JP3369675B2 - Measuring method of position and orientation of lead terminals in electronic components - Google Patents
Measuring method of position and orientation of lead terminals in electronic componentsInfo
- Publication number
- JP3369675B2 JP3369675B2 JP28655793A JP28655793A JP3369675B2 JP 3369675 B2 JP3369675 B2 JP 3369675B2 JP 28655793 A JP28655793 A JP 28655793A JP 28655793 A JP28655793 A JP 28655793A JP 3369675 B2 JP3369675 B2 JP 3369675B2
- Authority
- JP
- Japan
- Prior art keywords
- lead terminal
- lead terminals
- measuring
- electronic component
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 28
- 238000005259 measurement Methods 0.000 claims description 30
- 238000012545 processing Methods 0.000 claims description 13
- 238000005452 bending Methods 0.000 description 12
- 230000036544 posture Effects 0.000 description 10
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 238000009434 installation Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、図1に示すように、半
導体チップ等の主要部のパッケージを合成樹脂にてモー
ルドし、該モールド部2の両端から突出させた各リード
端子3を、モールド部2の底面2aと略平行状に屈曲さ
せてなる、面実装型の電子部品1において、この各リー
ド端子3の屈曲部の姿勢や、基準となる底面2aに対す
るリード端子3の高さの位置を測定する方法に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, as shown in FIG. 1, molds a package of a main part such as a semiconductor chip with a synthetic resin, and projects each lead terminal 3 protruding from both ends of the mold part 2. In the surface mount type electronic component 1 which is bent substantially parallel to the bottom surface 2a of the mold portion 2, the posture of the bent portion of each lead terminal 3 and the height of the lead terminal 3 relative to the reference bottom surface 2a. It relates to a method of measuring position.
【0002】[0002]
【従来の技術と発明が解決しようとする課題】一般に、
この種の面実装型の電子部品1をプリント基板(図示せ
ず)に実装するには、モールド部2における底面2aに
接着剤を塗布した状態で、プリント基板に対して仮実装
した後、各リード端子3をプリント基板における電極パ
ッドに対して半田付けするものである。2. Description of the Related Art Generally,
In order to mount the surface-mounting type electronic component 1 of this type on a printed circuit board (not shown), adhesive is applied to the bottom surface 2a of the mold section 2, and after temporary mounting on the printed circuit board, The lead terminals 3 are soldered to the electrode pads on the printed board.
【0003】従って、図2(b)に示すように、電子部
品1におけるモールド部2の底面2aよりもリード端子
3が高い位置にあったり、リード端子3の屈曲形状が不
適当であると、当該リード端子3がプリント基板4表面
に突き当たり、前記底面2aとプリント基板表面との間
に隙間ができて仮接着の接着強度が不足し、半田付け作
業までの間に電子部品が外れ落ちる。また、リード端子
3が底面2aよりも低い位置にあると、仮接着したと
き、リード端子3とプリント基板4における電極パッド
5表面との隙間が大きくなりすぎ、面実装の電極パッド
5に対する半田付けが不安定になる等の問題がある。Therefore, as shown in FIG. 2B, when the lead terminal 3 is located higher than the bottom surface 2a of the molded portion 2 of the electronic component 1 or the bent shape of the lead terminal 3 is inappropriate, The lead terminal 3 hits the surface of the printed circuit board 4, and a gap is created between the bottom surface 2a and the surface of the printed circuit board, resulting in insufficient adhesive strength for temporary adhesion, and the electronic component falls off before the soldering work. Further, when the lead terminal 3 is located lower than the bottom surface 2a, the gap between the lead terminal 3 and the surface of the electrode pad 5 on the printed circuit board 4 becomes too large when temporarily bonded, and the surface mounting electrode pad 5 is soldered. There are problems such as instability.
【0004】そのため、前記底面2aに対する各リード
端子3の高さ位置や屈曲形状について厳重な管理を行う
必要がある。Therefore, it is necessary to strictly control the height position and bent shape of each lead terminal 3 with respect to the bottom surface 2a.
【0005】そこで、従来では、リード端子3の曲げ加
工を完了すると、基準位置となるモールド部2の底面2
aに対する各リード端子3の高さ寸法eを、以下に述べ
るような方法にて各電子部品1ごとに測定し、許容範囲
内にあるもののみ合格品として出荷するようにしてい
る。Therefore, conventionally, when the bending process of the lead terminal 3 is completed, the bottom surface 2 of the mold portion 2 which becomes the reference position is formed.
The height e of each lead terminal 3 with respect to a is measured for each electronic component 1 by the method described below, and only those within the allowable range are shipped as acceptable products.
【0006】従来の第1測定方法は、図9及び図10に
示すように、スリット状の窓100aからレーザ光線を
発射するようにした投光器100と、そのレーザ光線を
受光スリット101aにて受光する受光器101とから
なる光式の測長センサを利用して、この投光器100と
受光器101との間に電子部品1における左右一対のリ
ード端子3,3がレーザ光線を受けるように配置する。
モールド部2における上面2bから底面2a迄の高さ寸
法H1は一定(同一)であると仮定すると、前記上面2
bから前記リード端子3の先端迄の高さ寸法に対応する
受光スリット101aでの受光長さSを計測し、この寸
法Sから前記高さ寸法Hを差し引くという演算(e=S
−H)を実行することより、リード端子3の突出高さe
を求めるというものである。In the first conventional measuring method, as shown in FIGS. 9 and 10, a projector 100 configured to emit a laser beam from a slit-shaped window 100a, and the laser beam is received by a light receiving slit 101a. A pair of left and right lead terminals 3 in the electronic component 1 are arranged between the light projector 100 and the light receiver 101 so as to receive a laser beam by using an optical length measuring sensor including the light receiver 101.
Assuming that the height H1 from the top surface 2b to the bottom surface 2a of the mold part 2 is constant (identical), the top surface 2
An operation of measuring the light receiving length S at the light receiving slit 101a corresponding to the height dimension from b to the tip of the lead terminal 3 and subtracting the height dimension H from this dimension S (e = S
-H), the protrusion height e of the lead terminal 3 is increased.
Is to ask.
【0007】この測定方法によれば、図10に示すよう
に、左右のリード端子3a,3bの突出高さが異なる場
合、高い方のリード端子3の突出高さしか測定すること
ができず、しかも、水平面に対する電子部品1や受光器
101の配置姿勢が傾けば、前記受光長さSおよび高さ
寸法Hも変動することになり、計測誤差が大きくなると
いう問題があった。また、前記高さ寸法Hを一定と仮定
しているが、モールド部2を成形する金型の寸法誤差、
金型の型締めの程度や合成樹脂材料等によりバラツキが
生じるから、前記リード端子3の高さ寸法eの正確な測
定ができないし、図2(b)に示すようなリード端子3
の先端部が底面2aに対して傾斜している湾曲姿勢の不
良も検出できないのであった。According to this measuring method, as shown in FIG. 10, when the protruding heights of the left and right lead terminals 3a and 3b are different, only the protruding height of the higher lead terminal 3 can be measured. Moreover, if the arrangement postures of the electronic component 1 and the light receiver 101 with respect to the horizontal plane are tilted, the light receiving length S and the height dimension H are also changed, which causes a problem that a measurement error becomes large. Further, it is assumed the the height H is constant, dimensional errors of the mold for molding the mold section 2,
The height dimension e of the lead terminal 3 cannot be accurately measured because of variations in the mold clamping degree, synthetic resin material, etc., and the lead terminal 3 as shown in FIG.
It was not possible to detect a defect in the bending posture in which the tip end of the is inclined with respect to the bottom surface 2a.
【0008】この問題を解決する従来の第2の測定方法
として、図11に示すように、渦電流式近接センサ10
2、103を金属製の各リード端子3に対面するように
接近させて配置し、各リード端子3の表面と近接センサ
102、103先端との距離を測定しようとするもので
あり、その原理は、高周波磁界内に鉄等の金属を置く
と、電磁誘導によりその金属表面に磁界強さと距離に応
じて渦電流が発生する。その渦電流は、前記磁界と逆方
向の磁界を発生させる(レンツの法則)ので、前記金属
が高周波磁界内に近づくと、結果としてその磁界の強さ
を減少させる作用を利用し、前記近接センサを高周波発
生コイルにて構成し、金属に接近させると元の磁界が相
殺されて弱くなる程度を計測することにより、センサと
金属との距離を知るようにするものである。As a second conventional measuring method for solving this problem, as shown in FIG. 11, an eddy current type proximity sensor 10 is used.
2, 103 are arranged close to each other so as to face each lead terminal 3 made of metal, and the distance between the surface of each lead terminal 3 and the tip of the proximity sensor 102, 103 is to be measured. When a metal such as iron is placed in a high frequency magnetic field, an eddy current is generated on the surface of the metal by electromagnetic induction according to the magnetic field strength and the distance. The eddy current generates a magnetic field in a direction opposite to the magnetic field (Lenz's law). Therefore, when the metal approaches the high frequency magnetic field, the effect of reducing the strength of the magnetic field is utilized, and the proximity sensor is used. Is composed of a high-frequency generating coil, and the distance between the sensor and the metal is known by measuring the degree to which the original magnetic field is canceled and weakened when it is brought close to the metal.
【0009】この構成によるときには、前記従来技術と
同様に、モールド部2における上面2bから底面2a迄
の高さ寸法H1は一定であると仮定し、基準面(モール
ド部2における上面2b)から一対の近接センサ10
2、103の下端迄の設置高さH2を一定となるように
設置し、各リード端子3の上面から各近接センサ10
2、103の下端迄の距離S1を測定し、該設置高さH
2から前記高さH1及び距離S1を差し引く演算をマイ
クロコンピュータ等の制御装置104にて実行すること
により、突出高さe(=H2−H1−S1)を求めるの
である。With this structure, as in the prior art, it is assumed that the height dimension H1 from the top surface 2b to the bottom surface 2a of the mold portion 2 is constant, and a pair of the reference surface (the top surface 2b of the mold portion 2) is used. Proximity sensor 10
The installation heights H2 up to the lower ends of 2, 103 are set to be constant, and the proximity sensors 10 are installed from the upper surface of each lead terminal 3.
The distance S1 to the lower end of 2, 103 is measured, and the installation height H
The projection height e (= H2-H1-S1) is obtained by executing a calculation for subtracting the height H1 and the distance S1 from 2 by the control device 104 such as a microcomputer.
【0010】この測定方法においても、前記第2測定方
法と同様に、水平面に対する電子部品1の配置姿勢が傾
いたり、近接センサ102、103の配置高さの誤差や
設置姿勢の傾きθ等により、前記測定距離S1および設
置高さH2も変動することになり、計測誤差が大きくな
るという問題があるし、また、前記高さ寸法H1を一定
と仮定しているが、モールド部2を成形する金型の寸法
誤差、金型の型締めの程度や合成樹脂材料等によりバラ
ツキが生じるから、前記リード端子3の突出高さ寸法e
の正確な測定ができない。Also in this measuring method, as in the second measuring method, the arrangement posture of the electronic component 1 is inclined with respect to the horizontal plane, the error in the arrangement height of the proximity sensors 102 and 103, the inclination θ of the installation posture, etc. The measurement distance S1 and the installation height H2 also fluctuate, which causes a problem that a measurement error increases, and it is assumed that the height dimension H1 is constant. Since the dimensional error of the mold, the degree of mold clamping, the synthetic resin material, and the like cause variations, the height e of the protrusion of the lead terminal 3 e
Can not be measured accurately.
【0011】さらに、近接センサ102、103で個別
のリード端子3,3を測定できる点では、第1の測定方
法より進歩しているが、各リード端子3,3の金属部分
の面積が小さい場合には、生じる渦電流が小さいので、
その測定結果が不安定となり、正確な位置測定(距離測
定)ができないという問題があった。Further, although it is more advanced than the first measuring method in that the proximity sensors 102 and 103 can measure the individual lead terminals 3 and 3, when the area of the metal portion of each lead terminal 3 and 3 is small. Has a small eddy current,
There is a problem that the measurement result becomes unstable and accurate position measurement (distance measurement) cannot be performed.
【0012】本発明は、これらの問題を解決するために
なされたものであって、電子部品におけるリード端子の
位置・姿勢を正確、且つ迅速に測定する方法を提供する
ことを目的とするものである。The present invention has been made to solve these problems, and an object of the present invention is to provide a method for accurately and quickly measuring the position / orientation of a lead terminal in an electronic component. is there.
【0013】[0013]
【課題を解決するための手段】前記目的を達成するた
め、請求項1に記載の発明は、電子部品におけるモール
ド部の両端から屈曲して突出する一対のリード端子の位
置及び/又は姿勢を測定する方法において、1つの光源
からの平行光を、前記モールド部と左右一対のリード端
子との側面 から一度に照射して、前記モールド部におけ
る基準部位と左右一対のリード端子の被測定部位とを含
む範囲の投影像の画像データを撮像手段にて捉え、前記
各リード端子の被測定部位と基準部位とを含む範囲の画
像データを、当該一つのリード端子部ごとに画像処理
し、次いで、前記基準部位に対する各被測定部位の幾何
学的位置・姿勢を測定することを特徴とするものであ
る。In order to achieve the above object, the invention according to claim 1 measures the position and / or the posture of a pair of lead terminals bent and protruding from both ends of a mold portion in an electronic component. In the method, one light source
Parallel light from the mold and the pair of left and right lead ends
Irradiate from the side with the child at once and place it on the mold part.
The reference part and the measured parts of the left and right lead terminals.
The image data of the projected image of the range to be captured is captured by the image pickup means, and the image data of the range including the measured site and the reference site of each lead terminal is subjected to image processing for each one lead terminal section, and then the It is characterized in that the geometrical position / orientation of each measured part with respect to the reference part is measured.
【0014】請求項2記載の発明のリード端子の位置・
姿勢の測定方法は、電子部品におけるモールド部の両端
から屈曲して突出する一対のリード端子の位置及び/又
は姿勢を測定する方法において、1つの光源からの平行
光を、前記モールド部と左右一対のリード端子との側面
から一度に照射して、前記モールド部における基準部位
と左右一対のリード端子の被測定部位とを含む範囲の投
影像の画像データを、前記投影像を分離する手段を介し
て前記各リード端子個所に対応する撮像手段により電子
部品の側面視で捉え、前記各画像データを一つのリード
端子部ごとに画像処理し、次いで、前記基準部位に対す
る各被測定部位の幾何学的位置・姿勢を測定することを
特徴とするものである。Position of the lead terminal of the invention according to claim 2
Method of measuring the orientation is a method for measuring the position and / or orientation of the pair of lead terminals projecting bent from both ends of the mold parts in the electronic component, parallel from one light source
Side surface between the mold and the pair of left and right lead terminals
Irradiate at once from the reference part in the mold part
And the part to be measured of the pair of left and right lead terminals.
Image data of the shadow image through means for separating the projected image.
The image data corresponding to each of the lead terminals is captured in a side view of the electronic component, the image data of each of the lead terminals is subjected to image processing, and then the geometrical portion of each measured portion with respect to the reference portion is geometrically processed. It is characterized by measuring the position and orientation.
【0015】[0015]
【実施例】次に本発明を具体化した実施例について説明
する。図3は、チップ抵抗器等の面実装型の電子部品1
(実施例では長さ約5mm、幅及び高さ約3mm程度の
モールド部2)におけるリード端子3の曲げ加工の行程
を概略図示したものであり、長尺状のリードフレーム1
0における長手方向に延びる一対のフレーム枠11,1
2間に一定間隔でタイバー13を連設し、それらの間に
一定間隔で配置されるモールド部2の両端に前記リード
端子3a,3bが平板状に突出してあり、この各リード
端子3a,3bを第1の曲げ加工段階で、長手中途部に
て底面2a方向に90度曲げてL字状に屈曲した後、モ
ールド部2の近い側をさらに90度屈曲させることによ
り、各リード端子3a,3bの先端側がモールド部2に
おける底面2aと略平行となるように形成するものであ
る。[Embodiments] Next, embodiments embodying the present invention will be described. FIG. 3 shows a surface mount type electronic component 1 such as a chip resistor.
The process of bending the lead terminal 3 in the (molded portion 2 having a length of about 5 mm, a width and a height of about 3 mm in the embodiment) is schematically illustrated, and the elongated lead frame 1 is shown.
A pair of frame frames 11, 1 extending in the longitudinal direction at 0
The tie bars 13 are continuously provided between the two, and the lead terminals 3a, 3b are projected in a flat plate shape at both ends of the mold portion 2 arranged at a constant interval between the lead terminals 3a, 3b. In the first bending step, after bending 90 degrees toward the bottom surface 2a in the middle of the longitudinal direction and bending it into an L-shape, by bending the near side of the mold section 2 further 90 degrees, each lead terminal 3a, The tip side of 3b is formed so as to be substantially parallel to the bottom surface 2a of the mold part 2.
【0016】図4は本発明の測定方法に係る測定装置シ
ステムの概略図を示し、曲げ加工完了した電子部品1が
一定間隔で配置されたリードフレーム1における一方の
フレーム枠12に穿設した送り孔14が、ステップモー
タ17により間欠回動する移送用リール15における外
周に突設したガイドピン(図示せず)に係合されて矢印
A方向に間欠送りされる。なお、符号18は他方のフレ
ーム枠11を移送用リール15の外周面に押圧する(浮
き上がり防止の)ための押えローラである。FIG. 4 is a schematic view of a measuring apparatus system according to the measuring method of the present invention, in which the bending-completed electronic components 1 are provided in one frame 12 of the lead frame 1 arranged at regular intervals. The hole 14 is engaged with a guide pin (not shown) provided on the outer periphery of the transfer reel 15 which is intermittently rotated by the step motor 17 and is intermittently fed in the direction of arrow A. Reference numeral 18 is a pressing roller for pressing the other frame 11 against the outer peripheral surface of the transfer reel 15 (for preventing floating).
【0017】移送用リール15の外周面では、前記電子
部品1におけるモールド部2の底面2a及び左右のリー
ド端子3a,3bの先端側が上になるようにして移送さ
れる。2次元CCDイメージセンサやテレビカメラなど
の一対の撮像手段20,21は前記左右のリード端子3
a,3bの先端部位等の個所を別々に撮像するものであ
る。On the outer peripheral surface of the transfer reel 15, the bottom surface 2a of the mold part 2 and the left and right lead terminals 3a, 3b of the electronic component 1 are transferred so that the top ends thereof face up. The pair of image pickup means 20 and 21 such as a two-dimensional CCD image sensor and a television camera are provided on the left and right lead terminals 3.
This is for separately imaging the points such as the tip portions of a and 3b.
【0018】実施例では光源22からの光をミラー23
を介して前記左右のリード端子3a,3bの先端部位等
及びモールド部2の底面2a等の個所を電子部品1の側
面視で投影するように平行光を投射し、その投射光がハ
ーフプリズム24で水平に透過したものを、水平方向に
配置した一方の撮像手段20に入力して、一方のリード
端子3aと基準面となる底面2aとが一つの画面に入る
ように撮像する。鉛直方向に配置した他方の撮像手段2
1にはハーフプリズム24の斜面の金属薄膜或いは誘電
体多層膜24aにて反射した垂直光を入力し、他方のリ
ード端子3bと同じく基準面となる底面2aとが一つの
画面に入るように撮像するものである。このように、2
つの撮像手段20,21を互いに直角の軸方向に配置す
るのは、被測定部位である両リード端子3a,3bの間
隔が狭いため、それより大きい形状の撮像手段を並設で
きないからである。In the embodiment, the light from the light source 22 is reflected by the mirror 23.
Parallel light is projected to project the tip parts of the left and right lead terminals 3a and 3b and the bottom surface 2a of the mold part 2 in a side view of the electronic component 1 through the half prism 24. Then, the image that has been transmitted horizontally is input to one of the image pickup means 20 arranged in the horizontal direction, and an image is picked up so that the lead terminal 3a on one side and the bottom surface 2a serving as a reference surface fit in one screen. The other image pickup means 2 arranged in the vertical direction
Vertical light reflected by the metal thin film or the dielectric multilayer film 24a on the inclined surface of the half prism 24 is input to 1 and an image is picked up so that the other lead terminal 3b and the bottom surface 2a, which is also the reference surface, enter one screen. To do. Like this, 2
The two image pickup means 20 and 21 are arranged in the axial direction at right angles to each other because the distance between the two lead terminals 3a and 3b, which is the measured portion, is small, and thus the image pickup means having a larger shape cannot be arranged in parallel.
【0019】符号25、26は前記各撮像手段20,2
1にて得られた画像データを記憶させる画像メモリであ
り、これらの画像データをパーソナルコンピュータ等の
演算処理装置(CPU)を備えた画像処理装置27にて
画像の濃淡強調処理や平滑化等を含む2値化処理や、リ
ード端子3や基準面となる底面2aにおける複数の被測
定部位の座標検出、傾き検出等の演算処理を実行する。
符号28はハードディスク等の補助メモリである。中央
制御装置29は前記画像処理装置27やステップモータ
17の作動及び被測定物である電子部品1が所定の測定
位置にあるか否かを検出するための検出器30等を制御
する。また、測定者が被測定部位等を目視確認できるC
RT31やキーボード等の指令操作のための操作パネル
32も接続されている。Reference numerals 25 and 26 denote the image pickup means 20 and 2 respectively.
1 is an image memory for storing the image data obtained in 1. The image processing device 27 having an arithmetic processing unit (CPU) such as a personal computer processes these image data for grayscale enhancement processing and smoothing of the image. Binary processing including the above, and calculation processing such as coordinate detection and inclination detection of a plurality of measurement sites on the lead terminal 3 and the bottom surface 2a serving as a reference surface are executed.
Reference numeral 28 is an auxiliary memory such as a hard disk. The central controller 29 controls the operation of the image processing device 27 and the step motor 17, and the detector 30 for detecting whether or not the electronic component 1 as the object to be measured is at a predetermined measurement position. In addition, C allows the measurer to visually confirm the measurement site or the like.
An operation panel 32 such as an RT 31 and a keyboard for command operation is also connected.
【0020】次に、この測定装置システムによる測定方
法について説明すると、図7(a)は被測定部位である
左側のリード端子3aとその近傍の基準面である底面2
aとを含む範囲の画像データを2値化処理(明るい部分
を白、暗い部分を黒に置き換える処理)した後の画像を
示し、図7(b)は同じく右側のリード端子3bとその
近傍の基準面である底面2aとを含む範囲の画像データ
を2値化処理した後の画像を示す。Next, the measuring method by this measuring device system will be explained. In FIG. 7A, the left lead terminal 3a which is the measured portion and the bottom surface 2 which is the reference surface in the vicinity thereof are shown.
FIG. 7B shows an image after the image data in the range including a is binarized (the bright part is replaced with white and the dark part is replaced with black). FIG. 7B also shows the right lead terminal 3b and its vicinity. The image after binarizing the image data in the range including the bottom surface 2a which is the reference surface is shown.
【0021】前記図7(a)及び(b)の各画面上に
て、基準線33,34を画面上に表示し、この左画面の
基準線33から基準面である底面2aに対して複数の測
定点XL1,XL2に対して垂線を立てて、その距離L
1,L2を測定することにより、2つの測定点XL1,
XL2間の距離XLoを知れば、tan (θLx)=(L
1−L2)/XLoなる式の演算にて、画面上における
基準線33に対する底面2aの傾き角度θLxを演算す
ることができる。図7(a)は底面2aの傾き角度θL
xが零の場合を示す。また、リード端子3aにおける少
なくとも一つの測定点XL3の基準線33に対する垂線
の長さ(距離)L3を測定し、eL=L3−L1の演算
から、底面2aに対する左側リード端子3aの突出高さ
eLを求めることができる。On each screen of FIGS. 7A and 7B, reference lines 33 and 34 are displayed on the screen, and a plurality of reference lines 33 from the reference line 33 on the left screen to the bottom surface 2a which is the reference surface are displayed. Establish a perpendicular line to the measurement points XL1 and XL2 of
By measuring 1 and L2, two measurement points XL1,
Knowing the distance XLo between XL2, tan (θLx) = (L
The inclination angle θLx of the bottom surface 2a with respect to the reference line 33 on the screen can be calculated by the calculation of the formula 1-L2) / XLo. FIG. 7A shows the inclination angle θL of the bottom surface 2a.
The case where x is zero is shown. Further, the length (distance) L3 of the perpendicular of the at least one measurement point XL3 to the reference line 33 in the lead terminal 3a is measured, and the projection height eL of the left lead terminal 3a with respect to the bottom surface 2a is calculated from the calculation of eL = L3-L1. Can be asked.
【0022】同様に、図7(b)の画面にて、右側リー
ド端子3bについても、基準線34から底面2aの複数
測定点XR1,XR2に対して垂線を立てて、その距離
R1,R2を測定することにより、2つの測定点XR
1,XR2間の距離XRoを知れば、tan (θRx)=
(R1−R2)/XRoなる式の演算にて、画面上にお
ける基準線34に対する底面2aの傾き角度θRxを演
算することができる。そして、リード端子3bにおける
少なくとも一つの測定点XR3の基準線34に対する垂
線の長さ(距離)R3を測定し、eR=R3−R1の演
算から、底面2aに対する左側リード端子3bの突出高
さeRを求めることができる。Similarly, on the screen of FIG. 7B, the right lead terminal 3b is also perpendicular to the plurality of measurement points XR1 and XR2 on the bottom surface 2a from the reference line 34, and the distances R1 and R2 are set. By measuring, two measurement points XR
If the distance XRo between 1 and XR2 is known, tan (θRx) =
The inclination angle θRx of the bottom surface 2a with respect to the reference line 34 on the screen can be calculated by calculating the expression (R1−R2) / XRo. Then, the length (distance) R3 of the perpendicular line to the reference line 34 of at least one measurement point XR3 in the lead terminal 3b is measured, and the projection height eR of the left lead terminal 3b with respect to the bottom surface 2a is calculated from the calculation of eR = R3-R1. Can be asked.
【0023】図8は、底面2aが基準線34に対して傾
き角度θRxがある場合を示し、この場合には、基準線
34上の水平距離XRo離れた2点F,Gから底面2a
に対して垂線を立て、底面2aの点XR1と点Fとの距
離R1及び点XR2と点GJとの距離R2を求める。こ
の二つの距離R1,R2の値から前述のように演算を実
行して傾き角度θRxを求める。次いで、この傾き角度
θRxから底面2aに平行な第2基準線34aを画面上
に表示し、この第2基準線34aと平行状の走査線34
bを移動させてリード端子3bにおける最上点Kを見つ
けるように走査し、走査距離(2点J,K間の距離)R
3を算出する。この距離R3から前記走査線34bと底
面2aとの垂直距離(2点I,XR3間の距離)である
eR=(R1−R3) cos(90°−θRx)の演算式
から正確な突出高さを求めることができる。FIG. 8 shows the case where the bottom surface 2a has an inclination angle θRx with respect to the reference line 34. In this case, the bottom surface 2a is located from two points F and G on the reference line 34 which are separated by a horizontal distance XRo.
A perpendicular line is erected with respect to the distance R1 between the point XR1 and the point F on the bottom surface 2a and the distance R2 between the point XR2 and the point GJ. From the values of these two distances R1 and R2, the tilt angle θRx is calculated by executing the calculation as described above. Next, a second reference line 34a parallel to the bottom surface 2a is displayed on the screen from the tilt angle θRx, and the scanning line 34 parallel to the second reference line 34a.
b is moved to perform scanning so as to find the uppermost point K on the lead terminal 3b, and a scanning distance (distance between two points J and K) R
Calculate 3. From this distance R3, the vertical distance between the scanning line 34b and the bottom surface 2a (distance between the two points I and XR3) eR = (R1-R3) cos (90 ° -θRx) Can be asked.
【0024】なお、撮像手段20,21にて各リード端
子3a,3bの被測定部位と基準面2aとを含む範囲の
画像データをそれぞれ得る場合、各撮像手段20,21
の光学系の倍率を高め過ぎると、各リード端子の屈曲状
況が判別し難いし、複数の測定点間の距離も短くなり過
ぎて、却って測定誤差が大きくなる可能性があるので、
適性な倍率で計測すべきである。また、測定誤差を少な
くするため、数回の測定結果の平均値を得るようにして
も良い。When the image pickup means 20 and 21 respectively obtain image data of a range including the measured portions of the lead terminals 3a and 3b and the reference plane 2a, the image pickup means 20 and 21 are used.
If the magnification of the optical system is too high, it is difficult to distinguish the bending state of each lead terminal, the distance between multiple measurement points becomes too short, and the measurement error may increase.
It should be measured at an appropriate magnification. Further, in order to reduce the measurement error, an average value of the measurement results of several times may be obtained.
【0025】また、前記の画像処理において、底面2a
とリード端子とを含む画像パターンを予め登録(記憶)
させておき、被測定部位の検索作業等の画像認識作業の
迅速化を図るようにしても良い。In the above image processing, the bottom surface 2a
The image pattern including the and lead terminals is registered (stored) in advance.
Alternatively, the image recognition work such as the search work for the measurement site may be speeded up.
【0026】本実施例における電子部品1の前記突出高
さeR,eLの合格範囲は0〜+100μm、傾き角度
θRx,θLxの許容範囲は±5度である。The acceptable range of the protruding heights eR and eL of the electronic component 1 in this embodiment is 0 to +100 μm, and the allowable range of the inclination angles θRx and θLx is ± 5 degrees.
【0027】前記実施例では、各リード端子3a,3b
のコ字型への曲げ加工の完了後の被測定部位の位置や姿
勢を測定したが、前段階のL字状屈曲の精度を測定する
場合や、各リード端子を側面視略Z字状に曲げ加工した
電子部品において、基準面となるモールド部の底面と各
リード端子の電極パッドへの当接面とのギャップを測定
する場合にも、本発明の方法を適用できることはいうま
でもない。 In the above embodiment, each lead terminal 3a, 3b
We measured the position and posture of the measured part after the completion of the bending process to the U shape, but when measuring the accuracy of the L-shaped bending in the previous stage, or when making each lead terminal into a Z shape when viewed from the side. in bending the electronic component, when measuring the gap between the contact surface of the bottom surface of the mold portion as a reference plane to the electrode pads of the lead terminals may also be capable of applying the method of the present invention is not needless to say .
【0028】[0028]
【発明の作用・効果】以上に説明したように、請求項1
及び2に記載の発明に従えば、1つの光源からの平行光
を、前記モールド部と左右一対のリード端子との側面か
ら一度に照射して、前記モールド部における基準部位と
左右一対のリード端子の被測定部位とを含む範囲の投影
像の画像データを、撮像手段にて捉えるから、前記モー
ルド部における基準部位と左右一対のリード端子の被測
定部位とを互いに邪魔されることなく画像データとして
得ることができる。 As described above, claim 1
According to the invention described in 1 and 2, collimated light from one light source
From the side surface of the mold and the pair of left and right lead terminals.
Irradiate at a time from the
Projection of the range including the measurement site of the pair of left and right lead terminals
Since the image data of the image is captured by the image pickup means,
Of the reference part and the pair of left and right lead terminals
Image data as a fixed part without being interfered with each other
Obtainable.
【0029】従って、基準部位に対する各リード端子の
位置や姿勢を各リード端子ごとに独立して測定すること
が可能となり、また、各リード端子の被測定部位と基準
部位とを含む範囲を一つの画像データとして取り込んで
画像処理するので、基準部位の傾斜姿勢等の影響を確実
に補正して測定誤差を発生する要因をなくすることがで
きて、簡単且つ迅速に、又正確に測定できるという効果
を奏する。 Therefore, it becomes possible to independently measure the position and the posture of each lead terminal with respect to the reference portion, and the range including the measured portion of each lead terminal and the reference portion is defined as one. Since it is captured as image data and image processed, it is possible to correct the influence of the inclination posture of the reference part, etc., to eliminate the factor that causes the measurement error, and to perform the measurement easily, quickly, and accurately. Play.
【0030】そして、請求項2に記載の方法によれば、
複数のリード端子を基準部位と共に一つの画像データと
して得ると測定誤差が大きくなるが、複数の撮像手段を
同じ方向に並設すると、各々の被測定部位を撮像できな
いような寸法の小型化した電子部品について、前記モー
ルド部における基準部位と左右一対のリード端子の被測
定部位とを含む範囲の投影像の画像データを、ハーフプ
リズム等の前記投影像 を分離する手段を介して前記各リ
ード端子個所に対応する撮像手段により電子部品の側面
視で捉え、前記各画像データを一つのリード端子部ごと
に画像処理するので、測定誤差を少なくした状態で測定
できるという効果を奏する。According to the method of claim 2,
If a plurality of lead terminals are obtained as one image data together with the reference part, the measurement error will be large, but if a plurality of image pickup means are arranged side by side in the same direction, the size of the electronic device will be reduced so that each measured part cannot be imaged. for parts, the mode
Of the reference part and the pair of left and right lead terminals
The image data of the projected image in the range including
Each of the tracks is separated by means of separating the projected image such as rhythm.
The side of the electronic component by the imaging means corresponding to the terminal position
Visually capture the above image data for each lead terminal
Since the image processing is performed, it is possible to perform the measurement with the measurement error reduced.
【図面の簡単な説明】[Brief description of drawings]
【図1】電子部品の斜視図である。FIG. 1 is a perspective view of an electronic component.
【図2】(a)は電子部品が良品である場合のリード端
子の位置及び姿勢を示す側面図(b)は不良品である場
合の側面図である。FIG. 2A is a side view showing the position and posture of the lead terminal when the electronic component is a non-defective product, and FIG. 2B is a side view when the electronic component is a defective product.
【図3】リードフレームにおける電子部品の装着状態と
リード端子の曲げ加工の順序を示す斜視図である。FIG. 3 is a perspective view showing a mounting state of electronic components on a lead frame and a sequence of bending lead terminals.
【図4】測定装置システムの概略図である。FIG. 4 is a schematic diagram of a measuring device system.
【図5】撮像手段による撮像部の概略斜視図である。FIG. 5 is a schematic perspective view of an image pickup section by an image pickup unit.
【図6】撮像手段による撮像部の概略平面図である。FIG. 6 is a schematic plan view of an image pickup section by an image pickup means.
【図7】画面における説明図である。FIG. 7 is an explanatory diagram of a screen.
【図8】モールド部2の底面2aが傾斜している状態を
示す説明図である。FIG. 8 is an explanatory diagram showing a state where the bottom surface 2a of the mold portion 2 is inclined.
【図9】従来の技術の第1の測定方法を示す斜視図であ
る。FIG. 9 is a perspective view showing a first measuring method of a conventional technique.
【図10】第1の測定方法を示す側面図である。FIG. 10 is a side view showing a first measuring method.
【図11】従来の技術の第2の測定方法を示す側面図で
ある。FIG. 11 is a side view showing a second measuring method of the conventional technique.
1 電子部品 2 モールド部 2a 底面 3,3a,3b リード端子 10 リードフレーム 15 移送用リール 17 ステップモータ 20,21 撮像手段 22 光源 24 ハーフプリズム 25,26 画像メモリ 27 画像処理装置 29 中央制御装置 1 electronic components 2 Mold part 2a bottom 3,3a, 3b Lead terminal 10 lead frame 15 Transfer reel 17 step motor 20, 21 Imaging means 22 Light source 24 Half prism 25,26 image memory 27 Image processing device 29 Central control unit
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 G01N 21/84 - 21/958 H01L 21/64 - 21/66 H05K 13/08 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01B 11/00-11/30 G01N 21/84-21/958 H01L 21/64-21/66 H05K 13 / 08
Claims (2)
屈曲して突出する一対のリード端子の位置及び/又は姿
勢を測定する方法において、1つの光源からの平行光を、前記モールド部と左右一対
のリード端子との側面から一度に照射して、前記モール
ド部における基準部位と左右一対のリード端子の被測定
部位とを含む範囲の投影像の画像データを撮像手段にて
捉え、 前記各リード端子の被測定部位と基準部位とを含む範囲
の画像データを、当該一つのリード端子部ごとに画像処
理し、 次いで、前記基準部位に対する各被測定部位の幾何学的
位置・姿勢を測定することを特徴とする電子部品におけ
るリード端子の位置・姿勢の測定方法。1. A method for measuring the position and / or posture of a pair of lead terminals, which are bent and protrude from both ends of a mold part in an electronic component , comprising:
Irradiate at once from the side with the lead terminals of the
Measurement of the reference part and the pair of left and right lead terminals
Image data of the projected image of the range including the part
Captured, the image data of the area including the site and a reference site to be measured of the lead terminals, and image processing for each said one lead terminal section, then, the geometrical position of each measurement site relative to the reference sites A method for measuring the position / orientation of a lead terminal in an electronic component, characterized by measuring the attitude.
屈曲して突出する一対のリード端子の位置及び/又は姿
勢を測定する方法において、 1つの光源からの平行光を、前記モールド部と左右一対
のリード端子との側面から一度に照射して、前記モール
ド部における基準部位と左右一対のリード端子の被測定
部位とを含む範囲の投影像の画像データを、前記投影像
を分離する手段を介して 前記各リード端子個所に対応す
る撮像手段により電子部品の側面視で捉え、 前記各画像データを一つのリード端子部ごとに画像処理
し、次いで、前記基準部位に対する各被測定部位の幾何
学的位置・姿勢を測定することを特徴とする電子部品に
おけるリード端子の位置・姿勢の測定方法。2. From both ends of a mold portion of an electronic component
Position and / or shape of a pair of lead terminals that bend and project
In the method for measuring the force, parallel light from one light source is paired with the mold part on the left and right sides.
Irradiate at once from the side with the lead terminals of the
Measurement of the reference part and the pair of left and right lead terminals
The image data of the projection image of the range including the part and
Is captured by a side view of the electronic component by an image pickup means corresponding to each of the lead terminal portions via a means for separating the image data, image data of each of the lead terminal portions is subjected to image processing, and then each of the target portions with respect to the reference portion is processed. A method for measuring the position / orientation of a lead terminal in an electronic component, which comprises measuring the geometrical position / orientation of a measurement site.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28655793A JP3369675B2 (en) | 1993-11-16 | 1993-11-16 | Measuring method of position and orientation of lead terminals in electronic components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28655793A JP3369675B2 (en) | 1993-11-16 | 1993-11-16 | Measuring method of position and orientation of lead terminals in electronic components |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07139924A JPH07139924A (en) | 1995-06-02 |
JP3369675B2 true JP3369675B2 (en) | 2003-01-20 |
Family
ID=17705957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28655793A Expired - Fee Related JP3369675B2 (en) | 1993-11-16 | 1993-11-16 | Measuring method of position and orientation of lead terminals in electronic components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3369675B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030073314A (en) * | 2002-03-11 | 2003-09-19 | (주)세아메카닉스 | An apparatus and method for detecting the failure of the bending angle of a gripper |
JP4652883B2 (en) | 2005-04-28 | 2011-03-16 | 日本発條株式会社 | Measuring apparatus and measuring method |
JP7314608B2 (en) | 2019-05-10 | 2023-07-26 | スミダコーポレーション株式会社 | Electronic component evaluation method, electronic component evaluation apparatus, and electronic component evaluation program |
CN118670303B (en) * | 2024-06-17 | 2024-12-06 | 南京信息工程大学 | Angle sensor capable of automatically calibrating angles and calibration measurement method thereof |
-
1993
- 1993-11-16 JP JP28655793A patent/JP3369675B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07139924A (en) | 1995-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5134665A (en) | Apparatus and method of inspecting solder printing | |
JP3005294B2 (en) | Grid array inspection system and method | |
US6496270B1 (en) | Method and system for automatically generating reference height data for use in a three-dimensional inspection system | |
US6055055A (en) | Cross optical axis inspection system for integrated circuits | |
US5114229A (en) | Apparatus for measuring leads of electrical component and method of measuring leads of electrical component | |
JP3369675B2 (en) | Measuring method of position and orientation of lead terminals in electronic components | |
US5038380A (en) | Method for recognizing position of component and apparatus therefor | |
KR100412272B1 (en) | A Coplanarity Inspection System and a Method Thereof of Package | |
JP2001124700A (en) | Calibration method of inspection machine with line sensor camera | |
JP2793947B2 (en) | Appearance inspection method of soldering condition | |
JP3203397B2 (en) | Soldering condition inspection device and soldering condition inspection method | |
JP3006566B2 (en) | Lead bending inspection equipment | |
JP2000036698A (en) | Method for inspecting electronic part mounted circuit board and its device | |
JP2979917B2 (en) | IC chip positioning method | |
TW577973B (en) | Inspection apparatus for lead wire | |
JPH05114640A (en) | Method and device for measuring lead, and lead tester using same | |
JPH07104136B2 (en) | Terminal tilt detection method | |
JP2001153640A (en) | Printed circuit board inspection device | |
JP3054513B2 (en) | Method for detecting lead lift of electronic components | |
JP4008722B2 (en) | Method and apparatus for detecting floating electrode of electronic component | |
JPS5919464B2 (en) | pattern recognition device | |
JP2894876B2 (en) | Object detection method | |
JP3131977B2 (en) | Parts inspection method | |
JP2758474B2 (en) | Electronic component manufacturing method | |
JP3439529B2 (en) | Line width measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111115 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |