JP3377256B2 - Gas generator - Google Patents
Gas generatorInfo
- Publication number
- JP3377256B2 JP3377256B2 JP18348793A JP18348793A JP3377256B2 JP 3377256 B2 JP3377256 B2 JP 3377256B2 JP 18348793 A JP18348793 A JP 18348793A JP 18348793 A JP18348793 A JP 18348793A JP 3377256 B2 JP3377256 B2 JP 3377256B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- raw material
- adsorption
- liquid raw
- supply tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01B—BOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
- B01B1/00—Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
- B01B1/005—Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Of Gases By Adsorption (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はガス発生装置に関し、さ
らに詳細には、気化させた液体原料の接触反応による分
解ガスの発生部と発生したガスを分離精製する圧力変動
式吸着精製部を組み合わせたガス発生装置であって、得
られる製品ガスの純度の向上および装置の小型化に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas generator, and more particularly to a combination of a cracked gas generation part by a catalytic reaction of a vaporized liquid raw material and a pressure fluctuation type adsorption purification part for separating and refining the generated gas. The present invention relates to an improved gas generator, which improves the purity of the product gas obtained and downsizes the device.
【0002】[0002]
【従来の技術】水素や一酸化炭素などのガスは、各種工
業において使用される基礎物質となっている。そして、
これらを大量に使用する場合には、輸送の安全性や、コ
ストの問題などから使用する場所で製造するのが望まし
く、これらのガス発生装置が普及しつつある。例えば、
近年目覚ましく発展した半導体製造工業では、各種工程
中の雰囲気ガスとして水素が多量に用いられており、そ
して半導体の集積度の向上とともにその純度向上が強く
求められている。このためガス中にppmオーダーで存
在する窒素、炭化水素、一酸化炭素、二酸化炭素、酸素
および水蒸気などの不純物を除去してppbオーダーま
たはそれ以下のようなレベルの高純度で、しかも低コス
トで大量に製造することが望まれている。また、合成化
学工業、高分子化学工業などにおいても、水素、一酸化
炭素などのガスが大量に使用されているが、製品の高品
位化に対応し、原料ガスの高純度化と同時に低コスト化
に対する要求が急速に高まりつつある。このため原料と
なるガス中にppmオーダーで存在する窒素、炭化水
素、二酸化炭素、酸素および水蒸気などの不純物を除去
してppbオーダーのようなレベルの高純度に、しかも
低コストで大量に製造する種々の試みがなされている。2. Description of the Related Art Gases such as hydrogen and carbon monoxide are basic substances used in various industries. And
When using a large amount of these, it is desirable to manufacture them at the place of use in consideration of transportation safety and cost, and these gas generators are becoming popular. For example,
In the semiconductor manufacturing industry, which has made remarkable progress in recent years, a large amount of hydrogen is used as an atmospheric gas in various processes, and there is a strong demand for an improvement in the degree of integration of semiconductors and an increase in their purity. Therefore, impurities such as nitrogen, hydrocarbons, carbon monoxide, carbon dioxide, oxygen and water vapor which are present in the gas in the ppm order are removed to obtain a high purity of the ppb order or less and at a low cost. It is desired to manufacture in large quantities. In addition, a large amount of hydrogen, carbon monoxide, and other gases are also used in the synthetic chemistry industry, polymer chemistry industry, etc., but in response to higher product quality, higher purity raw material gas and low cost There is a rapidly growing demand for a new product. For this reason, impurities such as nitrogen, hydrocarbons, carbon dioxide, oxygen and water vapor, which are present in the raw material gas in the order of ppm, are removed, and mass production is carried out at a high purity level of the order of ppb and at a low cost. Various attempts have been made.
【0003】水素や一酸化炭素ガスを大規模な設備を用
いずに比較的簡易に製造する方法としては、原料となる
メタノール、蟻酸メチルなどを気化させ、高温、高圧下
に触媒と接触させて化学分解し、この分解生成ガスを圧
力変動式吸着精製法により成分分離して目的とする1種
または複数種の製品ガスを得る方法が一般的に知られて
いる。これらの方法によるガス発生装置の実用例として
は、メタノールと水を原料として二酸化炭素と水素の
混合ガスに分解した後、この分解ガスを圧力変動式吸着
精製法により成分分離し、製品として水素ガスを得るガ
ス発生装置、メタノールを原料として一酸化炭素と水
素の混合ガスに分解した後、この分解ガスを圧力変動式
吸着精製法により成分分離し、製品として水素ガスおよ
び一酸化炭素ガス、または、水素ガスのみを得るガス発
生装置、蟻酸メチルを原料として一酸化炭素とメタノ
ールの混合ガスに分解し、この混合ガスを冷却してメタ
ノールを凝縮分離した後、圧力変動式吸着精製法により
精製し、製品として一酸化炭素ガスを得るガス発生装置
などがある。A relatively simple method for producing hydrogen or carbon monoxide gas without using large-scale equipment is to vaporize the raw materials such as methanol and methyl formate, and bring them into contact with the catalyst at high temperature and high pressure. A method is generally known in which chemical decomposition is performed, and the decomposition product gas is separated into components by a pressure fluctuation type adsorption purification method to obtain one or more target product gases. As a practical example of a gas generator by these methods, methanol and water as raw materials are decomposed into a mixed gas of carbon dioxide and hydrogen, and then the decomposed gas is separated into components by a pressure fluctuation type adsorption purification method, and hydrogen gas is produced as a product. After decomposing into a mixed gas of carbon monoxide and hydrogen using methanol as a raw material, the decomposed gas is separated into components by a pressure fluctuation adsorption purification method, and hydrogen gas and carbon monoxide gas as products, or, A gas generator that obtains only hydrogen gas, decomposes into a mixed gas of carbon monoxide and methanol using methyl formate as a raw material, cools this mixed gas to separate and condense methanol, and then purifies by a pressure swing adsorption purification method, Products include gas generators that obtain carbon monoxide gas.
【0004】これらの装置はいずれもガス分解部と圧力
変動式吸着精製部が組み合わせられたものであり、圧力
変動式吸着精製部は接触分解によって生じた分解ガス中
に液体原料中に混入していた不純物、分解により発生し
た不純物などが含まれてくるため、これらの不純物を除
去すると同時に目的とするガスを成分分離し、精製され
た製品ガスとして取り出すためのものである。これらの
ガス発生装置を用いて製品ガスを得る場合に、その純度
および処理量は最終的には吸着材の各不純物に対する吸
着特性、吸着材の充填量など、すなわち圧力変動式吸着
精製部の性能に依存することになるため、不純物の種
類、含有割合などに応じて吸着材の種類、組み合わせ、
充填量などが選択される。Each of these apparatuses is a combination of a gas decomposition section and a pressure fluctuation type adsorption purification section, and the pressure fluctuation type adsorption purification section is mixed in the liquid raw material in the decomposition gas generated by catalytic decomposition. Since such impurities and impurities generated by decomposition are included, the purpose is to remove these impurities and at the same time separate the target gas into components and take out as a purified product gas. When product gas is obtained using these gas generators, the purity and treatment amount are ultimately the adsorption characteristics for each impurity of the adsorbent, the adsorbent filling amount, etc., that is, the performance of the pressure fluctuation type adsorption purification unit. Therefore, depending on the type of impurities, the content ratio, etc., the type of adsorbent, the combination,
The filling amount and the like are selected.
【0005】[0005]
【発明が解決しようとする課題】分解ガス中に含まれる
不純物には通常は吸着材に吸着され易いものと吸着され
難いものが共存しており、これらの不純物の内、水蒸気
や二酸化炭素は吸着性が高く、また、一酸化炭素、炭化
水素なども比較的吸着され易く、これらの不純物につい
ては容易に吸着除去できる。しかしながら、酸素および
窒素については吸着性が著しく小さく、これらを除去し
ようとすれば吸着材を大量に使用しなければならないた
め、装置が膨大となり、コストが大幅にアップし、わざ
わざガス発生装置を設けるメリットがなくなるという問
題点があっった。従って、酸素、窒素の除去は諦め、こ
れらが残存しても悪影響を生じないか、あるいは、目的
物の品質や性能低下を覚悟のうえで、致命的な問題を生
じない程度の用途にしか使用できないという欠点があっ
た。The impurities contained in the decomposed gas usually coexist with those that are easily adsorbed on the adsorbent and those that are difficult to adsorb. Among these impurities, water vapor and carbon dioxide are adsorbed. In addition, carbon monoxide and hydrocarbons are relatively easily adsorbed, and these impurities can be easily adsorbed and removed. However, the adsorbability of oxygen and nitrogen is remarkably small, and if they are to be removed, a large amount of adsorbent must be used, resulting in an enormous amount of equipment and a significant increase in cost. There was a problem that there was no merit. Therefore, give up the removal of oxygen and nitrogen, and use them only for the purposes that will not cause any adverse effects even if they remain, or that will not cause a fatal problem in preparation for the quality and performance deterioration of the target product. There was a drawback that I could not.
【0006】[0006]
【課題を解決するための手段】本発明者らは、課題とな
っていた酸素、窒素を始めとし、不純物を含まない精製
ガスを得るべく、ガス発生装置について多角的見地から
研究を続けた結果、特に問題とされる窒素、酸素は、そ
の液体原料中に溶存または溶解してくる空気などに起因
しているという事実をつきとめるとともに、これらの解
決手段について装置および原料の特性を含めてさらに研
鑽を重ねることによって本発明を完成した。Means for Solving the Problems As a result of continuing the research from a multifaceted perspective on a gas generator, the inventors of the present invention have obtained a refined gas containing no impurities including oxygen and nitrogen, which have been the subject. In addition to identifying the fact that nitrogen and oxygen, which are particularly problematic, are caused by air dissolved or dissolved in the liquid raw material, and further studying these solutions, including the characteristics of the equipment and the raw material, The present invention has been completed by stacking.
【0007】すなわち本発明は、液体原料を気化させて
接触分解させる分解ガスの発生部と、該接触分解により
発生したガスを成分分離して1種または複数種の製品ガ
スを得る圧力変動式吸着精製部とが組み合わせられてな
るガス発生装置において、1箇所または複数箇所にシー
ル用ガスの導入管が設けられた液体原料の供給槽と、該
供給槽と接続された気化器と、該気化器の出口と接続さ
れ内部に触媒が充填された分解器と、該分解器と接続さ
れ内部に吸着材が充填された複数の吸着筒によって構成
された圧力変動式吸着精製器とを備えてなり、前記液体
原料の供給槽が、液体原料に対して化学的に不活性で、
かつ、吸着材に対して強吸着性を有するガスによってシ
ールされることを特徴とするガス発生装置である。本発
明は液体原料を気化分解させるガス分解部と分解によっ
て発生したガスを成分分離、精製する圧力変動式吸着精
製部によって構成され、窒素、炭化水素、一酸化炭素、
二酸化炭素、酸素および水蒸気などの不純物、特に、窒
素、酸素など通常の圧力変動式吸着精製器では除去が困
難な不純物をも確実に除去し、高純度の製品ガスを発生
させることができる。[0007] That is, the present invention is a pressure fluctuation type adsorption for producing a decomposition gas for vaporizing a liquid raw material and catalytically decomposing it, and separating the gas generated by the catalytic decomposition into one or a plurality of product gases. A gas generator comprising a refining section in combination, a liquid raw material supply tank having a seal gas introduction pipe at one or more locations, and a vaporizer connected to the supply tank. A decomposing device connected to the outlet of the vaporizer and having a catalyst filled therein, and a pressure fluctuation type adsorption refining device constituted by a plurality of adsorption tubes connected to the decomposing device and having an adsorbent filled therein The liquid raw material supply tank is chemically inert to the liquid raw material,
And a gas generator, characterized in that that will be sealed by a gas having a strong adsorption against the adsorbent. The present invention is constituted by a gas decomposing section for vaporizing and decomposing a liquid raw material and a pressure fluctuation adsorption refining section for separating and purifying the gas generated by decomposition, and nitrogen, hydrocarbon, carbon monoxide,
Impurities such as carbon dioxide, oxygen, and water vapor, particularly impurities such as nitrogen and oxygen, which are difficult to remove by a normal pressure swing adsorption refiner, can be reliably removed, and a high-purity product gas can be generated.
【0008】ガス分解部は、液体原料の貯蔵および供給
槽(以下供給槽と記す)、供給ポンプ、気化器、分解器
などによって構成されている。本発明において、供給槽
は収容された液体原料に対して化学的に不活性で、か
つ、後記の圧力変動式吸着精製器に充填された吸着材に
対して強吸着性を有するガスによってシールされる。吸
着槽には1箇所または複数箇所にシール用ガスの導入管
が設けられる。導入管はシール用ガスを供給槽の上部空
間部に送入できるように設けてもよく、あるいは、液体
原料を曝気できるよう下部液体中に開口させてもよい
が、少なくとも1つは下部液体中に開口させることが好
ましい。また、液体中に開口させる場合にはシールガス
がよく分散し、効率よく曝気されるよう開口部を吹き出
し角度の異なる多数の小孔を有する構造とするか、ある
いは、供給槽内に攪拌機などを取り付けた形態としても
よい。The gas decomposing section is composed of a liquid raw material storage and supply tank (hereinafter referred to as a supply tank), a supply pump, a vaporizer, a decomposer, and the like. In the present invention, the supply tank is sealed by a gas that is chemically inert to the contained liquid raw material and that has a strong adsorptive property to the adsorbent filled in the pressure fluctuation type adsorption refiner described later. It The adsorption tank is provided with a gas introduction pipe for sealing at one or a plurality of locations. The introduction pipe may be provided so that the sealing gas can be fed into the upper space of the supply tank, or it may be opened in the lower liquid so that the liquid raw material can be aerated, but at least one of them is in the lower liquid. It is preferable to open it. Further, the seal gas is well dispersed in the case of opening in the liquid, effectively曝or a structure having a large number of small holes the openings of balloon angles different to be air, or the like stirrer in the supply vessel May be attached.
【0009】シール用ガスは液体原料に対して化学的に
不活性で、かつ、吸着材に対して吸着されやすいもので
あり、例えば、二酸化炭素、一酸化炭素、水素などであ
り、これらは液体原料の種類、発生する分解ガスの種
類、圧力変動式吸着精製部の吸着材の種類などに応じて
選択される。これらの内でも各種液体原料に対して化学
的安定性、吸着材に対する吸着性ともに高く、しかも、
液体原料中に溶解している窒素、酸素などと置換し易い
ことなどから二酸化炭素が特に好ましい。The sealing gas is chemically inert to the liquid raw material and is easily adsorbed to the adsorbent, such as carbon dioxide, carbon monoxide and hydrogen, which are liquids. It is selected according to the type of raw material, the type of decomposed gas generated, the type of adsorbent in the pressure fluctuation type adsorption / purification section, and the like. Among these, the chemical stability to various liquid raw materials and the adsorptivity to adsorbents are high, and
Carbon dioxide is particularly preferable because it can be easily replaced with nitrogen, oxygen, etc. dissolved in the liquid raw material.
【0010】分解器には気相接触分解触媒が充填される
が、例えば、後記のようにメタノール、蟻酸メチル、水
などを原料として水素、一酸化炭素などの分解ガスを発
生させるような場合には酸化銅または酸化銅を主成分と
し、酸化亜鉛、酸化クロムなどを含有する触媒が一般的
であり、通常は市販の種々の触媒の中から原料液体、目
的とする発生ガスの種類に応じて選択される。A gas phase catalytic cracking catalyst is packed in the cracker. For example, in the case where hydrogen, carbon monoxide or the like is generated as a cracking gas from methanol, methyl formate or water as a raw material as described later. Is generally a catalyst containing copper oxide or copper oxide as a main component, and containing zinc oxide, chromium oxide, etc., usually from a variety of commercially available catalysts depending on the raw material liquid and the type of target gas to be generated. To be selected.
【0011】ガス分解部と組み合わせられる圧力変動式
吸着精製部は基本的には、通常のガスの分離や精製に用
いられているものであり、吸着材が充填された複数の吸
着筒によって構成され、例えば最も一般的な4筒式の装
置であれば、吸着工程、落圧工程、ブロー、再生
工程、昇圧、仕上げ工程、のように各工程が順次切り
替えられるものである。吸着筒に充填される吸着材とし
ては活性炭、アルミナ、合成ゼオライト、天然ゼオライ
ト、分子ふるい活性炭などであり、発生ガスおよび不純
物の種類、含有割合になどに応じて1種または2種以上
が組み合わせられて充填される。これらの吸着材により
二酸化炭素を始め、不純物としての一酸化炭素、炭化水
素、水素および水蒸気などは効率よく除去することが可
能である。一方、窒素、酸素についてはいずれの吸着材
も除去能力が小さいが、本発明においては圧力変動式吸
着精製部に供給されるガスには前記したように供給槽の
曝気、シールによってこれらのガスは事前に除かれて基
本的に含まれないため、吸着材を増量するなど特別の対
策は必要としない。The pressure fluctuation type adsorption purification unit combined with the gas decomposition unit is basically used for separation and purification of ordinary gas, and is constituted by a plurality of adsorption columns filled with an adsorbent. For example, in the case of the most general four-cylinder type device, each process is sequentially switched such as an adsorption process, a pressure reduction process, a blow, a regeneration process, a pressurization process, and a finishing process. The adsorbent filled in the adsorption column is activated carbon, alumina, synthetic zeolite, natural zeolite, activated carbon having molecular sieves, etc., and one kind or two or more kinds may be combined depending on the kind and content ratio of the generated gas and impurities. Is filled. With these adsorbents, it is possible to efficiently remove carbon monoxide, hydrocarbons, hydrogen, steam and the like as impurities, including carbon dioxide. On the other hand, the removal ability of both adsorbents for nitrogen and oxygen is small, but in the present invention, the gas supplied to the pressure fluctuation type adsorption purification unit is aerated by the aeration and sealing of the supply tank as described above. It is removed in advance and basically not included, so no special measures such as increasing the amount of adsorbent are required.
【0012】本発明は例えば下記のようなガスを発生さ
せ、高純度の製品ガスを得る場合などに適用させる。
メタノールと水を原料とし、加熱気化させてCuO−Z
nO触媒などと接触させて、二酸化炭素と水素の混合ガ
スに分解した後、この分解ガスを圧力変動式吸着精製法
により成分分離し、製品として水素ガスを得る。メタ
ノールを原料とし、加熱気化させてCuO触媒などと接
触させて、一酸化炭素と水素の混合ガスに分解した後、
この分解ガスを圧力変動式吸着精製法により成分分離
し、製品として水素ガスおよび一酸化炭素ガス、また
は、水素ガスのみを得る。蟻酸メチルを原料とし、加
熱気化させてCuO触媒などと接触させて、一酸化炭素
とメタノールの混合ガスに分解し、この混合ガスを冷却
してメタノールを凝縮分離した後、圧力変動式吸着精製
法により精製し、製品として一酸化炭素ガスを得る。
メタノールを原料とし、加熱気化させて触媒と接触させ
て蟻酸メチルとした後、さらにの工程により一酸化炭
素ガスを得る、などが挙げられる。これらのガス発生装
置におけるシール用ガスとしては、の装置では例え
ば、水素、二酸化炭素など、の装置では一酸化炭素、
水素、二酸化炭素など、の装置では一酸化炭素、二酸
化炭素などを用いることができる。中でも、既に記した
理由に加え、いずれの場合にも共通して使用できること
および安全性などから二酸化炭素が好ましい。The present invention is applied, for example, when the following gases are generated and a high-purity product gas is obtained.
CuO-Z using methanol and water as raw materials
After contacting with an nO catalyst or the like to decompose it into a mixed gas of carbon dioxide and hydrogen, the decomposed gas is separated into components by a pressure swing adsorption purification method to obtain hydrogen gas as a product. After methanol is used as a raw material, it is heated and vaporized and brought into contact with a CuO catalyst or the like to decompose it into a mixed gas of carbon monoxide and hydrogen,
The decomposed gas is separated into its components by a pressure swing adsorption purification method to obtain hydrogen gas and carbon monoxide gas or only hydrogen gas as a product. Using methyl formate as a raw material, it is heated and vaporized and brought into contact with a CuO catalyst, etc. to decompose it into a mixed gas of carbon monoxide and methanol, and after cooling this mixed gas to condense and separate methanol, a pressure fluctuation adsorption purification method To obtain carbon monoxide gas as a product.
For example, methanol is used as a raw material, which is vaporized by heating and brought into contact with a catalyst to form methyl formate, and then carbon monoxide gas is obtained by a further step. As the sealing gas in these gas generators, for example, hydrogen, carbon dioxide, etc. in the device, carbon monoxide in the device,
For devices such as hydrogen and carbon dioxide, carbon monoxide, carbon dioxide and the like can be used. Of these, carbon dioxide is preferable because it can be commonly used in any case and is safe in addition to the reasons already described.
【0013】次に本発明を図面により例示し、さらに具
体的に説明する。図1は本発明のガス発生装置のフロー
シートである。図1において、頂部に逆止弁の介在する
通気口のある2基の液体原料の供給槽1および2それぞ
れの底部にはシール用ガスのボンベ3と接続され、先端
に複数の吹き出し口が設けられたシール用ガスの導入管
4および4’が挿入され、気密に固定されている。供給
槽1および2には液体原料の供給管5および5’が接続
され、供給管5および5’は加圧ポンプ6および6’の
出口側で互いに合流し、ヒーターが配設された気化器7
に接続されている。気化器7の出口は加熱機構を有し、
かつ、内部に接触分解用の触媒が充填された分解器8の
入口に接続され、分解器8の出口は冷却器9、気液分離
器10に順次接続され、以上を合わせて分解ガスの発生
部11とされている。Next, the present invention will be illustrated in more detail with reference to the drawings. FIG. 1 is a flow sheet of the gas generator of the present invention. In FIG. 1, two liquid raw material supply tanks 1 and 2 each having a vent on the top of which a check valve is interposed are connected to a cylinder 3 of a sealing gas at the bottoms thereof, and a plurality of outlets are provided at the tip. The sealing gas introduction pipes 4 and 4'provided are inserted and fixed airtightly. Liquid source supply pipes 5 and 5'are connected to the supply tanks 1 and 2, and the supply pipes 5 and 5'join each other on the outlet side of the pressurizing pumps 6 and 6 ', and a vaporizer provided with a heater. 7
It is connected to the. The outlet of the vaporizer 7 has a heating mechanism,
Further, it is connected to an inlet of a cracker 8 in which a catalyst for catalytic cracking is filled, and an outlet of the cracker 8 is sequentially connected to a cooler 9 and a gas-liquid separator 10, which together generate the cracked gas. It is defined as part 11.
【0014】分解ガスの発生部11の出口は圧力変動式
吸着精製部12と接続されている。圧力変動式吸着精製
部12は内部にそれぞれ吸着材が充填された4本の吸着
筒A,B、C、Dを有し、吸着工程、落圧工程、再生工
程、昇圧工程と順次切り替えがおこなわれるように構成
され、製品ガスの出口管13と接続されている。さら
に、再生排ガスの出口14がシール用ガスの導入管4お
よび4’に接続されている。このように分解ガスの発生
部11および圧力変動式吸着精製部12を合わせ、全体
として本発明のガス発生装置を形成している。The outlet of the decomposition gas generating section 11 is connected to a pressure fluctuation type adsorption / purification section 12. The pressure fluctuation type adsorption purification unit 12 has four adsorption cylinders A, B, C and D each filled with an adsorbent, and the adsorption process, the pressure reduction process, the regeneration process, and the pressurization process are sequentially switched. And is connected to the product gas outlet pipe 13. Further, the outlet 14 for the regenerated exhaust gas is connected to the introducing pipes 4 and 4'for the sealing gas. In this manner, the decomposition gas generation section 11 and the pressure fluctuation type adsorption purification section 12 are combined to form the gas generation apparatus of the present invention as a whole.
【0015】上記のガス発生装置において、主にメタノ
ールと水を原料とし、製品ガスとして水素ガスを製造す
る場合を例にとって説明する。原料液体の供給槽1にメ
タノール、供給槽2に水が貯蔵され、シールガス用ボン
ベ3から導入管4および4’を経由して二酸化炭素を供
給槽1および2に導入して液体原料中に吹き出させ、メ
タノールおよび水を溶解度の高い二酸化炭素によって曝
気することにより、溶解している窒素、酸素などの不純
物が二酸化炭素と置換され、離脱して空間に滞留してい
る空気などとともに供給槽1および2頂部の通気口から
完全に追い出される。このようにして供給槽1および2
は二酸化炭素によってシールされた状態となる。In the above-mentioned gas generator, a case where hydrogen gas is manufactured as a product gas mainly using methanol and water as raw materials will be described as an example. Methanol is stored in the supply tank 1 for the raw material liquid and water is stored in the supply tank 2, and carbon dioxide is introduced from the seal gas cylinder 3 into the supply tanks 1 and 2 through the introduction pipes 4 and 4 ′ to enter the liquid raw material. By blowing out and aerating methanol and water with highly soluble carbon dioxide, impurities such as dissolved nitrogen and oxygen are replaced with carbon dioxide, and the air is retained and left in the space together with the supply tank 1 And 2 completely vented from the top vent. In this way, the supply tanks 1 and 2
Will be sealed by carbon dioxide.
【0016】供給槽1および2のメタノールおよび水を
それぞれ加圧ポンプ6、6’により加圧して、メタノー
ルおよび水をモル比で1:2の混合割合で気化器7に供
給すると加熱されてメタノールと水の混合ガスとなる。
混合ガスは加熱された分解器8に入り、分解用触媒と接
触して水素3モルに対し、二酸化炭素1モルの比率の分
解ガスを発生する。分解ガスは冷却器9で室温まで冷却
されることにより過剰の水が凝縮し、この水を気液分離
器10で分離除去され、次いで、圧力変動式吸着精製部
11に送られる。Methanol and water in the supply tanks 1 and 2 are pressurized by pressurizing pumps 6 and 6 ', respectively, and when methanol and water are supplied to the vaporizer 7 at a mixing ratio of 1: 2 in molar ratio, the methanol and water are heated to generate methanol. And a mixed gas of water.
The mixed gas enters the decomposer 8 which has been heated and contacts the decomposition catalyst to generate a decomposed gas in a ratio of 1 mol of carbon dioxide to 3 mol of hydrogen. The decomposed gas is cooled to room temperature by the cooler 9 to condense excess water, the water is separated and removed by the gas-liquid separator 10, and then sent to the pressure swing adsorption purification section 11.
【0017】吸着筒A〜Bのそれぞれには吸着材とし
て、例えばガスの入口側(下部)から順にアルミナ、活
性炭、ゼオライトが充填されている。ガスの発生部から
出た加圧ガスは吸着工程にある吸着筒、例えば図2に示
した操作工程図でA筒に供給され、ここで上記の吸着材
と順次接触することにより、ガス中の混合成分である二
酸化炭素(シール用ガスを含む)および不純物である一
酸化炭素、炭化水素、水蒸気などが吸着除去され、精製
された水素は製品ガスの出口管13から抜き出される。Each of the adsorption columns A to B is filled with, as an adsorbent, for example, alumina, activated carbon, and zeolite in order from the gas inlet side (lower part). The pressurized gas emitted from the gas generating portion is supplied to the adsorption cylinder in the adsorption process, for example, the A cylinder in the operation process diagram shown in FIG. Carbon dioxide (including sealing gas) that is a mixed component and impurities such as carbon monoxide, hydrocarbons, and water vapor are adsorbed and removed, and purified hydrogen is extracted from the product gas outlet pipe 13.
【0018】各吸着筒の工程は図2に示したように順次
切り替えて操作される。A筒での吸着が終わると、ガス
発生部からのガスは吸着材再生、再昇圧されて待機中の
C筒に切り替えて供給され、ここで吸着精製が続けられ
る。一方、吸着が終了し、高加圧状態にあるA筒は再生
後、低均圧の段階にあるB筒との間で均圧化(高均圧)
され、さらに、再生の終了したD筒との間で均圧化(低
均圧)される。引続き、排出管16の弁を開いてブロー
し、筒内を大気圧近辺まで落圧させるとともに吸着工程
の終了したC筒のガスの一部を精製時とは逆の方向に流
すことにより吸着材から脱着した二酸化炭素、その他の
不純物が再生排ガスの排出管14から排出され、吸着材
が再生される。再生の終わったA筒は高均圧状態にある
C筒との間で均圧化(低均圧)、続いて吸着が終了し、
高加圧状態にあるB筒との間で均圧化(高均圧)され、
さらに精製水素ガスで昇圧して仕上げられて次の吸着工
程に備えられる。As shown in FIG. 2, the steps of each suction cylinder are sequentially switched and operated. When the adsorption in the A cylinder is completed, the gas from the gas generating portion is regenerated by adsorbent material, repressurized, and switched to the standby C cylinder to be supplied, where the adsorption purification is continued. On the other hand, after the adsorption, the A cylinder that is in a high pressure state is regenerated and equalized with the B cylinder that is in a low pressure equalization stage (high pressure equalization).
Further, the pressure is equalized (low pressure equalization) with the D cylinder that has completed the regeneration. Subsequently, blow open the valve of the discharge pipe 16, by passing in the opposite direction to the time of purifying a portion of the terminated C tube of the gas of the adsorption step together when to落圧the inner cylinder to near atmospheric pressure Carbon dioxide desorbed from the adsorbent and other impurities are discharged from the regeneration exhaust gas discharge pipe 14 to regenerate the adsorbent. Cylinder A, which has been regenerated, is pressure-equalized (low pressure equalization) with C-cylinder in a high pressure equalization state, and then adsorption is completed,
The pressure is equalized (high pressure equalization) between the B cylinder in a high pressure state,
Further, the pressure is increased with purified hydrogen gas for finishing, and the product is prepared for the next adsorption step.
【0019】吸着筒の再生時のブローガスの大部分は二
酸化炭素であることから、所望により、その一部または
全部を液体原料のシール用ガスとして使用される。この
場合には再生排ガスの排出管14とシール用ガスの導入
管4とを接続した配管の弁を開くことにより、再生排ガ
スは供給槽1および2に供給される。Since most of the blow gas during regeneration of the adsorption column is carbon dioxide, part or all of it is used as a gas for sealing the liquid raw material, if desired. In this case, the regeneration exhaust gas is supplied to the supply tanks 1 and 2 by opening the valve of the pipe that connects the exhaust pipe 14 for the regeneration exhaust gas and the introduction pipe 4 for the sealing gas.
【0020】[0020]
【実施例】実施例1
図1で示したと同様の構成のガス発生装置を使用してメ
タノールと水を原料とし、水素ガスの製造実験をおこな
った。直径20cm、高さ1mのステンレスチューブ製
の液体原料の供給槽で、底部にシール用ガスを吹き込む
ための内径4mmの導入管で先端に多数の小孔のある導
入管と、頂部に内径10mmの通気口と、原料の取り出
し口と原料の仕込口およびレベルゲージを設けたメタノ
ールの供給槽および水の供給槽を用い、それぞれにシー
ル用ガスとして二酸化炭素を0.2L/minで吹き込
み、液体原料を曝気して溶解している窒素、酸素などの
不純物を追い出すとともにシール用ガスを流し続けなが
ら供給槽内を二酸化炭素でシールされた状態に保った。Example 1 A hydrogen gas production experiment was conducted using methanol and water as raw materials using a gas generator having the same configuration as shown in FIG. A liquid raw material supply tank made of a stainless steel tube having a diameter of 20 cm and a height of 1 m, an introduction pipe having an inner diameter of 4 mm for blowing a sealing gas into the bottom, an introduction pipe having a large number of small holes at the tip, and an inner diameter of 10 mm at the top. Using a ventilation port, a feed port for raw materials, a feed port for raw materials, and a methanol feed tank and a water feed tank equipped with a level gauge, carbon dioxide was blown into each as a sealing gas at 0.2 L / min to obtain a liquid raw material. was kept in a state the nitrogen to which they are dissolved by aeration, oxygen supply tank while continuing flow of sealing gas together when drive off impurities such as sealed with carbon dioxide.
【0021】それぞれの供給槽よりメタノールを40c
c/min、水を36cc/minの流量で加圧ポンプ
により10kg/cm2 まで加圧し、混合しながら直径
10cm、長さが100cmのステンレスチューブ製の
気化器に供給して加熱、気化させてメタノールと水の混
合ガスとした。この混合ガスを280℃に温度調節しな
がら、酸化銅−酸化亜鉛触媒(日揮化学(株)製、N2
11)を25kg充填した直径20cm、充填高さ50
cmのステンレスチューブ製の分解器に供給して水素と
二酸化炭素に分解した後、冷却器で室温近辺まで冷却
し、凝縮した過剰の水分を気液分離器で分離除去した。40c of methanol from each supply tank
c / min, water at a flow rate of 36 cc / min up to 10 kg / cm 2 by a pressure pump, and while mixing, supply to a vaporizer made of stainless tube with a diameter of 10 cm and a length of 100 cm to heat and vaporize A mixed gas of methanol and water was used. While controlling the temperature of this mixed gas at 280 ° C., a copper oxide-zinc oxide catalyst (N2, manufactured by JGC Chemical Co., Ltd.) was used.
11) 25kg filled with 20cm diameter, filling height 50
After being supplied to a cm 2 stainless steel tube decomposer to decompose it into hydrogen and carbon dioxide, it was cooled to around room temperature by a cooler, and condensed excess water was separated and removed by a gas-liquid separator.
【0022】このガスを圧力変動式吸着精製部で成分分
離して精製水素ガスを得た。すなわち、圧力変動式吸着
精製部の吸着筒として直径8.3cm、高さ3mのステ
ンレスチューブ製の筒を4本設け、それぞれの内部に原
料ガスの入口側から順番にアルミナボール(水沢化学社
製、ネオビードSA)を100mm、造粒ヤシ殻活性炭
(武田薬品工業(株)製、白鷺G2X−7/12)を2
400mm、モレキュラシーブ5A(ユニオンカーバイ
ド社製、1/16インチペレット)を200mmを充填
した。それぞれの吸着筒は図2に示した吸着、再生パタ
ーンに基づいて運転した。圧力変動式吸着精製部での精
製時のガスの流量は88NL/min、再生時の再生用
ガスの流量は35NL/minでおこなった。精製中の
製品水素ガスの純度は小型反応炉付FIDガスクロマト
グラフ(島津製作所製)でメタン、一酸化炭素、二酸化
炭素を、ハーシェ微量酸素分析計(大阪酸素工業社製、
MK3型)で酸素を、TCDガスクロマトグラフ(島津
製作所製)で窒素を、また、露点計(パナメトリック社
製)で水分をそれぞれ連続的に分析して調べた。その結
果を表1に示す。The components of this gas were separated in a pressure swing adsorption purification section to obtain purified hydrogen gas. That is, four stainless steel tubes having a diameter of 8.3 cm and a height of 3 m are provided as the adsorption cylinders of the pressure fluctuation type adsorption purification unit, and alumina balls (made by Mizusawa Chemical Co., Ltd. , Neobead SA) 100 mm, granulated coconut shell activated carbon (Takeda Pharmaceutical Co., Ltd., Shirasagi G2X-7 / 12) 2
400 mm, and 200 mm of molecular sieve 5A (manufactured by Union Carbide Co., 1/16 inch pellet) were filled. Each adsorption column was operated based on the adsorption / regeneration pattern shown in FIG. The flow rate of the gas during purification in the pressure fluctuation type adsorption purification unit was 88 NL / min, and the flow rate of the regeneration gas during regeneration was 35 NL / min. The purity of the product hydrogen gas being purified is measured by a FID gas chromatograph with a small reactor (manufactured by Shimadzu Corporation) to measure methane, carbon monoxide, and carbon dioxide using a Hersche trace oxygen analyzer (manufactured by Osaka Oxygen Industrial Co., Ltd.,
MK3) was used to analyze oxygen, TCD gas chromatograph (manufactured by Shimadzu Corporation) was used to analyze nitrogen, and dew point meter (manufactured by Panametric) was used to analyze water. The results are shown in Table 1.
【0023】比較例1
メタノールおよび水の供給槽への二酸化炭素吹き込みに
よる曝気、シールをおこなわなかった他は実施例1と同
様として操作し、精製中の製品水素ガスの純度を分析し
た。結果を表1に示す。Comparative Example 1 The same operation as in Example 1 was carried out except that aeration and sealing were not performed by blowing carbon dioxide into the methanol and water supply tanks, and the purity of the product hydrogen gas during purification was analyzed. The results are shown in Table 1.
【0024】比較例2
直径8.3cm、高さ4.5mの吸着筒の内部に原料ガ
ス入口側から順番にアルミナボール(水沢化学(株)
製、ネオビードSA)を100mm、造粒ヤシ殻活性炭
(武田薬品工業製、白鷺G2X−7/12)を3000
mm、モレキュラシーブ5A(ユニオンカーバイト社
製、1/16インチペレット)を900mm充填した他
は、比較例1と同様として操作し、精製中の製品水素ガ
スの純度を分析した結果を表1に示す。Comparative Example 2 Alumina balls (Mizusawa Chemical Co., Ltd.) were sequentially placed inside the adsorption cylinder having a diameter of 8.3 cm and a height of 4.5 m from the raw material gas inlet side.
Made, Neo-Bead SA) 100 mm, Granulated coconut shell activated carbon (Takeda Yakuhin Kogyo, Shirasagi G2X-7 / 12) 3000
mm, molecular sieve 5A (manufactured by Union Carbide Co., 1/16 inch pellet) was filled in 900 mm, the same operation as in Comparative Example 1 was carried out, and the results of analyzing the purity of the product hydrogen gas during purification are shown in Table 1. .
【0025】[0025]
【表1】 表 1 製品水素ガス中の不純物濃度(ppb) 窒 素 酸 素 CO2 CO メタン 水 分 実施例1 <1000 <2 15 20 <1 50 比較例1 7300 520 20 120 <1 55 比較例2 2500 140 15 70 <1 59[Table 1] Table 1 Product Impurity Concentration in Hydrogen Gas (ppb) Nitrogen Oxygen Oxygen CO 2 CO Methane Water Example 1 <1000 <2 15 20 <1 50 Comparative Example 1 7300 520 20 120 <1 55 Comparative Example 2 2500 140 15 70 <1 59
【0026】[0026]
【発明の効果】本発明は液体原料の供給槽を液体原料に
対して化学的に安定で、かつ、吸着材に対して強吸着性
のあるガスで曝気、シールしたものであり、従来、吸着
材では除去が困難であった窒素、酸素などの混入があら
かじめ防止され、分解ガスの発生部に圧力変動式吸着精
製部を組み合わせることにより、高純度の精製ガスの発
生が可能となった。そして、窒素、酸素など吸着性の小
さい不純物ガスを圧力変動式吸着精製部で吸着除去する
必要がなくなり、従来法で多量に必要とされた吸着材を
大巾に削減することができ、従って、製品ガスの純度の
向上に加えて装置の小型化が可能となった。INDUSTRIAL APPLICABILITY The present invention is one in which a liquid raw material supply tank is aerated and sealed with a gas that is chemically stable with respect to the liquid raw material and strongly adsorbable to the adsorbent.
The removal of nitrogen, oxygen, etc., which was difficult to remove with the material , was prevented in advance. By combining the pressure fluctuation type adsorption purification section with the decomposition gas generation section, it became possible to generate purified gas with high purity. And, it becomes unnecessary to adsorb and remove the impurity gas having small adsorptivity such as nitrogen and oxygen in the pressure fluctuation type adsorption purification section, and it is possible to drastically reduce the adsorbent required in a large amount by the conventional method. In addition to improving the purity of the product gas, it has become possible to downsize the device.
【0027】[0027]
【図1】本発明のガス発生装置のフローシート。FIG. 1 is a flow sheet of a gas generator of the present invention.
【図2】圧力変動式吸着精製部の吸着、再生パターン工
程図。FIG. 2 is an adsorption / regeneration pattern process diagram of a pressure fluctuation type adsorption / purification unit.
1、2 供給槽 4、4’導入管 5、5’供給管 6、6’加圧ポンプ 7 気化器 8 分解器 11 発生部 12 吸着精製部 13 製品ガスの出口管 14 再生排ガスの出口管 A、B、C、D 吸着筒 1, 2 supply tank 4, 4'introduction tube 5, 5'supply pipe 6, 6'pressurizing pump 7 vaporizer 8 decomposer 11 Generator 12 Adsorption Purification Department 13 Product gas outlet pipe 14 Recycled exhaust gas outlet pipe A, B, C, D adsorption cylinder
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C01B 31/20 C01B 31/20 A (58)調査した分野(Int.Cl.7,DB名) B01J 7/00 C01B 3/00 - 3/58 C01B 31/00 - 31/36 F17C 13/00 - 13/12 B01D 53/04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 identification code FI C01B 31/20 C01B 31/20 A (58) Fields investigated (Int.Cl. 7 , DB name) B01J 7/00 C01B 3 / 00-3/58 C01B 31/00-31/36 F17C 13/00-13/12 B01D 53/04
Claims (5)
解ガスの発生部と、該接触分解により発生したガスを成
分分離して1種または複数種の製品ガスを得る圧力変動
式吸着精製部とが組み合わせられてなるガス発生装置に
おいて、1箇所または複数箇所にシール用ガスの導入管
が設けられた液体原料の供給槽と、該供給槽と接続され
た気化器と、該気化器の出口と接続され内部に触媒が充
填された分解器と、該分解器と接続され内部に吸着材が
充填された複数の吸着筒によって構成された圧力変動式
吸着精製器とを備えてなり、前記液体原料の供給槽が、
液体原料に対して化学的に不活性で、かつ、吸着材に対
して強吸着性を有するガスによってシールされることを
特徴とするガス発生装置。1. A generation part of a decomposition gas for vaporizing a liquid raw material to catalytically decompose it, and a pressure fluctuation type adsorption purification part for obtaining a product gas of one or more kinds by separating the gas generated by the catalytic decomposition into its components. In a gas generator comprising a combination of the above, a liquid raw material supply tank in which a sealing gas introduction pipe is provided at one or more locations, a vaporizer connected to the supply tank, and an outlet of the vaporizer. The liquid raw material is provided with a decomposer connected to the inside and filled with a catalyst, and a pressure fluctuation type adsorption refiner composed of a plurality of adsorption cylinders connected to the decomposer and filled with an adsorbent inside. The supply tank of
Be chemically inert to the liquid material, and the gas generator, characterized in that that will be sealed by a gas having a strong adsorption against the adsorbent.
供給槽の下部液体原料中に開口し、液体原料がシール用
ガスによって曝気できるようにされた請求項1に記載の
ガス発生装置。2. The gas generator according to claim 1, wherein at least one of the introducing pipes for the sealing gas is opened in the lower liquid raw material of the supply tank so that the liquid raw material can be aerated by the sealing gas.
製部から排出される再生排ガスの出口管が接続された請
求項1に記載のガス発生装置。3. The gas generator according to claim 1, wherein an outlet pipe for the regenerated exhaust gas discharged from the pressure fluctuation type adsorption / purification unit is connected to the sealing gas inlet pipe.
に記載のガス発生装置。4. The sealing gas is carbon dioxide.
The gas generator according to.
少なくとも1種であり、製品ガスが水素および/または
一酸化炭素である請求項4に記載のガス発生装置。5. The gas generator according to claim 4, wherein the liquid raw material is at least one of methanol, methyl formate and water, and the product gas is hydrogen and / or carbon monoxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18348793A JP3377256B2 (en) | 1993-06-30 | 1993-06-30 | Gas generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18348793A JP3377256B2 (en) | 1993-06-30 | 1993-06-30 | Gas generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0716447A JPH0716447A (en) | 1995-01-20 |
JP3377256B2 true JP3377256B2 (en) | 2003-02-17 |
Family
ID=16136677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18348793A Expired - Fee Related JP3377256B2 (en) | 1993-06-30 | 1993-06-30 | Gas generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3377256B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001300244A (en) * | 2000-04-20 | 2001-10-30 | Mitsubishi Kakoki Kaisha Ltd | Adsorption column for pressure fluctuation adsorption device for manufacturing hydrogen |
JP2012144628A (en) * | 2011-01-12 | 2012-08-02 | Air Water Inc | Method and device for removing nitrogen in gas essentially composed of methane |
JP2015110796A (en) * | 2015-01-29 | 2015-06-18 | エア・ウォーター株式会社 | Method and apparatus for removing nitrogen from gas including methane as main component |
JP6692315B2 (en) | 2017-03-16 | 2020-05-13 | 大阪瓦斯株式会社 | Pressure fluctuation adsorption hydrogen production equipment |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54126689A (en) * | 1978-03-27 | 1979-10-02 | Daiyo Sanso | High purity hydrogen gas generating method |
JPH04312297A (en) * | 1991-04-09 | 1992-11-04 | Ishikawajima Harima Heavy Ind Co Ltd | Fully underground low temperature liquefied gas tank |
-
1993
- 1993-06-30 JP JP18348793A patent/JP3377256B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0716447A (en) | 1995-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3351815B2 (en) | Purification method of inert gas | |
US5531809A (en) | Pretreatment layer for CO-VSA | |
US5275742A (en) | Treatment of water | |
KR20240023427A (en) | Ammonia Decomposition for Green Hydrogen | |
US6468328B2 (en) | Oxygen production by adsorption | |
EP1036758B1 (en) | Ozone purification | |
JP2007069209A (en) | Gas purification method | |
JPH031049B2 (en) | ||
JP2001089131A (en) | Purification process and apparatus for boron trichloride | |
JPH05116914A (en) | Method and device for producing superpure nitrogen | |
US3969481A (en) | Process for generating ultra high purity H2 or O2 | |
CA2037523A1 (en) | Purifying fluids by adsorption | |
EP0199341B1 (en) | An adsorbent for use in selective gas adsorption-separation and a process for producing the same | |
JPH08325256A (en) | Production of petrochemical goods | |
JP2640513B2 (en) | Inert gas purification equipment | |
KR100363179B1 (en) | Process for the production of hydrocarbon partial oxidaton products | |
JP3377256B2 (en) | Gas generator | |
US20010043899A1 (en) | Gas purification-treating agents and gas purifying apparatuses | |
US5532384A (en) | Process for producing hydrocarbon partial oxidation products | |
JP2003103132A (en) | Gas refining by pressure swing adsorption | |
JP4013007B2 (en) | Method and apparatus for producing hydrogen-nitrogen mixed gas | |
CZ283982B6 (en) | Process for preparing oxo-products derived from propylene | |
KR920021438A (en) | Variable pressure adsorption system | |
JPH0751441B2 (en) | Method for producing high-purity hydrogen | |
JPH11199206A (en) | Purification of gaseous oxygen and apparatus for purification therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091206 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111206 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121206 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |