JP3381608B2 - AC generator for vehicles - Google Patents
AC generator for vehiclesInfo
- Publication number
- JP3381608B2 JP3381608B2 JP03724498A JP3724498A JP3381608B2 JP 3381608 B2 JP3381608 B2 JP 3381608B2 JP 03724498 A JP03724498 A JP 03724498A JP 3724498 A JP3724498 A JP 3724498A JP 3381608 B2 JP3381608 B2 JP 3381608B2
- Authority
- JP
- Japan
- Prior art keywords
- claw
- coil
- magnetic pole
- ratio
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Iron Core Of Rotating Electric Machines (AREA)
- Synchronous Machinery (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は乗用車、トラック等
に搭載される車両用交流発電機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle alternator mounted on a passenger car, a truck or the like.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】車両
走行抵抗の低減のためのスラントノーズ化や車室内居住
空間の確保のニーズからエンジンルームは近年ますます
狭小化する中で、車両用交流発電機の搭載スペースに余
裕がなくなってきている。一方、燃費向上のためエンジ
ン回転は下げられ、車両用交流発電機の回転も下がって
いるが、その一方安全制御機器等の電気負荷の増加が求
められ、ますます発電能力の向上が求められている。即
ち小型で高出力の車両用交流発電機を安価に提供するこ
とが求められている。[Background Art] [Problems to be Solved by the Invention] With the need for slant nose to reduce vehicle running resistance and securing a living space inside the vehicle, the engine room has become smaller and narrower in recent years, and AC power generation for vehicles has been increasing. The space for mounting the machine is running out. On the other hand, the engine rotation has been reduced and the rotation of the vehicle alternator has also been reduced to improve fuel economy, but on the other hand, there is a demand for an increase in the electrical load of safety control devices, etc. There is. That is, it is required to provide a small-sized and high-output vehicle AC generator at low cost.
【0003】一般に、車両用交流発電機は、図2の従来
例に示すような円筒部、継鉄部、爪状磁極部を有するラ
ンデル型鉄心(以下、ポールコアと称す)を有した回転
子で構成される。この回転子の軸方向長さ(以下、軸長
と称す)で発電機の全長が決定されてしまうことから、
特にこの回転子の小型高性能化が望まれている。回転子
中を流れる磁束Φは、図2に示されるように円筒部から
継鉄部、爪状磁極部へと流れ、爪状磁極部から徐々に固
定子鉄心に磁束が流入する。Generally, an AC generator for a vehicle is a rotor having a Lundell type iron core (hereinafter referred to as a pole core) having a cylindrical portion, a yoke portion, and a claw-shaped magnetic pole portion as shown in the conventional example of FIG. Composed. Since the axial length of this rotor (hereinafter referred to as the axial length) determines the total length of the generator,
In particular, miniaturization and high performance of this rotor are desired. The magnetic flux Φ flowing in the rotor flows from the cylindrical portion to the yoke portion and the claw-shaped magnetic pole portion as shown in FIG. 2, and the magnetic flux gradually flows from the claw-shaped magnetic pole portion to the stator core.
【0004】回転子から発生する磁束Φは周知のよう
に、
(回転子発生磁束Φ)=(コイルAT)/(各部磁気抵
抗の和)
で示される。ここで、コイルATは、界磁コイルに流れ
る電流値Aとターン数Tの積であり、
(コイルAT)∝√(コイル断面積)
(磁気抵抗)∝(磁路長さ)/(断面積)
となる。As is well known, the magnetic flux Φ generated from the rotor is represented by (rotor generated magnetic flux Φ) = (coil AT) / (sum of magnetic resistances of respective parts). Here, the coil AT is the product of the current value A flowing in the field coil and the number of turns T, and is (coil AT) ∝√ (coil cross section) (magnetic resistance) ∝ (magnetic path length) / (cross section area) ).
【0005】従来の設計では、図2に示されるようにポ
ールコア各部の磁路断面S1、S2、S3は局部的な磁
束飽和をさけるため略同一に設計される。またコイルA
Tに必要な空間を確保するように各部寸法は決定され
る。このように設計された回転子の発生磁束に対応して
固定子鉄心の磁路断面は略同一とされ、巻線抵抗値から
スロット面積を決定し、結果的に固定子の軸長が決ま
る。このように決定された従来の磁気回路は、結果的に
ポールコア円筒部の軸長L2と固定子鉄心の軸長L1は
一般に略同一となる。In the conventional design, as shown in FIG. 2, the magnetic path cross sections S1, S2, S3 of each part of the pole core are designed to be substantially the same in order to avoid local magnetic flux saturation. Also coil A
The dimensions of each part are determined so as to secure the space required for T. Corresponding to the generated magnetic flux of the rotor designed in this way, the magnetic path cross section of the stator core is made substantially the same, the slot area is determined from the winding resistance value, and as a result, the axial length of the stator is determined. In the conventional magnetic circuit thus determined, as a result, the axial length L2 of the pole core cylindrical portion and the axial length L1 of the stator core are generally substantially the same.
【0006】出力向上のため回転子の発生磁束量を大き
くするためにはコイルATを大きくするか、磁気抵抗を
小さくしなければならない。しかし従来の設計方法で
は、回転子の大きさを変えずに発生磁束を増加させよう
とした場合、コイルAT増加のためコイル断面積を大き
く取るには各部の断面積を一様に小さくしなければなら
ない。また磁気抵抗低減のため磁路断面積を大きく取る
にはコイル断面積を小さくしなければならないため、結
局双方のトレードオフする範囲で従来は設計せざるを得
なかった。In order to increase the amount of magnetic flux generated by the rotor in order to improve the output, the coil AT must be increased or the magnetic resistance must be decreased. However, in the conventional design method, when it is attempted to increase the generated magnetic flux without changing the size of the rotor, in order to increase the coil AT, the cross sectional area of each part must be made uniformly small in order to increase the coil cross sectional area. I have to. Further, in order to obtain a large magnetic path cross-sectional area in order to reduce the magnetic resistance, the coil cross-sectional area must be made small, so that it has been unavoidable to design the coil in the conventional range within a trade-off range between the two.
【0007】これに対し、エアギャップや固定子鉄心の
磁気抵抗を小さくすることを目的として、回転子の寸法
関係はそのままで、図3に示すように固定子鉄心の軸長
L1のみL2よりも大きめに取る設計方法もある。しか
し、固定子側の磁気抵抗を小さくして磁束を増加させよ
うとしても、回転子各部の磁気飽和で全体磁束が規制さ
れてしまうため磁束はあまり増加せず、重量あたりの出
力でみると固定子の重量増加分で相殺されてしまい、殆
ど効果をみることができない。On the other hand, for the purpose of reducing the magnetic resistance of the air gap and the stator core, the dimensional relationship of the rotor remains the same, and as shown in FIG. 3, only the axial length L1 of the stator core is larger than L2. There is also a large design method. However, even if you try to reduce the magnetic resistance on the stator side to increase the magnetic flux, the magnetic flux does not increase much because the magnetic flux is regulated by the magnetic saturation of each part of the rotor, and the output per weight is fixed. The increase in weight of the child is offset by the increase in weight, and the effect can hardly be seen.
【0008】一方従来の設計方法を無視して、例えば図
4に示されるように爪状磁極部の根元部断面S3を円筒
部断面S1や継鉄部断面S2より狭くして、無理矢理S
1、S2、及びコイル断面を大きく取ってコイルを巻き
込んだものもある。しかしこの場合、爪状磁極部の根元
部断面S3が磁束飽和を起こし、本来S1、S2では磁
束を十分流せる能力があるにも関わらずS3での磁気抵
抗が急激に増大し、全体の磁束量を減少させてしまう。
また、爪状磁極部で磁束が詰まってしまい軸方向に磁束
が漏洩するため、結局固定子鉄心に到達する磁束は著し
く減少し、かえって出力低下してしまう。On the other hand, ignoring the conventional design method, for example, as shown in FIG. 4, the root section cross section S3 of the claw-shaped magnetic pole section is made narrower than the cylindrical section section S1 and the yoke section S2, forcing S.
There is also one in which the coil is wound by taking a large cross section of 1, S2 and the coil. In this case, however, the root cross section S3 of the claw-shaped magnetic pole portion causes magnetic flux saturation, and the magnetic resistance at S3 sharply increases despite the ability to sufficiently flow magnetic flux at S1 and S2. Will be reduced.
Further, since the magnetic flux is clogged in the claw-shaped magnetic pole portion and leaks in the axial direction, the magnetic flux that reaches the stator iron core is significantly reduced, and the output is rather reduced.
【0009】このため、コイル抵抗を減少させ界磁電流
を増加させて少ない卷装面積でコイルATを維持する方
法も取られているが、コイルの発熱量が増し冷却が成り
立たなくなる点や、励磁損が増加し発電効率が著しく悪
化する問題があった。また、特開昭61−85045号
公報では、爪状磁極間に磁石を挿入して漏洩磁束を防止
して回転子磁束量を増加させることを開示しているが、
これは磁石素材コスト、及びこれを固定するための保持
器のコストがかかり高価になる点や、磁石が遠心力で飛
散する問題点があり、実用化に至っていない。For this reason, a method of maintaining the coil AT with a small mounting area by reducing the coil resistance and increasing the field current is also taken, but the heat generation amount of the coil increases and cooling cannot be achieved, and the excitation is increased. There is a problem that the loss increases and the power generation efficiency deteriorates significantly. Further, Japanese Patent Laid-Open No. 61-85045 discloses that a magnet is inserted between the claw-shaped magnetic poles to prevent leakage magnetic flux and increase the amount of rotor magnetic flux.
This is because the cost of the magnet material and the cost of the retainer for fixing the magnet are high, and there is a problem that the magnet scatters due to centrifugal force, so that it has not been put to practical use.
【0010】[0010]
【課題を解決するための手段】発明者は上記問題点が、
ポールコア磁路内を流れる磁束が常に一様であるとし
て、同一磁路断面で設計される点に起因していることを
発見した。図2、図4のL1=L2の条件ではもちろん
磁束は一様に流れようとするため、従来のように同一磁
路断面で設計されなければならない。従って、その断面
は前述のように略同一でなければならず、磁路断面を増
加した場合、全てコイル断面を小さくする方向に作用
し、コイルATが著しく低下してしまう。しかし、図3
のようにL1>L2となった場合には、継鉄部が固定子
鉄心と対向するようになるため、継鉄部からも直接固定
子に流入するはずである。従って、爪状磁極部に流れる
磁束量は減少するため、爪状磁極部の根元部断面は小さ
くできるはずである。従って、図5に示すように円筒
部、継鉄部の断面S1、S2を大きく取り、かつ爪状磁
極部の根元部断面S3を小さくした場合、S1、S2で
増加した磁束は一部は継鉄部から直接固定子に流入し、
残りは爪状磁極部を通過して固定子に流入させることが
でき、すなわち結果的にコイル断面を確保しつつ磁路断
面が増加でき磁束量は飛躍的に増加できるはずであると
いうことを見出した。また継鉄部が固定子鉄心と対向す
る事は、同時に継鉄部から外部へ漏洩する磁束を極小と
する事を意味し、回転子の発生磁束の回収率を飛躍的に
増加できるはずである。Means for Solving the Problems
It was discovered that the magnetic flux flowing in the pole core magnetic path is always uniform, which is due to the fact that it is designed with the same magnetic path cross section. Under the condition of L1 = L2 in FIGS. 2 and 4, of course, the magnetic flux tends to flow uniformly, so that it must be designed with the same magnetic path cross section as in the conventional case. Therefore, the cross section must be substantially the same as described above, and when the magnetic path cross section is increased, all of them act in the direction of reducing the coil cross section, and the coil AT is significantly lowered. However, FIG.
When L1> L2 as described above, since the yoke portion comes to face the stator core, the yoke portion should also directly flow into the stator. Therefore, since the amount of magnetic flux flowing through the claw-shaped magnetic pole portion is reduced, the root cross section of the claw-shaped magnetic pole portion should be reduced. Therefore, as shown in FIG. 5, when the cross sections S1 and S2 of the cylindrical portion and yoke portion are made large and the root cross section S3 of the claw-shaped magnetic pole portion is made small, the magnetic flux increased in S1 and S2 is partially It flows directly into the stator from the iron part,
It was found that the rest can pass through the claw-shaped magnetic poles and flow into the stator, that is, as a result, the cross section of the magnetic path can be increased while securing the cross section of the coil, and the amount of magnetic flux can be dramatically increased. It was Also, the fact that the yoke part faces the stator core means that the magnetic flux that leaks from the yoke part to the outside at the same time is minimized, and the recovery rate of the magnetic flux generated by the rotor should be able to be dramatically increased. .
【0011】図6に従来の等価磁気回路、図7に上記考
えに基づいた等価磁気回路を示す。これをみて判るよう
に、図6に対し、図7はr6、r7の磁気抵抗が並列に
付加される。また継鉄部から外部へ漏洩する磁気抵抗r
0はr7で肩代わりされるため、外部への漏洩磁束Φ
0’はほとんどないと考えることができる。従って、図
6では爪状磁極部が飽和してない場合ポールコア内に一
様の磁束Φ0が流れるのに対して、図7では爪状磁極部
を流れる磁束Φ1と継鉄部から直接固定子鉄心に流れ込
む磁束Φ2とに分流され、爪状磁極部を通る磁束Φ1は
Φ0に対し、
Φ1={(r6+r7)Φ0}/(r3+r4+r6+
r7)
で表され、Φ1の磁束量は減少する。従ってこの割合で
爪状磁極部の磁路断面を小さくしても磁束飽和は発生せ
ず、全体の磁束量Φ0は減少しない。FIG. 6 shows a conventional equivalent magnetic circuit, and FIG. 7 shows an equivalent magnetic circuit based on the above idea. As can be seen from this, the magnetic resistances r6 and r7 in FIG. 7 are added in parallel to FIG. Also, the magnetic resistance r leaking from the yoke to the outside
Since 0 is taken over by r7, leakage flux to the outside Φ
You can think that 0'is almost nonexistent. Therefore, in FIG. 6, a uniform magnetic flux Φ0 flows in the pole core when the claw-shaped magnetic pole portion is not saturated, whereas in FIG. 7, the magnetic flux Φ1 flowing in the claw-shaped magnetic pole portion and the stator core directly from the yoke portion. The magnetic flux Φ1 that is split into the magnetic flux Φ2 and the magnetic flux Φ1 that passes through the claw-shaped magnetic pole part is Φ1 = {(r6 + r7) Φ0} / (r3 + r4 + r6 +
r7), and the amount of magnetic flux of Φ1 decreases. Therefore, even if the magnetic path cross section of the claw-shaped magnetic pole portion is reduced by this ratio, magnetic flux saturation does not occur and the total magnetic flux amount Φ0 does not decrease.
【0012】また図6ではr3が飽和して磁気抵抗が大
きくなった場合r0を介して継鉄部分から外部へ漏洩し
てしまうが、図7ではr3が飽和してもr7を介して固
定子鉄心へ磁束を流入させることができ、爪状磁極部は
更に小さくできる。爪状磁極部の断面を小さくすること
はポールコア内の余空間を増加させることを意味する。
これを磁路断面の増加、コイル卷装面積の増加に最適に
配分すれば、従来の設計では得られない著しい出力向上
が期待できる。Further, in FIG. 6, when r3 is saturated and the magnetic resistance becomes large, it leaks from the yoke portion to the outside via r0. However, in FIG. 7, even if r3 is saturated, the stator is leaked via r7. The magnetic flux can be made to flow into the iron core, and the claw-shaped magnetic pole portion can be further reduced. Reducing the cross section of the claw-shaped magnetic pole portion means increasing the extra space in the pole core.
If this is optimally distributed to the increase of the magnetic path cross section and the increase of the coil winding area, a remarkable output improvement that cannot be obtained by the conventional design can be expected.
【0013】また並列に付加される磁気抵抗r6、r7
は固定子鉄心の軸長L1と円筒部軸長L2の差で変化す
るため、その差が大きいほど爪状磁極部の断面は小さく
でき更に出力向上が期待される。しかし、固定子鉄心の
軸長L1を増加させるとそれに比例して固定子重量が増
加する事から重量あたりの出力では極大値が存在するは
ずである。Magnetic resistances r6 and r7 added in parallel
Varies depending on the difference between the axial length L1 of the stator core and the axial length L2 of the cylindrical portion. Therefore, the larger the difference, the smaller the cross section of the claw-shaped magnetic pole portion, and further improvement in output is expected. However, when the axial length L1 of the stator core is increased, the weight of the stator is increased in proportion thereto, and therefore, there should be a maximum value in the output per weight.
【0014】本発明は上記考えに基づき、固定子鉄心の
軸長L1を円筒部軸長L2より大きく取り、その際に各
部寸法を適正に取ることの相乗効果により、コイル抵抗
を減少させたり、磁石を使用することなく冷却性良好で
高効率かつ低コストの小型高出力の車両用発電機を提供
するものである。請求項1に記載の発明によれば、界磁
コイルと、該界磁コイルが巻装された円筒部と該円筒部
の軸方向位置から外周方向に広がる継鉄部と該継鉄部と
連結され前記界磁コイルを囲包するように形成された爪
状磁極部とを有するランデル型鉄心とからなる界磁回転
子と、該回転子の爪状磁極部外周に対向配置し、積層鉄
心と電機子コイルからなる固定子とを有する車両用交流
発電機において、前記固定子積層鉄心の軸長L1と円筒
形鉄心部の軸長L2の比率(L1/L2)は、1.25
〜1.75の範囲であり、かつ、前記ランデル型鉄心の
外径R1と円筒形鉄心部の外径R2との比率(R2/R
1)は、0.54〜0.60の範囲であることを特徴と
している。Based on the above idea, the present invention reduces the coil resistance due to the synergistic effect of taking the axial length L1 of the stator core larger than the axial length L2 of the cylindrical portion and taking appropriate dimensions for each portion at that time. (EN) Provided is a small-sized and high-output vehicular generator which has high cooling efficiency, high efficiency and low cost without using a magnet. According to the invention described in claim 1, the field coil, the cylindrical portion around which the field coil is wound, the yoke portion extending from the axial position of the cylindrical portion to the outer peripheral direction, and the yoke portion are connected. And a field rotor composed of a Lundell-type iron core having a claw-shaped magnetic pole portion formed so as to surround the field coil, and a laminated iron core arranged to face the outer circumference of the claw-shaped magnetic pole portion of the rotor. In a vehicle AC generator having a stator composed of an armature coil, the ratio (L1 / L2) of the axial length L1 of the stator laminated core and the axial length L2 of the cylindrical core is 1.25.
The ratio of the outer diameter R1 of the Lundell-type iron core to the outer diameter R2 of the cylindrical iron-core portion (R2 / R)
1) is characterized in that it is in the range of 0.54 to 0.60.
【0015】固定子積層鉄心の軸長L1と円筒部の軸長
L2の比率(L1/L2)を、1.0以上の1.25〜
1.75の範囲で設定しているため図3に示されるよう
にポールコア継鉄部を固定子鉄心に対向させることがで
き継鉄部より直接固定子鉄心に磁束を流入できる。これ
により爪状磁極部から流入する磁束を減少させることが
でき爪状磁極部の断面をこれに比例して小さくすること
ができる。これによりポールコアの余空間に余裕がで
き、コイル断面を確保しつつ爪状磁極部の外径R1と円
筒部の外径R2との比率(R2/R1)を、0.54〜
0.60の範囲で従来よりも大きな磁路断面を確保する
事ができ、界磁電流を大きくすることなく、小型で高効
率かつ高出力の発電機を提供できる。The ratio (L1 / L2) of the axial length L1 of the stator laminated iron core and the axial length L2 of the cylindrical portion is 1.0 or more and is 1.25 to 1.25.
Since the range is set to 1.75, the pole core yoke portion can face the stator core as shown in FIG. 3, and the magnetic flux can directly flow from the yoke portion to the stator core. As a result, the magnetic flux flowing from the claw-shaped magnetic pole portion can be reduced, and the cross section of the claw-shaped magnetic pole portion can be reduced in proportion thereto. As a result, an extra space is provided in the pole core, and the ratio (R2 / R1) of the outer diameter R1 of the claw-shaped magnetic pole portion to the outer diameter R2 of the cylindrical portion is 0.54 to
In the range of 0.60, it is possible to secure a larger magnetic path cross section than before, and it is possible to provide a small-sized, high-efficiency and high-output generator without increasing the field current.
【0016】請求項2に記載の発明によれば、前記継鉄
部の軸方向厚さX2と前記爪状磁極部の根元部の径方向
厚さX1との比率(X1/X2)は0.5〜0.9の範
囲であることを特徴としている。前記比率に設定してい
るので、爪状磁極部の磁束密度を過不足なく適正値に設
定することができる。即ち、爪状磁極部の根元部の径方
向厚さX1を厚くしすぎてコイル断面を阻害することを
防止し、X1を薄くしすぎて、出力が低下することを防
止することができる。According to the invention described in claim 2, the ratio (X1 / X2) of the axial thickness X2 of the yoke portion and the radial thickness X1 of the root portion of the claw-shaped magnetic pole portion is 0. It is characterized in that it is in the range of 5 to 0.9. Since the ratio is set to the above ratio, the magnetic flux density of the claw-shaped magnetic pole portion can be set to an appropriate value without excess or deficiency. That is, it is possible to prevent the radial thickness X1 of the root portion of the claw-shaped magnetic pole portion from being too thick to prevent the coil cross section from being obstructed, and to prevent X1 from being too thin to reduce the output.
【0017】請求項3に記載の発明によれば、前記界磁
コイルの径方向断面は軸方向中心に対し略対称であり中
心位置に近いほど外径の大きい山形形状であることを特
徴としている。これによりコイル占積率を向上でき更に
出力を向上できる。請求項4に記載の発明によれば、前
記界磁コイルはシート状の樹脂含浸シートで囲包され、
少なくとも1つの前記爪状磁極部の内周面に当接してい
ることを特徴としている。コイルが爪状磁極部に当接し
ているので爪状磁極部の磁気力共振による騒音が発生す
ることを防止できる。従来に対し、爪状磁極部が薄く設
定し剛性が弱くなるため特に効果が大きい。またコイル
はシート状の絶縁物で囲包されていることを特徴として
いるので、爪状磁極部とコイル外径間の絶縁が十分保た
れるため、ポールコア余空間を最大限に利用でき更に出
力向上が図れる。加えて、前記シート状の絶縁物は樹脂
含浸シートであることを特徴としているので、接着剤等
を貼付しなくとも界磁コイルを固定することができる。According to the third aspect of the present invention, the radial cross section of the field coil is substantially symmetrical with respect to the axial center, and has a mountain-like shape whose outer diameter increases toward the center position. . As a result, the coil space factor can be improved and the output can be further improved. According to the invention of claim 4, the field coil is surrounded by a sheet-shaped resin-impregnated sheet,
It is characterized in that it is in contact with the inner peripheral surface of at least one of the claw-shaped magnetic pole portions. Since the coil is in contact with the claw-shaped magnetic pole portion, it is possible to prevent noise due to magnetic force resonance of the claw-shaped magnetic pole portion. Compared with the conventional art, the effect is particularly great because the claw-shaped magnetic pole portion is set thin and the rigidity is weakened. Also, since the coil is characterized by being surrounded by a sheet-shaped insulator, sufficient insulation can be maintained between the claw-shaped magnetic pole part and the outer diameter of the coil, and the pole core extra space can be used to the maximum extent. Can be improved. In addition, since the sheet-shaped insulator is a resin-impregnated sheet, the field coil can be fixed without attaching an adhesive or the like.
【0018】請求項5に記載の発明によれば、前記車両
用交流発電機は界磁電流調節器を備え、該界磁電流調節
器のトランジスタは界磁コイルに対し高電位側に接続さ
れていることを特徴としているので、車両が稼働してな
い時に、界磁コイルに電位がかからないため、界磁コイ
ルとポールコア特に爪状磁極部との電食を防止できる。
このため界磁コイルとポールコア間のギャップは極小で
良いため、占積率を高めることができ更に出力を向上で
きる。According to a fifth aspect of the present invention, the vehicle alternator includes a field current regulator, and a transistor of the field current regulator is connected to a high potential side of the field coil. Since the electric field coil is not applied with electric potential when the vehicle is not operating, electrolytic corrosion between the field coil and the pole core, especially the claw-shaped magnetic pole portion can be prevented.
Therefore, since the gap between the field coil and the pole core may be minimal, the space factor can be increased and the output can be further improved.
【0019】請求項6に記載の発明によれば、前記固定
子鉄心はスロットを備え、前記電機子コイルは複数の電
気導体からなり、該電気導体は前記固定子のスロットの
深さ方向に対して互いに絶縁されて、スロットの奥に位
置する外層と開口部側に位置する内層とに二分されたも
のが一対以上配設され、異なるスロットの前記外層、内
層の導体が直列に接続されたことを特徴としている。According to the invention of claim 6, the stator core is provided with slots, and the armature coil is composed of a plurality of electric conductors, and the electric conductors are arranged in a depth direction of the slots of the stator. Are insulated from each other, and a pair of two or more of the outer layer located at the back of the slot and the inner layer located at the opening side are bisected, and the conductors of the outer layer and the inner layer of different slots are connected in series. Is characterized by.
【0020】上記構成とすることにより、電機子コイル
のコイルエンドが整列し、径方向の重なりが回避できる
ためコイルエンドが小さくでき、結果的に固定子の軸方
向全長を抑制することができる。このため、発電機外殻
を一定のままで固定子鉄心の軸長L1を円筒部軸長L2
より大きくとることができ、上記最適範囲を発電機外殻
の制約無しに設定でき小型高出力化が図れる。また、こ
れは同時にコイル長も抑制できるためコイル抵抗を大き
くすることなくL1を大きくすることができる。これに
より、銅損の増加を防止できるため高効率、高冷却の発
電機を提供できる。With the above arrangement, the coil ends of the armature coil are aligned and radial overlap can be avoided, so that the coil ends can be made smaller, and as a result the overall axial length of the stator can be suppressed. Therefore, the axial length L1 of the stator core is set to the axial length L2 of the cylindrical portion while the outer shell of the generator remains constant.
It can be made larger, and the above-mentioned optimum range can be set without restriction of the outer shell of the generator, and small size and high output can be achieved. In addition, since the coil length can be suppressed at the same time, L1 can be increased without increasing the coil resistance. As a result, an increase in copper loss can be prevented, so that a highly efficient and highly cooled generator can be provided.
【0021】[0021]
【発明の実施の形態】〔実施形態の構成〕図1、8、9
はこの発明の一実施形態を示したもので、図1は車両用
交流発電機の主要部を示した図で、図8、9は本実施形
態の車両用交流発電機の回転子の説明図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS [Structure of Embodiments] FIGS.
1 shows an embodiment of the present invention, FIG. 1 is a view showing a main portion of a vehicle AC generator, and FIGS. 8 and 9 are explanatory views of a rotor of the vehicle AC generator of the present embodiment. Is.
【0022】その車両用交流発電機1は、電機子として
働く固定子2と界磁として働く回転子3、前記回転子、
固定子を支持するハウジング4、前記固定子に直接接続
され、交流電力を直流に変換する整流器5、界磁電流量
を増減し発電量を制御する電圧調整器11等から構成さ
れている。界磁電流調節器としての電圧調整器11は発
電機が非稼働時に界磁コイルに電位がかからないよう
に、界磁コイルに対し高電位側に接続されている。The vehicle alternator 1 comprises a stator 2 acting as an armature, a rotor 3 acting as a field, the rotor,
It is composed of a housing 4 that supports the stator, a rectifier 5 that is directly connected to the stator and that converts AC power into DC, a voltage regulator 11 that increases or decreases the amount of field current and controls the amount of power generation, and the like. The voltage regulator 11 as a field current regulator is connected to the high potential side of the field coil so that no potential is applied to the field coil when the generator is not operating.
【0023】回転子3は、シャフト6と一体になって回
転するもので、一組のランデル型ポールコア7、冷却フ
ァン12、界磁コイル8、スリップリング9、10等に
よって構成されている。シャフト6は、プーリ20に連
結され、自動車に搭載された走行用のエンジン(図示せ
ず)により回転駆動される。前記回転子3のポールコア
7は円筒部71、継鉄部72、爪状磁極部73により構
成されている。界磁コイル8は、軸方向中心部が外径寸
法が大きく端部にゆくに従い外径寸法の小さい山形形状
をしており、外径寸法はポールコアの爪状磁極部73に
沿った形状となっており、絶縁紙81を介して爪状磁極
部73の内径面に適当な圧縮力を持って当接されてい
る。絶縁紙81はシート状の樹脂含浸シートを使用し界
磁コイル8を囲包しており、加熱処理により界磁コイル
8を固着している。なお界磁コイル8は帯状のシートを
螺旋状に巻いたり、花びら状のシートを上下から挟み込
むことで囲包される。The rotor 3 rotates integrally with the shaft 6, and is composed of a set of Landel type pole cores 7, a cooling fan 12, a field coil 8, slip rings 9, 10 and the like. The shaft 6 is connected to the pulley 20 and is rotationally driven by a traveling engine (not shown) mounted on the automobile. The pole core 7 of the rotor 3 is composed of a cylindrical portion 71, a yoke portion 72, and a claw-shaped magnetic pole portion 73. The field coil 8 has a mountain-like shape with a large outer diameter at the axial center and a smaller outer diameter as it goes to the end, and the outer diameter has a shape along the claw-shaped magnetic pole portion 73 of the pole core. The insulating paper 81 is abutted against the inner diameter surface of the claw-shaped magnetic pole portion 73 with an appropriate compression force. The insulating paper 81 uses a sheet-shaped resin-impregnated sheet to surround the field coil 8, and the field coil 8 is fixed by heat treatment. The field coil 8 is enclosed by spirally winding a strip-shaped sheet or sandwiching petal-shaped sheets from above and below.
【0024】固定子2は、固定子鉄心32と、電機子コ
イル33と、固定子鉄心32と電機子コイル33とを絶
縁するインシュレータ34とで構成され、ハウジング4
により支えられている。固定子鉄心32は、薄い鋼板を
重ね合わせて形成されている。上述したポールコア7が
ランデル型鉄心に、固定子鉄心32が積層鉄心に対応し
ている。The stator 2 is composed of a stator core 32, an armature coil 33, and an insulator 34 that insulates the stator core 32 and the armature coil 33 from each other.
Supported by. The stator core 32 is formed by stacking thin steel plates. The pole core 7 described above corresponds to a Lundell-type iron core, and the stator core 32 corresponds to a laminated iron core.
【0025】続いて磁気回路の詳細について図8、図9
を使用し説明する。ポールコア7の円筒部71の軸長L
2は固定子鉄心32の軸長L1より小さく設定し、その
比率(L1/L2)は1.25〜1.75の範囲で設定
されている。継鉄部72の軸方向厚みはX2とし、その
断面積は円筒部71の断面積を磁極対(本実施形態では
6)で割った面積に対し、略同一(±10%の範囲)と
なるように設定されている。爪状磁極部73の根元部の
径方向厚さX1はX2に対しその比率(X1/X2)を
0.5〜0.9の範囲に設定している。円筒部71の外
径R2は爪状磁極部73の外径R1に対し、その比率
(R2/R1)を0.54〜0.60の範囲で設定して
いる。Next, details of the magnetic circuit are shown in FIGS.
To explain. Axial length L of the cylindrical portion 71 of the pole core 7
2 is set smaller than the axial length L1 of the stator core 32, and the ratio (L1 / L2) is set in the range of 1.25 to 1.75. The axial thickness of the yoke portion 72 is X2, and its cross-sectional area is approximately the same (± 10% range) as the area obtained by dividing the cross-sectional area of the cylindrical portion 71 by the magnetic pole pair (6 in this embodiment). Is set. The ratio (X1 / X2) of the radial thickness X1 of the root portion of the claw-shaped magnetic pole portion 73 to X2 is set in the range of 0.5 to 0.9. The outer diameter R2 of the cylindrical portion 71 is set to a ratio (R2 / R1) to the outer diameter R1 of the claw-shaped magnetic pole portion 73 in the range of 0.54 to 0.60.
【0026】円筒部71の外径R2に対し、この断面積
からシャフト断面積(シャフト径R3は爪状磁極部外径
の18%)を減じ、ポールコア極対数Pで割ったものを
基準断面積S1とした。
S1={π/(4P)}(R22 −R32 )
爪状磁極部73の磁極幅Wは爪状磁極部外径R1を極数
Pで割った
W=πR1/(2P)
に設定し、継鉄部72の断面S2は軸方向厚さをX2と
した場合、
S2=S1=W・X2
となるように設定してある。With respect to the outer diameter R2 of the cylindrical portion 71, the shaft cross-sectional area (the shaft diameter R3 is 18% of the outer diameter of the claw-shaped magnetic pole portion) is subtracted from this cross-sectional area and divided by the pole core pole pair number P to obtain the reference cross-sectional area. It was set to S1. S1 = {π / (4P)} (R2 2 −R3 2 ) The magnetic pole width W of the claw-shaped magnetic pole portion 73 is set to W = πR1 / (2P) obtained by dividing the claw-shaped magnetic pole portion outer diameter R1 by the number of poles P. The cross section S2 of the yoke portion 72 is set so that S2 = S1 = W · X2, where X2 is the axial thickness.
【0027】また、ポールコア7の軸長L0は、一般的
に使用される比率である外径R1の55%としている。
界磁コイル8は、円筒部71、径鉄部72、爪状磁極部
73の内側面で形成される余空間に対し、一定の占積率
68%で一定の抵抗値2.3Ωとなるように、コイル径
を選定した。The axial length L0 of the pole core 7 is 55% of the outer diameter R1 which is a commonly used ratio.
The field coil 8 has a constant space factor of 68% and a constant resistance value of 2.3Ω with respect to the extra space formed by the inner surface of the cylindrical portion 71, the iron diameter portion 72, and the claw-shaped magnetic pole portion 73. The coil diameter was selected.
【0028】固定子2は、外径寸法R4をポールコア7
の爪状磁極部外径R1の129%にした。固定子鉄心3
2の各部寸法は、断面積が前述のS1に対し漏れ磁束分
を考慮した一般的に使用される比率である66%となる
ように設定している。電機子コイル33は前記寸法で決
定されたスロット面積に対し、占積率44%となるよう
にコイル径を選定した。The stator 2 has an outer diameter dimension R4 of the pole core 7
129% of the outer diameter R1 of the claw-shaped magnetic pole portion. Stator core 3
The dimensions of each part of 2 are set so that the cross-sectional area is 66% which is a generally used ratio in consideration of the leakage magnetic flux component with respect to S1 described above. For the armature coil 33, the coil diameter was selected so that the space factor was 44% with respect to the slot area determined by the above dimensions.
【0029】またエアギャップδは車両用交流発電機で
一般的に使用される0.35mmとしている。その他爪
状磁極部73の先端厚さ等詳細寸法は従来の車両用発電
機と同等比率で設定している。なお爪状磁極部73の外
径R1は92mmとした。なお、電機子コイル33は図
16に示されるような2つの直線部232を持つ略U字
状の電気導体231からなる。図17に示されるように
直線部232の片方はスロットの径方向の開口部側であ
る内径側に配置されて内層をなし、他方はスロットの奥
に位置する外径側に配置されて外層をなしている。さら
に電気導体231の各直線部232の端部を接続するタ
ーン部233はコイルエンドとしての部分である。そし
て複数の電気導体231は、コイルエンドが整列するよ
うに重ねて固定子鉄心32のスロットの一方側端面から
挿入されている。そして、スロットの他方側端面から突
出した内層あるいは外層の各直線部232をそれぞれ固
定子鉄心32の周方向に曲げ、1極分ずれた各電気導体
231の異なる層の各直線部232に結線することで電
機子コイル33は構成されている。Further, the air gap δ is set to 0.35 mm which is generally used in a vehicle AC generator. Other detailed dimensions such as the tip thickness of the claw-shaped magnetic pole portion 73 are set in the same ratio as in the conventional vehicle generator. The outer diameter R1 of the claw-shaped magnetic pole portion 73 was 92 mm. The armature coil 33 is composed of a substantially U-shaped electric conductor 231 having two linear portions 232 as shown in FIG. As shown in FIG. 17, one of the straight portions 232 is arranged on the inner diameter side which is the opening side in the radial direction of the slot to form an inner layer, and the other is arranged on the outer diameter side located inside the slot to form the outer layer. I am doing it. Furthermore, the turn portion 233 that connects the end portions of the linear portions 232 of the electric conductor 231 is a coil end portion. The plurality of electric conductors 231 are stacked and inserted from one end surface of the stator core 32 so that the coil ends are aligned. Then, each linear portion 232 of the inner layer or the outer layer protruding from the other end surface of the slot is bent in the circumferential direction of the stator core 32 and connected to each linear portion 232 of a different layer of each electric conductor 231 which is offset by one pole. Therefore, the armature coil 33 is configured.
【0030】〔実施形態の作用効果〕固定子鉄心32の
軸長L1とポールコア7の円筒部71の軸長L2の比率
(L1/L2)を、1.25〜1.75の範囲で設定し
ているため、前述のようにポールコア継鉄部72を固定
子鉄心32に対向させることができ、継鉄部72より直
接固定子鉄心32に磁束を流入できる。これにより爪状
磁極部73から流入する磁束を減少させることができ、
爪状磁極部断面をこれに比例して小さくすることができ
る。これによりポールコア7の余空間に余裕ができ、コ
イル断面を確保しつつ爪状磁極部73の外径R1と円筒
部71の外径R2との比率(R2/R1)を、従来より
も大きな磁路断面で確保する事ができ、更にこの比率を
最適値である0.54〜0.60の範囲に設定すること
により、従来に対し飛躍的に出力向上できる。[Effects of the Embodiment] The ratio (L1 / L2) of the axial length L1 of the stator core 32 and the axial length L2 of the cylindrical portion 71 of the pole core 7 is set within the range of 1.25 to 1.75. Therefore, as described above, the pole core yoke portion 72 can be opposed to the stator core 32, and the magnetic flux can directly flow from the yoke portion 72 into the stator core 32. Thereby, the magnetic flux flowing from the claw-shaped magnetic pole portion 73 can be reduced,
The cross section of the claw-shaped magnetic pole portion can be reduced in proportion to this. As a result, an extra space is provided in the pole core 7, and the ratio (R2 / R1) between the outer diameter R1 of the claw-shaped magnetic pole portion 73 and the outer diameter R2 of the cylindrical portion 71 is set larger than that of the conventional magnetic pole while securing the coil cross section. It can be ensured on the road cross section, and by setting this ratio within the optimum value range of 0.54 to 0.60, the output can be dramatically improved as compared with the conventional one.
【0031】また継鉄部72の軸方向厚さX2と前記爪
状磁極部73の根元部の径方向厚さX1との比率(X1
/X2)を1以下の0.5〜0.9の範囲で設定してい
るので、爪状磁極部73の磁束密度を過不足なく適正値
に設定することができる。即ち、爪状磁極部73を厚く
しすぎてコイル断面を阻害することを防止し、爪状磁極
部73を薄くして、出力が低下することを防止すること
ができる。The ratio of the axial thickness X2 of the yoke portion 72 to the radial thickness X1 of the base of the claw-shaped magnetic pole portion 73 (X1
Since / X2) is set in the range of 0.5 to 0.9, which is 1 or less, the magnetic flux density of the claw-shaped magnetic pole portion 73 can be set to an appropriate value without excess or deficiency. That is, it is possible to prevent the claw-shaped magnetic pole portion 73 from being too thick and obstruct the coil cross section, and to prevent the claw-shaped magnetic pole portion 73 from being thinned to reduce the output.
【0032】図10、11、12は、本実施形態の効果
を確認した結果である。図10は、縦軸にポールコア7
の円筒部71の軸長L2と固定子鉄心32の軸長L1と
の比率(L1/L2)を、横軸に爪状磁極部73の外径
R1と円筒部71の外径R2の比率(R2/R1)を取
り、その際の重量あたりの出力Kを等高線状に示した図
である。なお、重量あたりの出力Kは、発電機回転数2
000rpm、発電機電圧13.5V熱時飽和時の最大
出力を回転子、固定子の重量和で割った値を示してい
る。FIGS. 10, 11 and 12 show the results of confirming the effects of this embodiment. FIG. 10 shows the pole core 7 on the vertical axis.
The ratio (L1 / L2) between the axial length L2 of the cylindrical portion 71 and the axial length L1 of the stator core 32 is represented by the ratio of the outer diameter R1 of the claw-shaped magnetic pole portion 73 and the outer diameter R2 of the cylindrical portion 71 to the horizontal axis ( R2 / R1) is taken, and the output K per weight at that time is shown in contour lines. The output K per weight is the number of generator revolutions 2
A value obtained by dividing the maximum output at the time of saturation at 000 rpm and a generator voltage of 13.5 V under heat by the weight sum of the rotor and the stator is shown.
【0033】図11、12は図10の極大点近傍で、L
1/L2を固定してR2/R1を変更した場合、R2/
R1を固定してL2/L1を変更した場合をそれぞれ示
している。図10に示されるように、L1/L2=1の
近傍の従来範囲に対し、L1/L2、R2/R1双方を
大きくした領域で出力が増加し、L1/L2=1.5、
R2/R1=0.56の近傍で極大値がえられる。これ
は従来範囲に対し、L1/L2の変更でR2/R1の最
適範囲が変わり、従来よりも大きな磁路断面、即ち円筒
部外径R2を大きく取った場合に最適点をとることで、
最大出力も更に向上できることを示している。但し、L
1/L2をある程度以上増加させると固定子2の重量が
増大してしまう。このため、従来に対し出力向上効果の
ある範囲はL1/L2が1.25〜1.75の範囲、R
2/R1が0.54〜0.60の範囲であることが判
る。11 and 12 show L near the maximum point in FIG.
When 1 / L2 is fixed and R2 / R1 is changed, R2 /
The case where R1 is fixed and L2 / L1 is changed is shown. As shown in FIG. 10, the output increases in a region where both L1 / L2 and R2 / R1 are increased relative to the conventional range near L1 / L2 = 1, and L1 / L2 = 1.5,
The maximum value is obtained in the vicinity of R2 / R1 = 0.56. This is because the optimum range of R2 / R1 is changed by changing L1 / L2 with respect to the conventional range, and the optimum point is obtained when a larger magnetic path cross section than the conventional one, that is, when the outer diameter R2 of the cylindrical portion is large,
It shows that the maximum output can be further improved. However, L
If 1 / L2 is increased to some extent or more, the weight of the stator 2 will increase. Therefore, the range in which the output improvement effect is higher than that of the conventional one is that L1 / L2 is in the range of 1.25 to 1.75
It can be seen that 2 / R1 is in the range of 0.54 to 0.60.
【0034】また、図10は従来のようにL1/L2の
み、R2/R1のみを変更しても殆ど効果がないばかり
か場合によってはかえって重量あたりの出力を低下させ
てしまうことも示している。本実施形態は双方を変更す
る相乗効果により従来にない出力特性をえることができ
る。図13、14、15は、L1/L2をパラメータと
し、図10より爪状磁極部外径R1=92mmのもとで
円筒部外径R2を最適値に設定し、爪状磁極部73の根
元部の径方向厚さX1を変更し、出力値をプロットした
結果である。図13は、縦軸にポールコア7の円筒部7
1の軸長L2と固定子鉄心32の軸長L1との比率(L
1/L2)を、横軸に爪状磁極部73の根元部の径方向
厚さX1と継鉄部72の軸方向厚さX2の比率(X1/
X2)を取り、その際の重量あたりの出力Kを等高線状
に示した図である。Further, FIG. 10 shows that changing only L1 / L2 and R2 / R1 as in the prior art has almost no effect and, in some cases, reduces the output per weight. . The present embodiment can obtain an output characteristic that has not been available in the past due to the synergistic effect of changing both. 13, 14, and 15 use L1 / L2 as a parameter, and based on FIG. 10, the outer diameter R2 of the cylindrical portion is set to the optimum value under the outer diameter R1 of the claw-shaped magnetic pole portion R1 = 92 mm, and the root of the claw-shaped magnetic pole portion 73 is set. It is the result of plotting the output value while changing the radial thickness X1 of the part. In FIG. 13, the vertical axis indicates the cylindrical portion 7 of the pole core 7.
The ratio of the shaft length L2 of No. 1 to the shaft length L1 of the stator core 32 (L
1 / L2) is the ratio of the radial thickness X1 of the base of the claw-shaped magnetic pole portion 73 to the axial thickness X2 of the yoke portion 72 (X1 /
X2) is taken and the output K per weight at that time is shown in contour lines.
【0035】図14、15は図13の極大点近傍で、L
1/L2を固定しX1/X2を変更した場合、X1/X
2を固定しL1/L2を変更した場合をそれぞれ示して
いる。図13に示されるように、L1/L2の変更でX
1/X2の最適範囲が変わり、従来よりも爪状磁極部7
3の根元部の断面積、即ち爪状磁極部73の根元部の径
方向厚さX1を小さい値で最適点を取ることができ、最
大出力も更に向上できることを示している。但し、L1
/L2をある程度以上増加させるとステータの重量が増
大してしまう。このため、従来に対し出力向上効果のあ
る範囲はL1/L2が1.25〜1.75の範囲、X1
/X2が0.5〜0.85の範囲であることが判る。上
記比率に設定しているので、爪状磁極部73の磁束密度
が過不足なく適正値に設定することができる。即ち、爪
状磁極部73を厚くしすぎてコイル断面を阻害すること
を防止し、爪状磁極部73を薄くしすぎて、出力が低下
することを防止することができる。14 and 15 show L near the maximum point in FIG.
When 1 / L2 is fixed and X1 / X2 is changed, X1 / X
2 shows the case where 2 is fixed and L1 / L2 is changed. As shown in FIG. 13, it is possible to change X by changing L1 / L2.
The optimum range of 1 / X2 has changed, and the claw-shaped magnetic pole portion 7 is more than conventional.
It is shown that the cross-sectional area of the root portion of No. 3, that is, the radial thickness X1 of the root portion of the claw-shaped magnetic pole portion 73 can take an optimum point with a small value, and the maximum output can be further improved. However, L1
If / L2 is increased to some extent or more, the weight of the stator will increase. Therefore, the range in which the output improvement effect is higher than that of the conventional one is that L1 / L2 is in the range of 1.25 to 1.75,
It can be seen that / X2 is in the range of 0.5 to 0.85. Since the above ratio is set, the magnetic flux density of the claw-shaped magnetic pole portion 73 can be set to an appropriate value without excess or deficiency. That is, it is possible to prevent the claw-shaped magnetic pole portion 73 from being too thick and obstructing the coil cross section, and prevent the claw-shaped magnetic pole portion 73 from being too thin to reduce the output.
【0036】また、図13は従来のようにL1/L2の
み、X1/X2のみを変更しても殆ど効果がないばかり
か、場合によってはかえって重量あたりの出力を低下さ
せてしまうことも示している。本実施形態は双方を変更
する相乗効果により従来にない出力特性をえることがで
きる。上記の確認結果に示される最適範囲で本実施形態
は設定されているため回転子3を大きくすることなく従
来では設定不可能であった鉄断面、コイル断面を確保す
る事ができ、小型高出力化が達成できる。もちろんコイ
ル発熱量は従来と同等であるため界磁コイル8が高熱化
する問題もない。逆に固定子2の冷却フィンとして作用
するコイルエンドが冷却ファン12と対向する面積が増
し、良好に電機子コイル33が冷却される効果もある。Further, FIG. 13 also shows that changing only L1 / L2 and X1 / X2 as in the prior art has almost no effect and, in some cases, rather reduces the output per weight. There is. The present embodiment can obtain an output characteristic that has not been available in the past due to the synergistic effect of changing both. Since the present embodiment is set within the optimum range shown in the above confirmation result, it is possible to secure an iron cross section and a coil cross section that could not be set in the past without increasing the size of the rotor 3, and it is possible to reduce the size and output. Can be achieved. Of course, since the amount of heat generated by the coil is the same as that of the conventional one, there is no problem that the field coil 8 becomes highly heated. On the contrary, the area where the coil end, which acts as a cooling fin of the stator 2, faces the cooling fan 12 increases, and the armature coil 33 is cooled well.
【0037】また、本実施形態では界磁コイル8を略山
形としているので、コイルの卷装面積が増し、更に高出
力化が図れる。加えて、爪状磁極部73の内周面に適当
な圧縮力をもって当接しているので、爪状磁極部73の
磁気力共振による騒音が発生することを防止できる。従
って、爪状磁極部73の剛性を気にすることなく根元厚
さを薄くでき騒音の制約無しに最高出力が得られる。ま
た本実施形態では、シート状の樹脂含浸シートである絶
縁紙81によって界磁コイル8を囲包しているので、爪
状磁極部73とコイル外径間の絶縁が十分保たれるた
め、ポールコア余空間を最大限に利用することができ、
更に出力アップできる。また、界磁コイル8の固着のた
めの接着剤が不要となり、設備が簡略化できる効果もあ
る。Further, in this embodiment, since the field coil 8 is substantially mountain-shaped, the winding area of the coil is increased and the output can be further increased. In addition, since the claw-shaped magnetic pole portion 73 is brought into contact with the inner peripheral surface of the claw-shaped magnetic pole portion 73 with an appropriate compression force, it is possible to prevent noise due to magnetic force resonance of the claw-shaped magnetic pole portion 73. Therefore, the root thickness can be reduced without worrying about the rigidity of the claw-shaped magnetic pole portion 73, and the maximum output can be obtained without restriction of noise. Further, in this embodiment, since the field coil 8 is surrounded by the insulating paper 81 which is a sheet-shaped resin-impregnated sheet, sufficient insulation is maintained between the claw-shaped magnetic pole portion 73 and the coil outer diameter, so that the pole core You can make the most of the extra space,
The output can be further increased. In addition, an adhesive agent for fixing the field coil 8 is not needed, and there is an effect that the equipment can be simplified.
【0038】また、本実施形態では電圧調整器11のト
ランジスタを界磁コイル8に対し高電位側に接続してい
るので、車両が稼働していないときはコイルに電位がか
からず電食を防止できる。このため前記のように山形の
コイルとしても環境性は悪化せず占積率を向上すること
ができる。また、電機子コイル33は、U字状の電気導
体231を図17のように整列して配列しているので、
コイルエンド部において導体が隙間をあけて周方向に均
一な紋様をなしている。一方、従来の固定子2のコイル
エンド部には、異なる位相間の電機子コイルが径方向に
重なりあう部分が存在し、発電機外殻の径方向内に収納
するためにはコイルエンド部の径方向の厚さを薄くしな
ければならなかった。このため、コイルエンド部の軸方
向の高さを高くして扁平状に形成し、径方向の厚さを薄
くすることが一般に用いられている。即ち、コイルエン
ド部の高さは、一定値以上を確保しなければならない。
この結果、固定子鉄心32の軸長L1を増やすと、その
分の固定子2の軸方向の全長が長くなるため、発電機外
殻の軸方向空間内を変えずに固定子2を配置することが
難しくなる。これに対し、本実施形態のコイルエンド部
は、図17に示すように径方向の厚さが同一であり、従
来に比べコイルエンド部の高さを低くすることができ
る。このため、発電機外殻を一定のままで固定子鉄心3
2の軸長L1を従来より大きくできるため、発電機外殻
の制約無しに上記最適範囲に設定でき、小型高出力化を
図ることができる。またこれは同時にコイル長も抑制で
きるためコイル抵抗を大きくすることなくL1を大きく
することができる。これにより銅損の増加を防止できる
ため高効率、高冷却の発電機を提供できる。Further, in the present embodiment, since the transistor of the voltage regulator 11 is connected to the field coil 8 on the high potential side, no electric potential is applied to the coil when the vehicle is not operating, and electrolytic corrosion occurs. It can be prevented. Therefore, as described above, even if the coil is a mountain-shaped coil, the environmental performance is not deteriorated and the space factor can be improved. Further, in the armature coil 33, since the U-shaped electric conductors 231 are aligned and arranged as shown in FIG. 17,
At the coil end, the conductors are spaced apart to form a uniform pattern in the circumferential direction. On the other hand, in the coil end portion of the conventional stator 2, there is a portion where the armature coils between different phases overlap each other in the radial direction. The radial thickness had to be reduced. Therefore, it is generally used to increase the axial height of the coil end portion to form a flat shape and reduce the radial thickness. That is, the height of the coil end portion must be kept above a certain value.
As a result, when the axial length L1 of the stator core 32 is increased, the axial total length of the stator 2 is increased accordingly, so that the stator 2 is arranged without changing the axial space of the generator outer shell. Becomes difficult. On the other hand, the coil end portion of the present embodiment has the same radial thickness as shown in FIG. 17, and the height of the coil end portion can be made lower than in the conventional case. Therefore, the stator core 3
Since the shaft length L1 of 2 can be made larger than the conventional one, it can be set in the above-mentioned optimum range without restriction of the outer shell of the generator, and small size and high output can be achieved. In addition, since the coil length can be suppressed at the same time, L1 can be increased without increasing the coil resistance. As a result, an increase in copper loss can be prevented, so that a highly efficient and highly cooled generator can be provided.
【0039】〔その他の実施形態〕本実施形態では、固
定子鉄心32の軸長L1とポールコア7の円筒部71の
軸長L2の比率(L1/L2)を1.25〜1.75の
範囲に設定し、爪状磁極部73の外径R1と円筒部71
の外径R2との比率(R2/R1)を0.54〜0.6
0の範囲に設定し、継鉄部72の厚さX2と爪状磁極部
73の根元部の厚さX1との比率(X1/X2)を0.
5〜0.9の範囲に設定している。図10、図13に示
すように、重量あたりの出力を高く安定させるために
は、これらの比率範囲を更に限定し、比率(L1/L
2)を1.45〜1.55に、比率(R2/R1)を
0.54〜0.58に、比率(X1/X2)を0.6〜
0.87に設定すればよい。[Other Embodiments] In this embodiment, the ratio (L1 / L2) of the axial length L1 of the stator core 32 and the axial length L2 of the cylindrical portion 71 of the pole core 7 is in the range of 1.25 to 1.75. To the outer diameter R1 of the claw-shaped magnetic pole portion 73 and the cylindrical portion 71.
The ratio (R2 / R1) to the outer diameter R2 of 0.54 to 0.6
The ratio (X1 / X2) between the thickness X2 of the yoke portion 72 and the thickness X1 of the root portion of the claw-shaped magnetic pole portion 73 is set to 0.
The range is set to 5 to 0.9. As shown in FIGS. 10 and 13, in order to stabilize the output per weight at a high level, these ratio ranges are further limited, and the ratio (L1 / L
2) to 1.45 to 1.55, the ratio (R2 / R1) to 0.54 to 0.58, and the ratio (X1 / X2) to 0.6 to.
It may be set to 0.87.
【0040】本実施形態では2.3Ωの抵抗値での結果
を示したが、他の抵抗値であってもATの大きさが変わ
るだけで原理は同一であり同様の結果となるから、通常
の冷却ファンを使用する空冷方式の車両用発電機の冷却
能力の限界から一般的な値、すなわち12V仕様におい
ては1.2〜3.6Ω、また24V仕様においては4.
8〜14.4Ωで本実施形態の設定の範囲が有効である
ことは言うまでもない。In this embodiment, the result with the resistance value of 2.3Ω is shown. However, even if the resistance value is different, the principle is the same and the same result is obtained because the AT size is changed. 3. From the limit of the cooling capacity of the air-cooling type vehicle generator using the cooling fan of 1.2, a general value, that is, 1.2 to 3.6Ω in the 12V specification, and 4. in the 24V specification.
It goes without saying that the setting range of this embodiment is effective at 8 to 14.4Ω.
【0041】本実施形態では爪状磁極部73の外径R1
が92mmの場合を示したが、体格が変わっても同様で
あり、R1が70〜110mmにおいて同様の設定範囲
が有効であることは言うまでもない。本実施形態では回
転子3の極数は12極であるが、他の極数例えば14、
16極であっても同様の効果が得られることも言うまで
もない。In this embodiment, the outer diameter R1 of the claw-shaped magnetic pole portion 73 is
Is 92 mm, the same is true even if the physique is changed, and it goes without saying that the same setting range is effective when R1 is 70 to 110 mm. In the present embodiment, the number of poles of the rotor 3 is 12, but other number of poles, for example 14,
It goes without saying that the same effect can be obtained even with 16 poles.
【図1】本実施形態の車両用交流発電機の主要部を示し
た断面図である。FIG. 1 is a cross-sectional view showing a main part of a vehicle AC generator according to an embodiment.
【図2】ポールコア各部の磁路断面を略同一に設計した
従来の回転子中を流れる磁束を説明する図である。FIG. 2 is a diagram for explaining magnetic flux flowing in a conventional rotor in which the magnetic path cross sections of each part of the pole core are designed to be substantially the same.
【図3】固定子鉄心の軸長をポールコア円筒部の軸長よ
りも大きく設定した従来の回転子中を流れる磁束を説明
する図である。FIG. 3 is a diagram illustrating magnetic flux flowing in a conventional rotor in which the axial length of a stator core is set larger than the axial length of a pole core cylindrical portion.
【図4】ポールコアの爪状磁極部の根元部断面を円筒部
断面や継鉄部断面よりも狭く設定してコイル断面を大き
くした従来の回転子中を流れる磁束を説明する図であ
る。FIG. 4 is a diagram illustrating magnetic flux flowing in a conventional rotor in which a root section of a claw-shaped magnetic pole section of a pole core is set narrower than a cylindrical section section or a yoke section section and a coil section is enlarged.
【図5】ポールコアの爪状磁極部の根元部断面を円筒部
断面や継鉄部断面よりも狭く設定し、かつ固定子鉄心の
軸長をポールコア円筒部の軸長よりも大きく設定した本
発明の回転子を流れる磁束を説明する図である。FIG. 5 is a view showing the present invention in which the root section of the claw-shaped magnetic pole section of the pole core is set narrower than the section of the cylindrical section or the yoke section, and the axial length of the stator core is set larger than the axial length of the cylindrical section of the pole core. It is a figure explaining the magnetic flux which flows through this rotor.
【図6】従来の回転子の等価磁気回路を示す図である。FIG. 6 is a diagram showing an equivalent magnetic circuit of a conventional rotor.
【図7】本発明による回転子の等価磁気回路を示す図で
ある。FIG. 7 is a diagram showing an equivalent magnetic circuit of a rotor according to the present invention.
【図8】本実施形態の車両用交流発電機に含まれる回転
子のポールコアの断面図である。FIG. 8 is a sectional view of a pole core of a rotor included in the vehicle AC generator of this embodiment.
【図9】本実施形態の車両用交流発電機に含まれる回転
子のポールコアを円筒部側からみた平面図である。FIG. 9 is a plan view of a pole core of a rotor included in the vehicle alternator according to the present embodiment as viewed from the side of the cylindrical portion.
【図10】本実施形態の効果を確認した結果を示す図で
ある。FIG. 10 is a diagram showing a result of confirming effects of the present embodiment.
【図11】本実施形態の効果を確認した結果を示す図で
ある。FIG. 11 is a diagram showing a result of confirming effects of the present embodiment.
【図12】本実施形態の効果を確認した結果を示す図で
ある。FIG. 12 is a diagram showing a result of confirming effects of the present embodiment.
【図13】本実施形態の効果を確認した他の結果を示す
図である。FIG. 13 is a diagram showing another result of confirming the effect of the present embodiment.
【図14】本実施形態の効果を確認した他の結果を示す
図である。FIG. 14 is a diagram showing another result of confirming the effect of the present embodiment.
【図15】本実施形態の効果を確認した他の結果を示す
図である。FIG. 15 is a diagram showing another result of confirming the effect of the present embodiment.
【図16】電機子コイルを構成する略U字状の電気導体
の詳細形状を示す図である。FIG. 16 is a diagram showing a detailed shape of a substantially U-shaped electric conductor that constitutes an armature coil.
【図17】図16に示す電気状態によって構成した電機
子コイルの詳細形状を示す図である。FIG. 17 is a diagram showing a detailed shape of an armature coil configured in the electrical state shown in FIG. 16.
1 車両用交流発電機 2 固定子 3 回転子 6 シャフト 7 ポールコア 8 界磁コイル 9、10 スリップリング 12 冷却ファン 32 固定子鉄心 33 電機子コイル 34 インシュレータ 71 円筒部 72 継鉄部 73 爪状磁極部 81 絶縁紙 1 Vehicle AC generator 2 stator 3 rotor 6 shafts 7 pole core 8 field coil 9,10 slip ring 12 Cooling fan 32 Stator core 33 Armature coil 34 insulator 71 Cylindrical part 72 Yoke 73 Claw-shaped magnetic pole 81 insulating paper
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−28558(JP,A) 特開 平9−154256(JP,A) 特開 平9−172747(JP,A) 特開 昭60−66656(JP,A) 特開 平8−107644(JP,A) 特開 平8−205441(JP,A) 特開 昭54−719(JP,A) 実開 平1−123452(JP,U) 実開 平2−122572(JP,U) 実開 昭50−34005(JP,U) 実開 昭52−42207(JP,U) 実開 昭57−111081(JP,U) 実開 昭55−100447(JP,U) 特公 昭38−16668(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H02K 1/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-57-28558 (JP, A) JP-A-9-154256 (JP, A) JP-A-9-172747 (JP, A) JP-A-60- 66656 (JP, A) JP-A-8-107644 (JP, A) JP-A-8-205441 (JP, A) JP-A-54-719 (JP, A) Actual Kaihei 1-123452 (JP, U) Actually open 2-122572 (JP, U) Actually open 50-34005 (JP, U) Actually open 52-42207 (JP, U) Actually open 57-111081 (JP, U) Actually open 55-100447 (JP, U) JP-B-38-16668 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) H02K 1/14
Claims (7)
た円筒部と該円筒部の軸方向位置から外周方向に広がる
継鉄部と該継鉄部と連結され前記界磁コイルとを囲包す
るように形成された爪状磁極部とを有するランデル型鉄
心を備える界磁回転子と、該爪状磁極部の外周に対向配
置し、積層鉄心と電機子コイルからなる固定子とを有す
る車両用交流発電機において、 前記固定子積層鉄心の軸方向長さL1と円筒部の軸方向
長さL2の比率(L1/L2)は、1.25〜1.75
の範囲であり、 前記ランデル型鉄心の外径R1と円筒部の外径R2との
比率(R2/R1)は、0.54〜0.60の範囲であ
り、かつ、 円筒部の断面S1、継鉄部の断面S2より爪状磁極部の
根元部断面S3を小さくする ことを特徴とする車両用交
流発電機。1. A field coil, a cylindrical portion around which the field coil is wound, a yoke portion extending from an axial position of the cylindrical portion to an outer peripheral direction, and the field coil connected to the yoke portion. A field rotor provided with a Lundell-type iron core having a claw-shaped magnetic pole portion formed so as to surround, and a stator composed of a laminated iron core and an armature coil, which is arranged to face the outer circumference of the claw-shaped magnetic pole portion. In the vehicle alternator, the ratio (L1 / L2) of the axial length L1 of the stator laminated core and the axial length L2 of the cylindrical portion is 1.25 to 1.75.
The ratio (R2 / R1) of the outer diameter R1 of the Lundell-type iron core and the outer diameter R2 of the cylindrical portion is in the range of 0.54 to 0.60, and the cross section S1 of the cylindrical portion is From the cross section S2 of the yoke part,
An alternator for vehicles, characterized in that the root section S3 is reduced .
の径方向厚さX1との比率(X1/X2)は0.5〜
0.9の範囲であることを特徴とする車両用交流発電
機。2. The ratio (X1 / X2) of the axial thickness X2 of the yoke portion and the radial thickness X1 of the root portion of the claw-shaped magnetic pole portion according to claim 1, wherein the ratio (X1 / X2) is 0.5 to
An alternator for vehicles, which is in the range of 0.9.
り、 比率(R2/R1)は0.54〜0.58の範囲であ
り、かつ 比率(X1/X2)は0.6〜0.87の範囲
であることを特徴とする車両用交流発電機。3. The ratio (L1 / L2) according to claim 1 or 2, in the range of 1.45 to 1.55.
The ratio (R2 / R1) is in the range of 0.54 to 0.58.
And the ratio (X1 / X2) is in the range of 0.6 to 0.87 .
て、 前記界磁コイルの軸方向断面は軸方向中心に対し略対称
であり中心位置に近いほど外径の大きい略山形形状であ
ることを特徴とする車両用交流発電機。4. The axial cross section of the field coil according to claim 1 or 3 , wherein the axial cross section is substantially symmetrical with respect to the axial center, and the outer diameter is larger toward the center position. An alternator for vehicles, characterized in that
れ、少なくとも1つの前記爪状磁極部の内周面に該当接
していることを特徴とする車両用交流発電機。5. The vehicle according to claim 4 , wherein the field coil is surrounded by a sheet-shaped resin-impregnated sheet and is in contact with the inner peripheral surface of at least one of the claw-shaped magnetic pole portions. AC generator.
電流調節器のトランジスタは界磁コイルに対し高電位側
に接続されていることを特徴とする車両用交流発電機。In any one of claims 6] claims 1-5, wherein the vehicle AC generator includes a field current regulator, the transistor of the interfacial current regulator is connected to the high potential side with respect to the field coil AC alternator for vehicles.
複数の電気導体からなり、該電気導体は前記固定子のス
ロットの深さ方向に対して互いに絶縁されて、スロット
の奥に位置する外層と開口部側に位置する内層とに二分
されたものが一対以上配設され、異なるスロットの前記
外層、内層の導体が直列に接続されたことを特徴とする
車両用交流発電機。7. The stator core according to any one of claims 1 to 6 , wherein the stator core includes a slot, the armature coil includes a plurality of electric conductors, and the electric conductor extends in a depth direction of a slot of the stator. Insulated from each other, a pair of two or more of the outer layer located at the back of the slot and the inner layer located at the opening side are bisected, and the conductors of the outer layer and the inner layer of different slots are connected in series. An alternator for vehicles, which is characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03724498A JP3381608B2 (en) | 1997-09-26 | 1998-02-19 | AC generator for vehicles |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26222997 | 1997-09-26 | ||
JP9-262229 | 1997-09-26 | ||
JP03724498A JP3381608B2 (en) | 1997-09-26 | 1998-02-19 | AC generator for vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11164499A JPH11164499A (en) | 1999-06-18 |
JP3381608B2 true JP3381608B2 (en) | 2003-03-04 |
Family
ID=26376372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03724498A Expired - Lifetime JP3381608B2 (en) | 1997-09-26 | 1998-02-19 | AC generator for vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3381608B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3502589B2 (en) * | 2000-02-10 | 2004-03-02 | 三菱電機株式会社 | Alternator |
JP2001231203A (en) * | 2000-02-10 | 2001-08-24 | Mitsubishi Electric Corp | Ac generator for vehicle |
JPWO2002029960A1 (en) * | 2000-09-26 | 2004-02-19 | 三菱電機株式会社 | AC generator for vehicles |
US6885129B1 (en) * | 2000-09-26 | 2005-04-26 | Mitsubishi Denki Kabushiki Kaisha | Ac generator for vehicle |
JP2003219617A (en) * | 2002-01-21 | 2003-07-31 | Mitsubishi Electric Corp | Ac generator |
JP3964378B2 (en) | 2003-10-23 | 2007-08-22 | 三菱電機株式会社 | Rotating electric machine for vehicles |
JP4109639B2 (en) * | 2004-02-17 | 2008-07-02 | 三菱電機株式会社 | Rotating electrical machine rotor |
JP4249077B2 (en) * | 2004-04-21 | 2009-04-02 | 本田技研工業株式会社 | Claw pole type motor stator and claw pole type motor stator manufacturing method |
JP5195804B2 (en) | 2010-03-30 | 2013-05-15 | 株式会社デンソー | Rotating electrical machine rotor |
JP5940354B2 (en) * | 2012-04-12 | 2016-06-29 | アスモ株式会社 | Electric power steering system motor rotor and electric power steering system motor |
US9502931B2 (en) | 2012-03-23 | 2016-11-22 | Asmo Co., Ltd. | Brushless motor |
JP6222032B2 (en) | 2014-10-14 | 2017-11-01 | 株式会社デンソー | Rotating electric machine |
JP6579395B2 (en) | 2016-06-03 | 2019-09-25 | 株式会社デンソー | Rotating electric machine |
JP6805835B2 (en) * | 2017-01-13 | 2020-12-23 | 株式会社デンソー | Rotating machine |
JP6610566B2 (en) * | 2017-01-13 | 2019-11-27 | 株式会社デンソー | Rotating electrical machine control device |
-
1998
- 1998-02-19 JP JP03724498A patent/JP3381608B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11164499A (en) | 1999-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6097130A (en) | Alternator for vehicle | |
US6020669A (en) | Compact high-power alternator for a vehicle having a rotor and a stator | |
JP3381608B2 (en) | AC generator for vehicles | |
JP2927288B2 (en) | AC generator for vehicles | |
EP0881752B1 (en) | Alternator for an automotive vehicle | |
US5132581A (en) | AC generator with annular permanent magnets | |
US6886236B2 (en) | Stator for an automotive alternator | |
JPWO2008044703A1 (en) | Stator for rotating electrical machine, method for manufacturing the stator, and method for manufacturing the rotating electrical machine | |
JP2009118618A (en) | Vehicular alternator and automobile using the same, method for manufacturing the same and vehicular rotating electric machine | |
JP2009148057A (en) | Ac generator for vehicle | |
US7525233B2 (en) | Vehicle alternator | |
JP3633498B2 (en) | Rotating electric machine | |
US6608424B2 (en) | Rotary electric machine having annular rotor core with slits | |
WO2006016394A1 (en) | Rotating electric machine | |
JP3405280B2 (en) | AC generator for vehicles | |
US7671508B2 (en) | Automotive alternator having improved structure for effectively cooling field coil | |
JP2010514406A (en) | Stator for multi-phase rotating electrical machine, multi-phase rotating electrical machine having the stator, and method for manufacturing the stator | |
JP3502589B2 (en) | Alternator | |
KR100399741B1 (en) | Alternating current generator for vehicle | |
JP3436148B2 (en) | AC generator for vehicles | |
JP2008043026A (en) | Rotating electric machine for vehicle | |
JP3815104B2 (en) | AC generator for vehicles | |
JPWO2002029960A1 (en) | AC generator for vehicles | |
JP3635971B2 (en) | Vehicle alternator | |
JP2007336723A (en) | Rotor for electric rotary machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021119 |
|
EXPY | Cancellation because of completion of term |