 discloses a battery separator excellent in strength, which is obtained by entanglement of polyolefin-based ultrafine fibers, partially having a fused portion, and hydrophilically treated to give a nonwoven fabric.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記の
電池用セパレータには以下の問題点がある。例えば、特
開平7−278963号公報においては、シンジオタク
チックポリスチレン系繊維は一般に紡糸性が悪く、細繊
度化することは困難であり、たとえ細繊度化が可能であ
ったとしても、生産性に劣り、コスト高となる。また、
特開平8−273654号公報においては、極細繊維自
身をスルホン化するだけでなく、一種類の極細繊維を融
着させるので、本来得られるべき緻密性が損なわれ、通
気性や保液性に劣る。However, the above battery separator has the following problems. For example, in Japanese Patent Application Laid-Open No. 7-278963, syndiotactic polystyrene fibers generally have poor spinnability, and it is difficult to make them finer. Even if they can be made finer, their productivity is improved. Inferior and costly. Also,
In Japanese Unexamined Patent Publication No. 8-273654, not only the ultrafine fibers themselves are sulfonated but also one kind of ultrafine fibers are fused, so that the denseness originally obtained is impaired and the breathability and liquid retention are poor. .
【0005】本発明は、前記従来の問題を解決するた
め、優れた強度と保液性を有し、電池寿命を低下させる
ことなく電池容量の向上に寄与しうる電池用セパレータ
を提供することを目的としてなされたものである。In order to solve the above-mentioned conventional problems, the present invention provides a battery separator having excellent strength and liquid retention and capable of contributing to improvement of battery capacity without shortening battery life. It was done for the purpose.
【0006】[0006]
【課題を解決するための手段】前記目的を達成するた
め、本発明の第1番目の電池用セパレータは、分子構造
がシンジオタクチックポリ(1,2−ブタジエン)構造
であり、その不飽和結合の少なくとも一部にイオン交換
基が導入されてなる樹脂成分を含む多孔性シートからな
ることを特徴とする。前記セパレータにおいては、樹脂
成分が合成繊維(A)であることが好ましい。また前記
セパレータにおいては、多孔性シートが、合成繊維
(A)と熱接着性繊維(B)を含む不織布であることが
好ましい。In order to achieve the above object, the first battery separator of the present invention has a syndiotactic poly (1,2-butadiene) structure as its molecular structure and its unsaturated bond. Is a porous sheet containing a resin component having an ion exchange group introduced into at least a part thereof. In the separator, the resin component is preferably synthetic fiber (A). Further, in the separator, the porous sheet is preferably a non-woven fabric containing the synthetic fiber (A) and the heat-adhesive fiber (B).
【0007】また前記セパレータにおいては、イオン交
換基の主成分官能基が、スルホン基であることが好まし
い。また前記セパレータにおいては、合成繊維(A)が
鞘芯型複合繊維であり、鞘成分がシンジオタクチックポ
リ(1,2−ブタジエン)樹脂であり、その不飽和結合
の少なくとも一部にイオン交換基が導入され、前記イオ
ン交換基がスルホン基であることが好ましい。Further, in the above separator, the main functional group of the ion exchange group is preferably a sulfone group. In the separator, the synthetic fiber (A) is a sheath-core type composite fiber, and the sheath component is syndiotactic porous fiber.
Poly (1,2-butadiene) resin, and its unsaturated bond
An ion exchange group is introduced into at least a part of
The exchange group is preferably a sulfone group.
【0008】また前記セパレータにおいては、合成繊維
(A)を構成するシンジオタクチックポリ(1,2−ブ
タジエン)樹脂成分の含有量が5重量%以上であること
が好ましい。また前記セパレータにおいては、熱接着性
繊維(B)が鞘芯型複合繊維であり、鞘部の融点が、芯
部の融点より10℃以上低い樹脂から構成されることが
好ましい。また前記セパレータにおいては、不織布を構
成する繊維が、合成繊維(A)と熱接着性繊維(B)と
からなり、前記合成繊維(A)の含有量が10〜90重
量%、前記熱接着性繊維(B)の含有量が90〜10重
量%の範囲であることが好ましい。In the separator, the content of the syndiotactic poly (1,2-butadiene ) resin component constituting the synthetic fiber (A) is preferably 5% by weight or more. Further, in the separator, it is preferable that the heat-adhesive fiber (B) is a sheath-core type composite fiber and the sheath has a melting point which is lower than the melting point of the core by 10 ° C. or more. Further, in the separator, the fibers constituting the non-woven fabric are composed of synthetic fibers (A) and thermal adhesive fibers (B), the content of the synthetic fibers (A) is 10 to 90% by weight, and the thermal adhesive property is The content of the fiber (B) is preferably in the range of 90 to 10% by weight.
【0009】また前記セパレータにおいては、不織布を
構成する繊維が、合成繊維(A)と熱接着性繊維(B)
と繊度0.5デニール以下の極細繊維(C)を含み、前
記極細繊維(C)が部分的に分割された複合繊維である
ことが好ましい。また前記セパレータにおいては、不織
布を構成する繊維の割合が、合成繊維(A)の含有量が
10〜50重量%、熱接着性繊維(B)の含有量が10
〜50重量%、部分的に分割された極細繊維(C)が0
〜80重量%であることが好ましい。In the separator, the fibers constituting the non-woven fabric are synthetic fibers (A) and heat-adhesive fibers (B).
And a fine fiber (C) having a fineness of 0.5 denier or less, and the fine fiber (C) is preferably a partially divided composite fiber. Further, in the separator, the ratio of the fibers constituting the nonwoven fabric is such that the content of the synthetic fiber (A) is 10 to 50% by weight and the content of the heat-adhesive fiber (B) is 10.
~ 50% by weight, 0 of partially divided ultrafine fibers (C)
It is preferably about 80% by weight.
【0010】また前記セパレータにおいては、極細繊維
(C)が−OH基を主成分とする親水基を含んでいるこ
とが好ましい。また前記セパレータにおいては、シンジ
オタクチックポリ(1,2−ブタジエン)構造の不飽和
結合の少なくとも一部にスルホン基が60℃以下の温度
で導入されてなることが好ましい。Further, in the separator, it is preferable that the ultrafine fibers (C) contain a hydrophilic group containing —OH group as a main component. Further, in the separator, it is preferable that a sulfone group is introduced into at least a part of the unsaturated bonds of the syndiotactic poly (1,2-butadiene) structure at a temperature of 60 ° C. or lower.
【0011】次に本発明の第2番目の電池用セパレータ
は、熱接着性繊維(B)を含有する不織布に、分子構造
がシンジオタクチックポリ(1,2−ブタジエン)構造
であり、その不飽和結合の少なくとも一部にイオン交換
基が導入されてなる樹脂成分を含む多孔性シートを貼り
合わせたことを特徴とする。前記本発明の第1〜2番目
の電池用セパレータにおいては、多孔性シートが前記の
不織布であることが好ましい。また前記本発明の第1〜
2番目の電池用セパレータにおいては、多孔性シートと
して多孔性フィルムを用いることもできる。この場合、
前記本発明のイオン交換基が導入されてなる樹脂成分
が、多孔性フィルムの少なくとも表面の一部を占めてい
ればよい。フィルムは前記樹脂単独成分でもよいし、他
のポリマのフィルム、例えばポリプロピレンまたはポリ
エチレンフィルム等の合成樹脂フィルムと貼り合わされ
た多孔性多層フィルムであっても良い。The second battery separator of the present invention is a nonwoven fabric containing the heat-adhesive fibers (B), and has a syndiotactic poly (1,2-butadiene) structure as its molecular structure. It is characterized in that a porous sheet containing a resin component in which an ion exchange group is introduced into at least a part of a saturated bond is attached. In the first to second battery separators of the present invention, the porous sheet is preferably the nonwoven fabric. The first to the first aspects of the present invention
In the second battery separator, a porous film can be used as the porous sheet. in this case,
The resin component having the ion exchange group of the present invention introduced therein may occupy at least a part of the surface of the porous film. The film may be a single component of the above resin, or may be a porous multi-layer film laminated with a film of another polymer, for example, a synthetic resin film such as a polypropylene or polyethylene film.
【0012】次に本発明の電池用セパレータの製造方法
は、分子構造がシンジオタクチックポリ(1,2-ブタジエ
ン)構造であり、その不飽和結合の少なくとも一部にイ
オン交換基導入可能性基を含む樹脂成分を繊維表面の少
なくとも一部を占めている合成繊維(A)を含有する繊
維ウェブの構成繊維間を交絡させて不織布を形成し、そ
の後60℃以下の温度で前記シンジオタクチックポリ
(1,2−ブタジエン)構造の不飽和結合の少なくとも
一部にスルホン基を導入することを特徴とする。前記方
法においては、繊維ウェブの構成繊維間を交絡処理が、
高圧水噴射処理であることが好ましい。次に本発明の電
池は、前記のいずれかに記載の電池用セパレータを組み
込んだことを特徴とする。Next, in the method for producing a battery separator of the present invention, the molecular structure is a syndiotactic poly (1,2-butadiene) structure, and an ion exchange group- introducable group is introduced into at least a part of the unsaturated bond. Of the fiber web containing the synthetic fiber (A) occupying at least a part of the fiber surface with the resin component containing entangled to form a non-woven fabric, and then the syndiotactic poly at a temperature of 60 ° C. or lower. It is characterized in that a sulfone group is introduced into at least a part of the unsaturated bond of the (1,2-butadiene) structure. In the method, the entanglement treatment between the constituent fibers of the fiber web,
High-pressure water injection treatment is preferred. Next, the battery of the present invention is characterized by incorporating any one of the battery separators described above.
【0013】[0013]
【発明の実施の形態】本発明の電池用セパレータは、分
子構造がシンジオタクチックポリ(1,2−ブタジエ
ン)構造の樹脂成分(以下、1,2-SBD という)からな
り、その不飽和結合の少なくとも一部にイオン交換基が
導入されてなる樹脂成分を含む多孔性シートからなる。BEST MODE FOR CARRYING OUT THE INVENTION The battery separator of the present invention comprises a resin component (hereinafter, referred to as 1,2-SBD) having a syndiotactic poly (1,2-butadiene) structure as a molecular structure, and its unsaturated bond Of a porous sheet containing a resin component having an ion exchange group introduced into at least a part thereof.
【0014】本発明に用いられる1,2-SBD としては、融
点(Tms )が75〜150℃、結晶化度が15〜50
%、1,2 結合が90%以上、メルトインデックス(M
I;JISK 7210 に準じ測定温度190℃、2160g加重)が
10〜150g/10分のものが好ましく用いられる。The 1,2-SBD used in the present invention has a melting point (Tms) of 75 to 150 ° C. and a crystallinity of 15 to 50.
%, 1,2 bond is 90% or more, melt index (M
According to JIS K 7210, a temperature of 190 ° C. and a weight of 2160 g) of 10 to 150 g / 10 minutes is preferably used.
【0015】1,2-SBD を含む多孔性シートは、1,2-SBD
が繊維表面の少なくとも一部を占める合成繊維(A)か
らなる不織布、多孔性フィルム、あるいはこれらを1層
以上含む積層体で形成される。The porous sheet containing 1,2-SBD is 1,2-SBD
Is a nonwoven fabric made of synthetic fiber (A) occupying at least a part of the fiber surface, a porous film, or a laminate containing one or more layers of these.
【0016】1,2-SBD の不飽和結合の少なくとも一部に
導入されるイオン交換基としては、スルホン基、カルボ
キシル基、アミノ基等が挙げられるが、なかでも、スル
ホン基は、自己放電を抑制する効果が得られるので好ま
しい。Examples of the ion exchange group introduced into at least a part of the unsaturated bond of 1,2-SBD include a sulfone group, a carboxyl group, an amino group and the like. Among them, the sulfone group causes self-discharge. This is preferable because an effect of suppressing the same can be obtained.
【0017】本発明の電池用セパレータに用いられる合
成繊維(A)の形態としては、1,2-SBD が繊維表面の少
なくとも一部を占めていれば特に限定されない。例え
ば、単一繊維、鞘芯型複合繊維、偏心鞘芯型複合繊維、
並列型複合繊維、分割型複合繊維、あるいは異形断面を
有する繊維等を任意に使用することができる。なかで
も、1,2-SBD を鞘成分とした鞘芯型複合繊維は、鞘成分
の1,2-SBD が繊維表面を被覆されるので、その効果を有
効に利用できるとともに、芯成分で繊維強力を保持でき
る点で好ましい。芯成分に用いられる熱可塑性樹脂とし
ては特に限定はされないが、その融点(Tmc )が1,2-SB
D の融点(Tms )より10℃以上高い樹脂が好ましい。
例えば、ナイロン6、ナイロン66等のポリアミド系樹
脂、ポリエチレン、ポリプロピレン、ポリメチルペンテ
ン等のポリオレフィン系樹脂等のホモポリマーあるいは
共重合体、三元共重合体から任意に一あるいは二以上選
択して使用することができる。中でも、ポリオレフィン
系樹脂が加工性において好ましい。The form of the synthetic fiber (A) used in the battery separator of the present invention is not particularly limited as long as 1,2-SBD occupies at least a part of the fiber surface. For example, single fiber, sheath-core type composite fiber, eccentric sheath-core type composite fiber,
A parallel type conjugate fiber, a division type conjugate fiber, a fiber having an irregular cross section, or the like can be arbitrarily used. Among them, the sheath-core type composite fiber having 1,2-SBD as the sheath component can effectively utilize the effect because the sheath component 1,2-SBD covers the fiber surface. It is preferable because it can retain its strength. The thermoplastic resin used as the core component is not particularly limited, but its melting point (Tmc) is 1,2-SB.
A resin which is higher than the melting point (Tms) of D by 10 ° C. or more is preferable.
For example, one or more selected from polyamide-based resins such as nylon 6 and nylon 66, homopolymers or copolymers such as polyolefin-based resins such as polyethylene, polypropylene and polymethylpentene, and ternary copolymers may be used. can do. Of these, polyolefin resins are preferable in terms of workability.
【0018】合成繊維(A)を構成する1,2-SBD の含有
量は5重量%以上であることが好ましい。1,2-SBD の含
有量が5重量%未満であると、繊維中のイオン交換基の
数が少なくなり、電池に組み込んだ時の容量保存率が劣
るからである。The content of 1,2-SBD constituting the synthetic fiber (A) is preferably 5% by weight or more. If the content of 1,2-SBD is less than 5% by weight, the number of ion-exchange groups in the fiber will be small and the capacity preservation rate when incorporated in a battery will be poor.
【0019】そして合成繊維(A)の不織布中における
含有率は、10〜90重量%含有することが、不織布強
力を向上させる点で好ましい。より好ましくは、10〜
50重量%である。含有率が5重量%未満であると、不
織布中のイオン交換基の数が少なくなり、その効果が得
られず、含有率が80重量%を超えると、1,2-SBD の樹
脂自体がイオン交換基導入後劣化するため、不織布強力
が低下するからである。The content of the synthetic fiber (A) in the nonwoven fabric is preferably 10 to 90% by weight from the viewpoint of improving the strength of the nonwoven fabric. More preferably, 10 to
It is 50% by weight. If the content is less than 5% by weight, the number of ion-exchange groups in the non-woven fabric is small and the effect cannot be obtained. If the content exceeds 80% by weight, the 1,2-SBD resin itself becomes ionic. This is because the strength of the non-woven fabric is lowered because it deteriorates after introducing the exchange group.
【0020】本発明において、不織布中にTmc より低い
温度で溶融する熱接着性繊維(B)が10〜90重量%
含有していることが好ましい。より好ましくは、10〜
50重量%である。熱接着性繊維(B)において、溶融
する温度がTmc 以上であると、合成繊維(A)とともに
熱処理を施したとき、合成繊維(A)の形態が保持でき
なくなるからである。また、熱接着性繊維(B)の含有
量が10重量%未満であると、十分な不織布強力が得ら
れず、90重量%を超えると、合成繊維(A)が少なく
なり、その効果が十分に発揮されないからである。熱接
着性繊維(B)としては、融点がTmc より低い温度であ
れば特に限定されず、例えば共重合ポリエステルなどの
ポリエステル系樹脂、ポリエチレン、エチレン−プロピ
レン共重合体、エチレン−酢酸ビニル共重合体、エチレ
ン−アクリル酸メチル共重合体などのポリオレフィン系
樹脂などが用いられるが、耐アルカリ性の点でポリオレ
フィン系樹脂が好ましい。In the present invention, the thermoadhesive fiber (B) which melts at a temperature lower than Tmc in the nonwoven fabric is 10 to 90% by weight.
It is preferably contained. More preferably, 10 to
It is 50% by weight. This is because if the melting temperature of the heat-adhesive fiber (B) is Tmc or higher, the shape of the synthetic fiber (A) cannot be retained when heat-treated with the synthetic fiber (A). Further, if the content of the heat-adhesive fiber (B) is less than 10% by weight, sufficient nonwoven fabric strength cannot be obtained, and if it exceeds 90% by weight, the synthetic fiber (A) becomes small and its effect is sufficient. This is because it is not demonstrated. The heat-adhesive fiber (B) is not particularly limited as long as it has a melting point lower than Tmc, and examples thereof include polyester resins such as copolyester, polyethylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer. Polyolefin resins such as ethylene-methyl acrylate copolymer are used, but polyolefin resins are preferable from the viewpoint of alkali resistance.
【0021】本発明に用いる熱接着性繊維(B)の形態
は特に限定はされず、単一繊維、鞘芯型複合繊維、偏心
鞘芯型複合繊維、並列型複合繊維、分割型複合繊維、あ
るいは異形断面を有する繊維等を任意に使用することが
できるが、不織布の強力を向上させる場合は、熱接着性
繊維(B)として鞘部の融点が、芯部の融点より10℃
以上低い樹脂から構成された鞘芯型複合繊維が好まし
い。鞘成分としては上記樹脂が好ましく、芯成分には、
例えばナイロン6、ナイロン66等のポリアミド系樹
脂、ポリエチレン、ポリプロピレン、ポリメチルペンテ
ン等のポリオレフィン系樹脂が用いられる。また熱接着
性繊維(B)の繊度は、0.5〜5デニールが好まし
い。0.5デニール未満であると、湿式抄紙時のスラリ
ー中における繊維の分散性が悪く、繊維同士がもつれた
りして工程性、品質面に劣り、5デニールを超えると空
隙の大きさが大きくなり過ぎ、電池組立時に短絡の原因
となり好ましくない。The form of the heat-adhesive fiber (B) used in the present invention is not particularly limited, and a single fiber, a sheath-core type composite fiber, an eccentric sheath-core type composite fiber, a parallel type composite fiber, a split type composite fiber, Alternatively, fibers having a modified cross section can be optionally used, but in the case of improving the strength of the non-woven fabric, the melting point of the sheath as the heat-adhesive fibers (B) is 10 ° C. higher than the melting point of the core.
The sheath-core type composite fiber composed of the low resin is preferable. The above resin is preferable as the sheath component, and the core component,
For example, polyamide resins such as nylon 6 and nylon 66 and polyolefin resins such as polyethylene, polypropylene and polymethylpentene are used. Further, the fineness of the heat-adhesive fiber (B) is preferably 0.5 to 5 denier. When it is less than 0.5 denier, the dispersibility of the fibers in the slurry during wet papermaking is poor, and the fibers are entangled with each other, resulting in poor processability and quality. When it exceeds 5 denier, the size of voids becomes large. Excessively, it causes a short circuit when assembling the battery, which is not preferable.
【0022】本発明の不織布中には、繊度0.5デニー
ル以下の極細繊維(C)を0〜80重量%含有してもよ
い。極細繊維(C)の繊度が0.5デニールを超える
と、空隙が大きくなり過ぎ、吸液性や保液性に劣るから
である。不織布中の含有率が、80重量%を超えると、
通気性が低下し、密閉型電池で求められているガス透過
性が悪く好ましくない。繊度0.5デニール以下の極細
繊維(C)はいずれの形状であってもよいが、好ましく
は2種類以上の樹脂成分からなる分割型複合繊維を各々
の成分に分割した2種類以上の極細繊維(C)である。
2種類以上の樹脂成分からなる分割型複合繊維とは、例
えば図1の(a)、(b)、(c)に示すようなもので
ある。図1(a)〜(c)において、1は第1成分、2
は第2成分を示す。The nonwoven fabric of the present invention may contain 0 to 80% by weight of ultrafine fibers (C) having a fineness of 0.5 denier or less. This is because when the fineness of the ultrafine fibers (C) exceeds 0.5 denier, the voids become too large and the liquid absorbency and liquid retention are poor. When the content rate in the nonwoven fabric exceeds 80% by weight,
The air permeability is lowered, and the gas permeability required for a sealed battery is poor, which is not preferable. The ultrafine fibers (C) having a fineness of 0.5 denier or less may have any shape, but preferably two or more types of ultrafine fibers obtained by dividing a splittable conjugate fiber composed of two or more resin components into each component. (C).
The splittable conjugate fiber composed of two or more kinds of resin components is as shown in, for example, (a), (b) and (c) of FIG. In FIGS. 1A to 1C, 1 is the first component and 2 is
Indicates the second component.
【0023】そして上記分割型複合繊維に用いられる熱
可塑性樹脂の組合せとしては、ポリオレフィン系樹脂/
ポリアミド系樹脂、ポリプロピレン/エチレンビニルア
ルコール共重合体、ポリプロピレン/ポリメチルペンテ
ン、ポリプロピレン/ポリエチレン、ポリメチルペンテ
ン/ポリエチレン、ポリメチルペンテン/エチレンビニ
ルアルコール共重合体等が挙げられ、三種類の樹脂を用
いる場合としては、上記樹脂をそれぞれ異なる成分で構
成すればよい。特にポリオレフィン系分割型複合繊維
は、耐アルカリ性の点で好ましく、なかでも、−OH基
を主成分とする親水基を含むエチレンビニルアルコール
共重合体を1成分としたポリオレフィン系分割型複合繊
維は、親水性が向上し、電池において優れたサイクル特
性が得られるので好ましい。得られた分割型複合繊維
は、後述する高圧水噴射処理等によって分割され、極細
繊維(C)を形成する。The combination of thermoplastic resins used in the splittable conjugate fiber is polyolefin resin /
Polyamide-based resin, polypropylene / ethylene vinyl alcohol copolymer, polypropylene / polymethylpentene, polypropylene / polyethylene, polymethylpentene / polyethylene, polymethylpentene / ethylene vinyl alcohol copolymer, etc. are used, and three types of resins are used. In some cases, the resins may be composed of different components. In particular, the polyolefin-based splittable conjugate fiber is preferable in terms of alkali resistance, and among them, the polyolefin-based splittable conjugate fiber having one component of an ethylene vinyl alcohol copolymer containing a hydrophilic group having a —OH group as a main component is This is preferable because the hydrophilicity is improved and excellent cycle characteristics are obtained in the battery. The splittable conjugate fiber thus obtained is split by a high-pressure water jetting treatment or the like, which will be described later, to form an ultrafine fiber (C).
【0024】さらに本発明の電池セパレータには、上記
含有量を満たしていれば、他の繊維を混合してもよく、
例えば、繊維間で形成される空隙を確保するため、繊度
5デニール以下の合成繊維(D)を40重量%以下で含
有してもよい。特に、繊度は分割型複合繊維が分割発現
することによって得られる極細繊維(C)の繊度よりも
大きく、熱接着性繊維(B)の繊度と同じまたは小さい
のがよく、0.5〜5デニールが好ましい。そして上記
繊維は熱接着性繊維(B)の溶融する温度では実質的に
溶融しないものから選ばれ、ポリプロピレン、ポリエス
テル、ナイロン等、汎用されている合成繊維を使用する
ことができるが、耐アルカリ性の点でポリオレフィン系
繊維が好ましい。上記繊維が40重量%を超えると、接
着面積が少なくなり過ぎるため、不織布強力が弱くなり
好ましくない。また上記繊維が5デニールを超えると、
不織布内の緻密な空隙が確保できず好ましくない。特
に、繊度が0.5〜2デニールのやや剛性で高強力のポ
リプロピレン繊維は、セパレータに耐アルカリ性を付与
し、かつ適度な空隙を確保する上において、最も好まし
く適用される。Furthermore, the battery separator of the present invention may be mixed with other fibers as long as the above content is satisfied,
For example, in order to secure voids formed between the fibers, the synthetic fiber (D) having a fineness of 5 denier or less may be contained at 40% by weight or less. In particular, the fineness is preferably larger than the fineness of the ultrafine fibers (C) obtained by the split expression of the splittable conjugate fibers, and is the same as or smaller than the fineness of the heat-adhesive fibers (B), 0.5 to 5 denier. Is preferred. The above-mentioned fibers are selected from those that do not substantially melt at the temperature at which the heat-adhesive fibers (B) melt, and commonly-used synthetic fibers such as polypropylene, polyester, nylon, etc. can be used. From the viewpoint, polyolefin fibers are preferable. When the amount of the above fibers exceeds 40% by weight, the adhesive area becomes too small and the strength of the nonwoven fabric becomes weak, which is not preferable. When the above fiber exceeds 5 denier,
It is not preferable because a dense void in the nonwoven fabric cannot be secured. In particular, a polypropylene fiber having a fineness of 0.5 to 2 denier, which is slightly rigid and has high strength, is most preferably applied in order to impart alkali resistance to the separator and to secure appropriate voids.
【0025】次に本発明の電池用セパレータの製造方法
について説明する。上述した各々の繊維を含有してなる
繊維ウェブの形態は、カード法、エアレイ法などにより
得た乾式ウェブ、湿式法により得た湿式ウェブ、あるい
はメルトブロー法やスパンボンド法などの直接法により
得た繊維ウェブを単独、あるいはこれらを少なくとも1
層含み2層以上に積層したものが用いられる。例えば、
1,2-SBD からなる繊維ウェブを第1層とし、1,2-SBD か
らなる繊維を含有しない繊維ウェブを第2層とし、積層
させてもよいし、少なくとも1層に1,2-SBD からなる繊
維を含有していれば乾式ウェブ/湿式ウェブの組合せで
もよい。中でも、湿式ウェブが繊維ウェブの緻密性、均
一性の点で好ましい。Next, a method for manufacturing the battery separator of the present invention will be described. The form of the fibrous web containing each of the above-mentioned fibers was obtained by a dry method obtained by a card method, an air lay method or the like, a wet web obtained by a wet method, or a direct method such as a melt blow method or a spun bond method. Fiber webs alone or at least one of these
A laminate including two or more layers is used. For example,
A fibrous web composed of 1,2-SBD may be used as the first layer, and a fibrous web containing no fibers composed of 1,2-SBD may be used as the second layer, which may be laminated, or at least one layer may be 1,2-SBD. A dry web / wet web combination may be used as long as it contains fibers consisting of Among them, the wet web is preferable in terms of the denseness and uniformity of the fibrous web.
【0026】次いで、繊維ウェブは合成繊維(A)自身
を溶融させてもよいし、熱接着性繊維(B)を溶融させ
てもよく、繊維ウェブの処理方法に応じて適宜行えばよ
い。繊維ウェブの処理方法としては、熱カレンダー処
理、熱風加工処理、高圧水噴射処理等いずれであっても
よく、例えば分割型複合繊維を含有させる場合は、繊維
ウェブに高圧水噴射処理を施し、分割型複合繊維を分割
させて極細繊維(C)を形成させるとともに繊維間を交
絡させるとよい。高圧水噴射処理は孔径0.05〜0.
5mmのオリフィスが0.5〜1.5mmの間隔で設けられ
たノズルから、水圧25〜150kg/cm2の柱状水流を不
織布の表裏にそれぞれ1回以上噴射するとよい。また繊
維ウェブを積層させる場合においても、例えば異なる繊
維ウェブ同士を湿式抄紙時、高圧水噴射処理時、あるい
は熱カレンダー処理や熱風加工処理時に貼り合わせても
よく、あるいは繊維ウェブを上記処理方法を用いて一旦
不織布化し、得られた不織布を2層以上積層して、公知
の貼合方法、例えば、熱ロールによる熱接着、バインダ
ー接着等により貼合することも可能である。また、1,2-
SBD を含有する、あるいは含有しない多孔性フィルムと
貼合してもよい。Next, the synthetic fiber (A) itself may be melted in the fibrous web, or the heat-adhesive fiber (B) may be melted, which may be appropriately performed depending on the treatment method of the fibrous web. The method for treating the fibrous web may be any of thermal calendaring, hot air processing, high-pressure water jetting, and the like. For example, when the splittable conjugate fiber is contained, the fiber web is subjected to high-pressure water jetting and split. It is advisable to divide the type composite fibers to form the ultrafine fibers (C) and to entangle the fibers. The high-pressure water jet process has a pore size of 0.05 to 0.
It is advisable to inject a columnar water stream having a water pressure of 25 to 150 kg / cm 2 onto the front and back surfaces of the nonwoven fabric one or more times from nozzles provided with 5 mm orifices at intervals of 0.5 to 1.5 mm. Also in the case of laminating the fibrous webs, for example, different fibrous webs may be bonded together during wet papermaking, during high-pressure water jetting, or during heat calendering or hot-air processing, or the fibrous webs may be treated using the above-mentioned treatment method. It is also possible to temporarily make a non-woven fabric, laminate two or more layers of the obtained non-woven fabric, and carry out the pasting by a publicly known pasting method, for example, thermal adhesion using a heat roll, binder adhesion or the like. Also 1,2-
It may be laminated with a porous film containing or not containing SBD.
【0027】一方、本発明の多孔性フィルムは、1,2-SB
D を溶融押し出しすることにより容易に得られ、1,2-SB
D の含有量が少なくとも5重量%含有すれば、他の熱可
塑性樹脂を混合してもよい。また、1,2-SBD が単独の多
孔性フィルムであってもよいし、他の1種以上フィルム
と2層以上に貼合されていてもよい。さらに、1,2-SBD
を含有する、あるいは含有しない不織布と貼合してもよ
い。On the other hand, the porous film of the present invention comprises 1,2-SB
Easily obtained by melt extruding D, 1,2-SB
Other thermoplastic resins may be mixed as long as the content of D is at least 5% by weight. In addition, 1,2-SBD may be a single porous film, or may be laminated with two or more layers of one or more other film. Furthermore, 1,2-SBD
It may be bonded to a non-woven fabric containing or not containing.
【0028】そして、1,2-SBD を含む多孔性シートにイ
オン交換基が導入される。イオン交換基は、公知の導入
法により容易に導入される。例えば、ビニルモノマーを
紫外線照射により導入する方法、あるいはスルホン基を
10℃に冷却した希薄発煙硫酸もしくは80〜98重量
%濃硫酸に浸漬して導入する方法などが挙げられるが、
特に1,2-SBD は、従来の導入法に比べ、比較的弱い条件
でイオン交換基の導入が可能であり、例えば、80〜9
8重量%濃硫酸中において、60℃以下の温度でスルホ
ン基を短時間で導入することができ、多孔性シートの強
力が低下することなく、高度にスルホン化することがで
きる。多孔性シートにスルホン基を導入した場合、スル
ホン化率は少なくとも3mol% が好ましい。スルホン化
率が3mol% 未満であると、電池の自己放電を十分に抑
制できないからである。またスルホン化を促進させるた
めに、紫外線または放射線により不織布表面を活性化さ
せた後、スルホン化処理を施してもよい。濃硫酸を用い
た場合は、後処理にて乾燥される。Then, ion-exchange groups are introduced into the porous sheet containing 1,2-SBD. The ion exchange group is easily introduced by a known introduction method. For example, a method of introducing a vinyl monomer by ultraviolet irradiation, or a method of immersing a sulfonic group in dilute fuming sulfuric acid cooled to 10 ° C. or 80 to 98% by weight concentrated sulfuric acid for introduction may be mentioned.
In particular, 1,2-SBD can introduce an ion-exchange group under relatively weak conditions as compared with the conventional introduction method.
In 8 wt% concentrated sulfuric acid, sulfone groups can be introduced in a short time at a temperature of 60 ° C. or less, and highly sulfonation can be achieved without lowering the strength of the porous sheet. When a sulfone group is introduced into the porous sheet, the sulfonation rate is preferably at least 3 mol%. This is because if the sulfonation rate is less than 3 mol%, the self-discharge of the battery cannot be sufficiently suppressed. In order to promote sulfonation, the nonwoven fabric surface may be activated by ultraviolet rays or radiation and then subjected to sulfonation treatment. When concentrated sulfuric acid is used, it is dried in the post-treatment.
【0029】しかるのち、熱カレンダー処理を施し、所
定の厚みに調整され、本発明の電池用セパレータが得ら
れる。このようにして得られた電池用セパレータにおい
て、多孔性シートの目付は、30〜100g/m2にするこ
とが好ましい。30g/m2未満ではシートの強力が低くな
るため、正極と負極の間で短絡が生じやすくなり、10
0g/m2を超えると通気性等が低下するからである。After that, a heat calendering treatment is performed to adjust the thickness to a predetermined value to obtain the battery separator of the present invention. In the battery separator thus obtained, the basis weight of the porous sheet is preferably 30 to 100 g / m 2 . If it is less than 30 g / m 2 , the strength of the sheet becomes low, so that a short circuit easily occurs between the positive electrode and the negative electrode.
This is because if it exceeds 0 g / m 2 , the air permeability and the like will decrease.
【0030】また、得られた電池用セパレータの少なく
とも一方向における引張強力は、5kgf/5cm 以上である
ことが好ましい。より好ましくは10kgf/5cm である。
引張強力が5kgf/5cm 未満であると、電池組み込み時の
卷回性に劣るからである。The tensile strength of the obtained battery separator in at least one direction is preferably 5 kgf / 5 cm or more. More preferably, it is 10 kgf / 5 cm.
This is because when the tensile strength is less than 5 kgf / 5 cm, the rolling property when the battery is assembled is poor.
【0031】[0031]
【実施例】以下、本発明の内容を実施例を挙げて説明す
る。なお、単に%と表示してあるのは重量%を意味す
る。また、スルホン化率、引張強力、保液率、および容
量保存率は以下の方法により測定した。
(1)スルホン化率:エチレン基のスルホン化率で表
し、次式によって算出した。スルホン化率(mol%)=
{重量増加率(%)/97}/{100/56}
(2)引張強力:JIS L 1096に準じ、幅5c
m、長さ15cmの試料片をつかみ間隔10cmで把持し、
定速伸長型引張試験機を用いて引張速度30cm/分で伸
長し、切断時の荷重値を引張強力とした。
(3)保液率:試験片の水分平衡状態の重量(W)を1
mgまで測定する。次に比重1.30のKOH水溶液中に
試験片を浸漬し、KOH水溶液を1時間吸収させたのち
液中から引き上げて、その後、上下2枚の濾紙にこの試
験片を挟み5kg加重をした。その試験片の重量(W
1 )を測定し、保液率(%)=((W1 −W)/W)×
100の式より保液率を算出した。
(4)円筒形密閉ニッケル水素電池:正極は、水酸化ニ
ッケル、酸化コバルト、カルボキシメチルセルロース
(CMC)、ポリテトラフルオロエチレン(PTF
E)、水によるペーストを発泡ニッケル基板に塗り込む
ことで作製した電極を使用し、負極は、水素吸蔵合金、
カルボニルニッケル、CMC、PTFE、水によるペー
ストを発泡ニッケル基板に塗り込むことで作製した電極
を使用し、その間に各セパレーターを挟み電槽缶に挿入
し、電解液を注液することで、円筒形密閉ニッケル水素
電池を作製した。
(5)自己放電性試験:初期活性条件を充電0.05C率で2
0時間、休止0.5時間、放電0.05C率で終止電圧0.8Vと
し、その後に、充電0.1C率で12時間、休止0.5時間、放
電0.1C率で終止電圧1.0Vとし、5サイクル繰り返した後
の放電容量に対し、同条件(0.1C率)で充電後、45℃
下で14日間放置したときの残存容量(0.1C率放電、終
止電圧1.0V)の比を自己放電後の容量維持率とした。充
放電は25℃で行った。
(6)サイクル寿命測定:初期活性を行った後、充電0.
1C率で、10時間、休止時間0.5時間、放電0.1C率(終
止電圧1.0V)で理論容量に対する利用率が90%以下に
なったときのサイクル数を求めた。充放電は25℃で行
った。
(7)不良化率:円筒形密閉ニッケル水素電池を100
個組み立てたときに、短絡が起きた割合を不良化率とし
た。
(8)メルトインデックス(MI):JIS K 7210 に準
じ、測定温度190℃、荷重2160gで10分当たりの流量
を測定する。EXAMPLES The contents of the present invention will be described below with reference to examples. In addition, what is simply displayed as% means% by weight. The sulfonation rate, tensile strength, liquid retention rate, and capacity retention rate were measured by the following methods. (1) Sulfonation rate: Expressed by the sulfonation rate of ethylene groups and calculated by the following formula. Sulfonation rate (mol%) =
{Weight increase rate (%) / 97} / {100/56} (2) Tensile strength: Width 5c according to JIS L 1096
Grasp a sample piece measuring 15 cm in length and 10 cm in length,
It was stretched at a tension rate of 30 cm / min using a constant-speed extension type tensile tester, and the load value at the time of cutting was taken as the tensile strength. (3) Liquid retention rate: Weight of test piece in water equilibrium state (W) is 1
Measure up to mg. Next, the test piece was immersed in a KOH aqueous solution having a specific gravity of 1.30, the KOH aqueous solution was absorbed for 1 hour, and then taken out from the solution. Then, the test piece was sandwiched between upper and lower two filter papers and weighted with 5 kg. Weight of the test piece (W
1 ) is measured and the liquid retention rate (%) = ((W 1 −W) / W) ×
The liquid retention rate was calculated from the formula of 100. (4) Cylindrical closed nickel-hydrogen battery: Positive electrode is nickel hydroxide, cobalt oxide, carboxymethyl cellulose (CMC), polytetrafluoroethylene (PTF)
E), using an electrode prepared by coating a foamed nickel substrate with a paste of water, the negative electrode is a hydrogen storage alloy,
Cylindrical shape is obtained by using electrodes made by coating paste of carbonyl nickel, CMC, PTFE, and water on a foamed nickel substrate, sandwiching each separator between them and inserting into a battery case, and injecting electrolyte solution. A sealed nickel-hydrogen battery was produced. (5) Self-discharge test: Initial activation condition is 2 at a charging rate of 0.05C
0 hours, pause 0.5 hours, discharge 0.05C rate to final voltage 0.8V, then charge 0.1C rate for 12 hours, pause 0.5 hours, discharge 0.1C rate to final voltage 1.0V, after repeating 5 cycles After charging under the same conditions (0.1C rate) to the discharge capacity, 45 ℃
The ratio of the remaining capacity (0.1 C rate discharge, final voltage 1.0 V) when left standing for 14 days was defined as the capacity retention rate after self-discharge. Charging / discharging was performed at 25 degreeC. (6) Cycle life measurement: After initial activation, charging is 0.
The number of cycles was calculated when the utilization ratio to the theoretical capacity was 90% or less at a 1C rate for 10 hours, a rest time of 0.5 hours, and a discharge 0.1C rate (final voltage 1.0V). Charging / discharging was performed at 25 degreeC. (7) Defect rate: 100 for a cylindrical sealed nickel-hydrogen battery
The rate at which a short circuit occurred when assembled individually was defined as the failure rate. (8) Melt index (MI): According to JIS K 7210, the flow rate per 10 minutes is measured at a measurement temperature of 190 ° C. and a load of 2160 g.
【0032】[0032]
【実施例1〜4,比較例1〜2】[繊維の準備]本発明
の実施にあたり、以下の繊維を準備した。
(1)合成繊維(A):融点90℃、MI45g/10分の
1,2-SBD を鞘成分とし、融点163℃のポリプロピレン
を芯成分とした繊度2デニール、繊維長10mmの鞘芯型
複合繊維。
(2)熱接着性繊維(B):融点130℃のポリエチレ
ンを鞘成分とし、融点163℃のポリプロピレンを芯成
分とした繊度2デニール、繊維長10mmの鞘芯型熱接着
性複合繊維。
(3)分割型複合繊維(C):融点163℃のポリプロ
ピレンを第1成分とし、融点240℃のポリメチルペン
テンを第2成分とした図1(a)に示す断面形状を有す
る繊度2デニール、繊維長10mmの分割型複合繊維。
(4)合成繊維(D):融点163℃、繊度1デニー
ル、繊維長10mmのポリプロピレン繊維。
[不織布の形成](実施例1〜3、比較例1〜2)
上記繊維をそれぞれ表1の割合で混合し、水中の0.5
%の濃度になるように水スラリーを調製し、湿式抄紙し
て目付50g/m2の湿式不織布を作製した。次に、湿式不
織布の表裏面に水圧100kg/cm2の高圧柱状水流を噴射
することにより、上記分割型複合繊維(C)を分割させ
て繊度0.25〜0.3デニールの極細繊維を形成させ
るとともに繊維間を交絡させ、135℃で乾燥と同時に
熱接着させた。
[不織布の形成](実施例4)
上記繊維(B)(C)(D)をそれぞれ表1の割合で混
合し、0.5%の濃度になるようにスラリーを調製し、
湿式抄紙して目付30g/m2の湿式不織布を作製した。次
に、湿式不織布の表裏面に水圧100kg/cm2の高圧柱状
水流を噴射することにより、上記分割型複合繊維を分割
させて繊度0.25〜0.3デニールの極細繊維を形成
させるとともに繊維間を交絡させ、135℃で乾燥と同
時に熱接着させ不織布(1)を作製した。それとは別に
繊維(A)を0.5%の濃度になるようにスラリーを調
製し、湿式抄紙して目付20g/m2の湿式不織布(2)を
作製した。上記作製した不織布(1)不織布(2)を1
00℃に加熱した1対の熱ロールで接着させた。
[スルホン化処理]得られた不織布に、常温(約20
℃)、濃度93重量%の濃硫酸溶液中に表1に示す時間
処理し、スルホン化した。そして、不織布を75℃で熱
カレンダー処理して電池用セパレータを得た。実施例1
〜4,比較例1〜2の条件と電池用セパレータの物性を
表1に示す。Examples 1 to 4 and Comparative Examples 1 and 2 [Preparation of fibers] The following fibers were prepared for carrying out the present invention. (1) Synthetic fiber (A): melting point 90 ° C., MI 45 g / 10 minutes
A sheath-core type composite fiber having a fineness of 2 denier and a fiber length of 10 mm, which comprises 1,2-SBD as a sheath component and polypropylene having a melting point of 163 ° C. as a core component. (2) Thermoadhesive fiber (B): A sheath-core type thermoadhesive conjugate fiber having a fineness of 2 denier and a fiber length of 10 mm, which has polyethylene having a melting point of 130 ° C. as a sheath component and polypropylene having a melting point of 163 ° C. as a core component. (3) Splittable conjugate fiber (C): polypropylene having a melting point of 163 ° C. as a first component and polymethylpentene having a melting point of 240 ° C. as a second component having a fineness of 2 denier having a cross-sectional shape shown in FIG. 1 (a). Split type composite fiber with a fiber length of 10 mm. (4) Synthetic fiber (D): polypropylene fiber having a melting point of 163 ° C., a fineness of 1 denier, and a fiber length of 10 mm. [Formation of Nonwoven Fabric] (Examples 1 to 3 and Comparative Examples 1 and 2) The above fibers were mixed in the proportions shown in Table 1 to obtain 0.5 in water.
A water slurry was prepared so as to have a concentration of 100% and wet-processed to prepare a wet non-woven fabric having a basis weight of 50 g / m 2 . Next, by jetting a high-pressure columnar water stream having a water pressure of 100 kg / cm 2 onto the front and back surfaces of the wet-laid nonwoven fabric, the splittable conjugate fiber (C) is split to form ultrafine fibers having a fineness of 0.25 to 0.3 denier. At the same time, the fibers were entangled and dried at 135 ° C. and heat-bonded at the same time. [Formation of Nonwoven Fabric] (Example 4) The above fibers (B), (C) and (D) were mixed in the proportions shown in Table 1 to prepare a slurry having a concentration of 0.5%.
Wet papermaking was carried out to prepare a wet non-woven fabric having a basis weight of 30 g / m 2 . Next, by jetting a high-pressure columnar water stream having a water pressure of 100 kg / cm 2 to the front and back surfaces of the wet-laid nonwoven fabric, the splittable conjugate fiber is split to form ultrafine fibers having a fineness of 0.25 to 0.3 denier and the fibers. The non-woven fabric (1) was produced by intertwining the spaces and drying and thermally adhering at 135 ° C. Separately, a slurry was prepared so that the fiber (A) had a concentration of 0.5% and was wet paper-made to prepare a wet non-woven fabric (2) having a basis weight of 20 g / m 2 . The non-woven fabric (1) prepared above and the non-woven fabric (2)
Bonding was performed with a pair of hot rolls heated to 00 ° C. [Sulfonation treatment] The obtained non-woven fabric is kept at room temperature (about 20
), And treated with a concentrated sulfuric acid solution having a concentration of 93% by weight for the time shown in Table 1 to sulfonate. Then, the non-woven fabric was heat-calendered at 75 ° C. to obtain a battery separator. Example 1
~ 4, the conditions of Comparative Examples 1 and 2 and the physical properties of the battery separator are shown in Table 1.
【0033】[0033]
【表1】 [Table 1]
【0034】表1に示した通り、実施例1〜4は合成繊
維(A)を含有することにより、比較的弱いスルホン化
条件であっても高度にスルホン化し、電池に組み込んだ
時の容量保存率も高く、引張強力も低下することはなか
った。比較例1では合成繊維(A)を含有していないた
め、スルホン化処理時間が不十分でスルホン化できず、
比較例2では、スルホン化処理時間を長くしスルホン化
率を向上させたが、引張強力が著しく低下した。As shown in Table 1, Examples 1 to 4 contain the synthetic fiber (A), so that they are highly sulfonated even under relatively weak sulfonation conditions, and the capacity preservation when incorporated in a battery is maintained. The rate was high and the tensile strength did not decrease. In Comparative Example 1, since the synthetic fiber (A) was not contained, the sulfonation treatment time was insufficient and the sulfonation could not be performed.
In Comparative Example 2, the sulfonation treatment time was lengthened to improve the sulfonation rate, but the tensile strength was significantly reduced.
【0035】[0035]
【発明の効果】本発明の電池用セパレータは、比較的弱
いスルホン化条件においても高度にスルホン化し、優れ
た容量保存率を得ることが出来る。又、他の繊維物性の
劣化を低減させることができるので、優れた引張強力を
得ることができる。また他の繊維として、熱接着性繊維
を用いることにより不織布の引張強力が向上し、繊度
0.5デニール以下の極細繊維を用いることにより保液
率が向上する。The battery separator of the present invention can be highly sulfonated even under relatively weak sulfonation conditions, and an excellent capacity storage rate can be obtained. Further, since deterioration of other fiber properties can be reduced, excellent tensile strength can be obtained. In addition, the tensile strength of the non-woven fabric is improved by using a heat-adhesive fiber as another fiber, and the liquid retention rate is improved by using an ultrafine fiber having a fineness of 0.5 denier or less.
【0036】本発明の電池用セパレータの製造方法は、
分子構造がシンジオタクチックポリ(1,2-ブタジエン)構
造であり、その不飽和結合の少なくとも一部にイオン交
換基が導入されてなる樹脂成分を繊維表面の少なくとも
一部を占めている合成繊維(A)を含有する繊維ウェブ
に、高圧水流処理を施して繊維間を交絡させ、しかるの
ち不織布に比較的弱い条件でスルホン化処理できるの
で、容易に高強力で低目付のセパレータが得られるだけ
でなく、製造工程の安全性においても優れている。本発
明の電池は上記セパレータを使用しているため、自己放
電が少ない電池を得ることができる。The method for producing the battery separator of the present invention is as follows:
Synthetic fiber whose molecular structure is syndiotactic poly (1,2-butadiene) structure and whose resin component in which an ion exchange group is introduced into at least a part of its unsaturated bond occupies at least a part of the fiber surface Since the fiber web containing (A) is subjected to high-pressure water flow treatment to entangle the fibers, and then the non-woven fabric can be subjected to sulfonation under relatively weak conditions, a separator having high strength and low basis weight can be easily obtained. Not only that, but also in the safety of the manufacturing process. Since the battery of the present invention uses the above separator, a battery with less self-discharge can be obtained.
【図1】(a)本発明に適用できる分割型複合繊維の一
例の断面拡大図である。
(b)本発明に適用できる分割型複合繊維の一例の断面
拡大図である。
(c)本発明に適用できる分割型複合繊維の一例の断面
拡大図である。FIG. 1 (a) is an enlarged sectional view of an example of a splittable conjugate fiber applicable to the present invention. (B) It is an enlarged cross-sectional view of an example of the splittable conjugate fiber applicable to the present invention. (C) It is an enlarged cross-sectional view of an example of the splittable conjugate fiber applicable to the present invention.
1 第1成分 2 第2成分 1st component 2 Second component
───────────────────────────────────────────────────── フロントページの続き (72)発明者 木田 達宣 兵庫県加古郡播磨町古宮877番地 ダイ ワボウポリテック株式会社播磨研究所内 (72)発明者 山本 博之 兵庫県加古郡播磨町古宮877番地 ダイ ワボウポリテック株式会社播磨研究所内 (72)発明者 堀 修二 兵庫県加古郡播磨町古宮877番地 ダイ ワボウポリテック株式会社播磨研究所内 (72)発明者 境 哲男 大阪府池田市緑丘1丁目8番31号 工業 技術院大阪工業技術研究所内 (56)参考文献 特開 平4−187248(JP,A) 特開 平4−198330(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 2/16 H01M 10/24 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsunobu Kida 877 Komiya, Harima-cho, Kako-gun, Hyogo Dai Daiwabo Polytech Co., Ltd. Harima Research Institute (72) Hiroyuki Yamamoto Dai-877, Komiya, Kama-gun, Kako-gun Dai Wabowo Polytech Co., Ltd. Harima Research Institute (72) Inventor Shuji Hori 877 Komiya, Harima-cho, Kako-gun Hyogo Dai Daiwabo Polytech Co., Ltd. Harima Research Institute (72) Inventor Tetsuo Sakai 1-831 Midorigaoka, Ikeda-shi, Osaka Issue: Osaka Institute of Industrial Technology, Institute of Industrial Technology (56) Reference JP-A-4-187248 (JP, A) JP-A-4-198330 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB) Name) H01M 2/16 H01M 10/24
Claims (18)
(1,2−ブタジエン)構造であり、その不飽和結合の
少なくとも一部にイオン交換基が導入されてなる樹脂成
分を含む多孔性シートからなる電池用セパレータ。1. A battery comprising a porous sheet containing a resin component having a molecular structure of syndiotactic poly (1,2-butadiene) structure and an ion exchange group introduced into at least a part of its unsaturated bond. Separator.
1に記載の電池用セパレータ。2. The battery separator according to claim 1, wherein the resin component is synthetic fiber (A).
着性繊維(B)を含む不織布である請求項1に記載の電
池用セパレータ。3. The battery separator according to claim 1, wherein the porous sheet is a non-woven fabric containing synthetic fibers (A) and heat-adhesive fibers (B).
ン基である請求項1に記載の電池用セパレータ。4. The battery separator according to claim 1, wherein the main functional group of the ion exchange group is a sulfone group.
り、鞘成分がシンジオタクチックポリ(1,2−ブタジ
エン)樹脂であり、その不飽和結合の少なくとも一部に
イオン交換基が導入され、前記イオン交換基がスルホン
基である請求項2または3に記載の電池用セパレータ。5. The synthetic fiber (A) is a sheath-core type composite fiber, and the sheath component is syndiotactic poly (1,2-butadiene).
En) resin, with at least part of its unsaturated bonds
Introduces ion-exchange groups, the battery separator according to claim 2 or 3 wherein the ion exchange group is a sulfonic group.
チックポリ(1,2−ブタジエン)樹脂成分の含有量が
5重量%以上である請求項2,3または5に記載の電池
用セパレータ。6. The battery separator according to claim 2, wherein the content of the syndiotactic poly (1,2-butadiene ) resin component constituting the synthetic fiber (A) is 5% by weight or more.
あり、鞘部の融点が、芯部の融点より10℃以上低い樹
脂から構成される請求項3に記載の電池用セパレータ。7. The battery separator according to claim 3, wherein the heat-adhesive fiber (B) is a sheath-core type composite fiber, and the sheath has a melting point of 10 ° C. or more lower than the melting point of the core. .
(A)と熱接着性繊維(B)とからなり、前記合成繊維
(A)の含有量が10〜90重量%、前記熱接着性繊維
(B)の含有量が90〜10重量%の範囲である請求項
3に記載の電池用セパレータ。8. The fibers constituting the non-woven fabric are composed of synthetic fibers (A) and thermal adhesive fibers (B), and the content of the synthetic fibers (A) is 10 to 90% by weight, and the thermal adhesive fibers are The battery separator according to claim 3, wherein the content of (B) is in the range of 90 to 10% by weight.
(A)と熱接着性繊維(B)と繊度0.5デニール以下
の極細繊維(C)を含み、前記極細繊維(C)が部分的
に分割された複合繊維である請求項3に記載の電池用セ
パレータ。9. The fibers constituting the non-woven fabric include synthetic fibers (A), heat-bonding fibers (B), and ultrafine fibers (C) having a fineness of 0.5 denier or less, and the ultrafine fibers (C) are partially contained. The battery separator according to claim 3, which is a composite fiber divided into.
繊維(A)の含有量が10〜50重量%、熱接着性繊維
(B)の含有量が10〜50重量%、部分的に分割され
た極細繊維(C)が0〜80重量%である請求項3また
は9に記載の電池用セパレータ。10. The proportion of fibers constituting the non-woven fabric is such that the content of the synthetic fibers (A) is 10 to 50% by weight, the content of the heat-adhesive fibers (B) is 10 to 50% by weight, and the fibers are partially divided. The battery separator according to claim 3 or 9, wherein the ultrafine fibers (C) thus obtained are 0 to 80% by weight.
する親水基を含んでいる請求項10に記載の電池用セパ
レータ。11. The battery separator according to claim 10, wherein the ultrafine fibers (C) contain a hydrophilic group containing —OH groups as a main component.
タジエン)構造の不飽和結合の少なくとも一部にスルホ
ン基が60℃以下の温度で導入されてなる請求項1に記
載の電池用セパレータ。12. The battery separator according to claim 1, wherein a sulfone group is introduced into at least a part of the unsaturated bonds of the syndiotactic poly (1,2-butadiene) structure at a temperature of 60 ° C. or lower.
に、分子構造がシンジオタクチックポリ(1,2−ブタ
ジエン)構造であり、その不飽和結合の少なくとも一部
にイオン交換基が導入されてなる樹脂成分を含む多孔性
シートを貼り合わせた電池用セパレータ。13. A nonwoven fabric containing a heat-adhesive fiber (B) has a syndiotactic poly (1,2-butadiene) structure as a molecular structure, and an ion exchange group is introduced into at least a part of its unsaturated bond. A separator for a battery, in which a porous sheet containing the resin component thus obtained is stuck.
は10に記載の不織布である請求項12に記載の電池用
セパレータ。14. The battery separator according to claim 12, wherein the porous sheet is the nonwoven fabric according to claim 3, 8, 9 or 10.
1または13に記載の電池用セパレータ。15. The battery separator according to claim 1, wherein the porous sheet is a film.
(1,2-ブタジエン)構造であり、その不飽和結合の少なく
とも一部にイオン交換基導入可能性基を含む樹脂成分を
繊維表面の少なくとも一部を占めている合成繊維(A)
を含有する繊維ウェブの構成繊維間を交絡させて不織布
を形成し、その後60℃以下の温度で前記シンジオタク
チックポリ(1,2−ブタジエン)構造の不飽和結合の
少なくとも一部にスルホン基を導入することを特徴とす
る電池用セパレータの製造方法。16. A syndiotactic poly whose molecular structure is syndiotactic.
Synthetic fiber (A) having a (1,2-butadiene) structure and occupying at least a part of the fiber surface with a resin component containing an ion-exchange group- introducable group in at least a part of its unsaturated bond
A non-woven fabric is formed by intertwining the constituent fibers of a fibrous web containing a sulfonic group to at least a part of the unsaturated bonds of the syndiotactic poly (1,2-butadiene) structure at a temperature of 60 ° C. or lower. A method for manufacturing a battery separator, which comprises introducing the battery separator.
が、高圧水噴射処理である請求項16に記載の電池用セ
パレータの製造方法。17. The method for producing a battery separator according to claim 16, wherein the entanglement treatment between the constituent fibers of the fibrous web is a high-pressure water jet treatment.
池用セパレータを組み込んだ電池。18. A battery incorporating the battery separator according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09204798A JP3383823B2 (en) | 1998-04-03 | 1998-04-03 | Battery separator, method of manufacturing the same, and battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09204798A JP3383823B2 (en) | 1998-04-03 | 1998-04-03 | Battery separator, method of manufacturing the same, and battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11297295A JPH11297295A (en) | 1999-10-29 |
JP3383823B2 true JP3383823B2 (en) | 2003-03-10 |
Family
ID=14043615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09204798A Expired - Lifetime JP3383823B2 (en) | 1998-04-03 | 1998-04-03 | Battery separator, method of manufacturing the same, and battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3383823B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602004026035D1 (en) * | 2003-01-23 | 2010-04-29 | Daiwa Spinning Co Ltd | METHOD FOR PRODUCING A SEPARATOR FOR AN ALKALI SECONDARY BATTERY |
US20120102725A1 (en) * | 2010-10-28 | 2012-05-03 | Gm Global Technology Operations, Inc. | Battery Separator |
CN109898322A (en) * | 2019-03-15 | 2019-06-18 | 天津工业大学 | A kind of sulfonation non-woven cloth and preparation method |
-
1998
- 1998-04-03 JP JP09204798A patent/JP3383823B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11297295A (en) | 1999-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101413349B1 (en) | Batteries including improved fine fiber separators | |
US7923143B2 (en) | Battery separator and battery comprising same | |
KR101714811B1 (en) | Separator for non-aqueous batteries, non-aqueous battery using same, and production method for separator for non-aqueous batteries | |
JP4699899B2 (en) | Separator material for alkaline secondary battery, method for producing the same, and separator for alkaline secondary battery | |
KR970004134B1 (en) | High-strength nylon battery separator material and related method of manufacture | |
KR100415797B1 (en) | Alkaline battery separator and process for producing same | |
CN113725556B (en) | Nonwoven fabric and battery separator | |
JP3678081B2 (en) | Battery separator and battery using the same | |
JP3383823B2 (en) | Battery separator, method of manufacturing the same, and battery using the same | |
JPH11126595A (en) | Alkaline battery separator and its manufacture | |
JP3403647B2 (en) | Battery separator, method of manufacturing the same, and battery | |
JP3510156B2 (en) | Battery separator and battery | |
JP4410394B2 (en) | Battery separator | |
JP2000215871A (en) | Battery separator and manufacturing method thereof | |
JP3471255B2 (en) | Nonwoven fabric for battery separator and battery using the same | |
JP4291794B2 (en) | Battery separator and battery using the same | |
KR100533124B1 (en) | Battery separator and method for manufacturing the same, and battery | |
JP5128035B2 (en) | Battery separator and battery using the same | |
JPH1131495A (en) | Alkaline battery separator | |
JP4061012B2 (en) | Battery separator and battery using the same | |
JPH09223492A (en) | Battery separator and manufacture thereof | |
JP3758739B2 (en) | Alkaline battery separator and method for producing the same | |
JP2022090831A (en) | Separator for electrochemical elements | |
JP4047412B2 (en) | Alkaline battery separator | |
WO2022014543A1 (en) | Nonwoven fabric separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081227 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081227 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091227 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101227 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101227 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101227 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101227 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111227 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111227 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121227 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |