[go: up one dir, main page]

JP3367294B2 - Hydroponic cultivation method - Google Patents

Hydroponic cultivation method

Info

Publication number
JP3367294B2
JP3367294B2 JP22032095A JP22032095A JP3367294B2 JP 3367294 B2 JP3367294 B2 JP 3367294B2 JP 22032095 A JP22032095 A JP 22032095A JP 22032095 A JP22032095 A JP 22032095A JP 3367294 B2 JP3367294 B2 JP 3367294B2
Authority
JP
Japan
Prior art keywords
value
tank
drainage
culture solution
dilution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22032095A
Other languages
Japanese (ja)
Other versions
JPH0965783A (en
Inventor
康志 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP22032095A priority Critical patent/JP3367294B2/en
Publication of JPH0965783A publication Critical patent/JPH0965783A/en
Application granted granted Critical
Publication of JP3367294B2 publication Critical patent/JP3367294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、ロックウールその他
で出来た培地に培養液を供給して作物を育成させる養液
栽培に用いるものである。 【0002】 【従来の技術】硝酸カルシウム、硝酸アンモニウム、硝
酸カリウム、リン酸二水素カリウム、硫酸カリウムなど
から選択された少くとも1種の原料に井戸水その他の原
水を加えて培養液を作り、これをロックウールその他で
出来た培地に供給して作物を育成させている。そして、
培地から回収した培養液(以下「排液」という。)は、
供給量の10%〜15%に達し、原料に原水を加える際
にこの排液を混入させて原料や原水の節約を図っている
(特開平7−53286)。 【0003】 【発明が解決しようとする課題】培養液の肥料濃度が導
電率(EC値)で表され、これを一定範囲内にして培地
に供給されるが、排液は、排出量とEC値が2.0〜1
0.0とばらつき、培養液のEC値を一定の範囲内(例
えば「ばら」では2.0〜2.4)に納めるのが困難で
ある。 【0004】 【課題を解決するための手段】この発明は、上記の課題
を解決するため、培地から回収した培養液の排液のEC
値を検出し、その排液に検出したEC値に応じた量の原
水を稀釈タンク15内で加えて一定のEC値を目標にし
た稀釈液を作り、出来上がった稀釈水にそのEC値を検
出しながら原水又は排液を加えてEC値を目標値に納
め、目標のEC値内に納まった稀釈液に給液ユニット2
4内で原料を加えて培養液を作り、この培養液を培地に
供給する養液栽培方法とした。 【0005】 【作用】この発明は、ロックウールその他で出来た培地
(又はその上のペレット)に作物を移植し、これに培養
液を供給して作物を育成する。この培養液は、若干多目
に供給されるので、その10%〜15%が排液として回
収される。回収された排液は、EC値が計測され、その
EC値を一定の値(目標値)に下げるように稀釈タンク
15内で上記の計測値に応じた量の原水(EC値が0〜
0.1程度)が加えられる。原水が加えられた排液が稀
釈液となり、そのEC値を再度計測し、その値が目標値
となるように小量の原水又は排液を加える。 【0006】このようにしてEC値が一定の範囲内に達
した稀釈水を給液ユニット24に送り、この給液ユニッ
ト24内で原料を加えて肥料濃度が一定(例えばEC値
が2.0〜2.4)の培養液を作り、この培養液を前記
の培地に供給する。 【0007】 【効果】この発明によると、供給量の10〜15%に達
する排液が培養液として再利用されるので、肥料(原
料)や原水が節約されることはもとより、これが流出し
ないので環境汚染がほとんどない。そして、この排液
は、そのEC値に応じて所要の原水が加えられて定めら
れたEC値にあらかじめ調整されているので、これに所
定の原料を加えてEC値が安定した培養液がすみやかに
得られる。 【0008】 【実施例】この発明の実施例を説明する。図1のよう
に、ハウス1内にロックウールでできた培地2が設けら
れ、その上に複数のペレット3,3,……が並べて置か
れ、それぞれのペレット3,3,……に作物4,4,…
…が植られている。ドリッパ5,5,……がそれぞれの
ペレット3,3,……に差し込まれ、管6で送られて来
た培養液がそれぞれのドリッパ5,5,……でペレット
3,3,……および培地2に送られ、これを吸収して作
物4,4,……が生育している。 【0009】上記の培養液は、作物4,4,……が吸収
する量に対して余分に送られ、その10%〜15%が排
液として回収される。すなわち、培地2の下の受皿7で
受けられた排液は、その肥料濃度を電導率(EC値)で
計測するECセンサ8および流量計9を経由して排液タ
ンク10に回収されるようになっている。井戸水その他
の原水が入った原水タンク11、硝酸カルシウム、硝酸
アンモニウム、キレート鉄(Fe330)の一定の比率
の混合溶液が入ったAタンク12、硝酸カリウム、リン
酸二水素カリウム、硝酸カリウム、硝酸マグネシウム、
硫酸マンガン、硫酸亜鉛、ホウ酸、硫酸銅、モリブデン
酸ナトリウムの一定の比率の混合溶液が入ったBタンク
13、および、培養液のPH値を調節する溶液が入った
Acidタンク14が配置されている。 【0010】稀釈タンク15が設けられ、バルブ16,
17を開くと、排液タンク10内に回収されている排液
と、原水タンク11内の原水が供給されるように出来て
いる。この稀釈タンク15には、水位計18と、ポンプ
19でその内の溶液(稀釈水)を循環させながらそのE
C値とPH値を計測するECセンサ20とPHセンサ2
1が設けられている。稀釈液制御部(コンピュータ)2
2が設けられ、排液タンク10内の排液のEC値を計測
するECセンサ23、前記の水位計18およびECセン
サ20の計測値が入力され、その出力でバルブ16,1
7をつぎのように開閉するようになっている。 【0011】排液のEC値は、通常2.0〜10.0と
広い範囲にばらついているが、ECセンサ23は、回収
された排液タンク10内の排液の現実のEC値を計測し
て稀釈液制御部22に入力する。稀釈液制御部22は、
バルブ16を開いてその排液を稀釈タンク15内に供給
し、水位計18の計測で所定量になった所でバルブ16
を閉じる。つづいてバルブ17を開き、排液に原水を加
えて稀釈水を作るが、この稀釈水の目標のEC値を例え
ば0.5と設定しておくと、水位計18が計測した排液
の量とそのECセンサ23が計測したEC値により、加
える原水の量が簡単な計算で定まる。バルブ17は、そ
の計算された量の原水が稀釈タンク15に供給される
と、閉じる。 【0012】そののち、排液と原水が混合されてできた
稀釈液の現実のEC値をECセンサ20が計測し、これ
が設定した目標値よりも高いとバルブ17を開いて原水
を加え、低いとバルブ16を開いて排液を加え、必要に
よってはこれを繰り返して行って稀釈タンク15内にお
ける稀釈液のEC値を目標値の範囲内に納める。給液ユ
ニット(混合器)24が設けられ、稀釈タンク15内の
稀釈液、Aタンク12およびBタンク13内の溶液(肥
料の原料)並びにAcidタンク14内の溶液が供給さ
れている。それぞれの液は、給液ユニット24で混合さ
れて培養液となり、ポンプ25、流量計26およびバル
ブ27を経由して管6内に流れ込む。給液制御部(コン
ピュータ)28が設けられ、ECセンサ8、流量計9お
よび流量計26の計測値が入力され、バルブ29,3
0,31並びにポンプ25およびバルブ27に出力する
ようになっている。すなわち、培養液の供給時間が来る
と、バルブ29,30を開いてAタンク12とBタンク
13内の原料を一定の比率で給液ユニット24に供給
し、ポンプ25が作動し、バルブ27が開いて給液ユニ
ット24内で作られた培養液を培地2に供給する。そし
て、その排液のEC値をECセンサ8が計測している
が、その値が高いと、バルブ27の開度を上げて培養液
の供給量を上げる。すると、稀釈液の供給量が上って培
養液のEC値が下る。これとは逆に、ECセンサ8が計
測したEC値が低いと、バルブ27の開度を下げて培養
液の供給量を下げる。すると、稀釈液の供給量が下って
培養液のEC値が上る。 【0013】なお、給液ユニット24にPHセンサを設
け、その計測値に応じてバルブ31を開閉し、培養液の
PH値を例えば5.5に調整する。また、上記は、培養
液のEC値の調節に当り、ECセンサ8が計測した排液
のEC値を用いたが、給液ユニット24にECセンサを
設け、その計測値でバルブ30,31および稀釈タンク
15と給液ユニット24の間のバルブを開閉し、その培
養液のEC値を2.0(2〜2.4)に調整することが
できる。 【0014】図2には、他の実施例を示している。すな
わち、Cタンク32が追加され、その内の溶液がバルブ
33を経由して給液ユニット24に供給されるようにな
っている。そして、Aタンク12およびBタンク13内
の硝酸カルシウムおよび硝酸カリウムの比率を例えば2
分の1に下げ、下げられたこれらの混合溶液をCタンク
24内に入れる。ここに、排液には、Ca、No3 およ
びKを含む成分が多く含まれ、これを繰り返して再利用
すると、植物にその悪影響を及ぼすおそれがある。ここ
に、ECセンサ8および流量計9の計測により、排液の
EC値が高く、その流量が多いときは、給液制御部28
の出力でバルブ33がCタンク32からの流路を絞り、
その溶液の流入量を少くする。これとは逆に、排液のE
C値が低く、その流量が少いときは、流路を開き、Cタ
ンク32内の溶液の流量を多くする。なお、その他のと
きは、上記の中間的な流量とする。すると、排液を利用
する場合の肥料の成分をより目標値に近づけることがで
きる。 【0015】図3は、他の実施例を示している。すなわ
ち、図1のものに加え、原水タンク11と給液ユニット
24をバルブ34を備えた流路で結ぶ。そして、稀釈タ
ンク15内の稀釈液、原水タンク11内の原水並びにA
タンク12、Bタンク13およびAcidタンク14内
の溶液を給液ユニット24に供給し、これらを混合して
培養液を作る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nutrient solution for cultivating crops by supplying a culture solution to a medium made of rock wool or the like. 2. Description of the Related Art Well water and other raw water are added to at least one raw material selected from calcium nitrate, ammonium nitrate, potassium nitrate, potassium dihydrogen phosphate, potassium sulfate, etc. to form a culture solution, which is then locked. The crop is grown by supplying it to a medium made of wool or other materials. And
The culture solution (hereinafter referred to as “drainage”) collected from the medium is
When the raw water reaches 10% to 15% of the supplied amount, the wastewater is mixed when the raw water is added to the raw material to save the raw material and the raw water (Japanese Patent Application Laid-Open No. 7-53286). [0003] The fertilizer concentration of a culture solution is represented by an electric conductivity (EC value), which is supplied to a culture medium within a certain range. 2.0 to 1
It is difficult to keep the EC value of the culture solution within a certain range (for example, 2.0 to 2.4 for "rose"). [0004] In order to solve the above-mentioned problems, the present invention provides an EC for draining a culture solution recovered from a culture medium.
The dilution value is detected, and the amount of raw water corresponding to the detected EC value is added to the drainage in the dilution tank 15 to make a dilution liquid with a target of a constant EC value, and the EC value is detected in the completed dilution water. While the raw water or drainage is added, the EC value is set to the target value, and the diluted liquid contained within the target EC value is supplied to the liquid supply unit 2.
A nutrient solution cultivation method was used in which a culture solution was prepared by adding the raw materials in 4, and the culture solution was supplied to the medium. According to the present invention, a crop is transplanted to a medium (or a pellet thereon) made of rock wool or the like, and a culture solution is supplied thereto to grow the crop. Since this culture solution is supplied a little more, 10% to 15% of the culture solution is collected as waste liquid. The EC value of the collected drainage is measured, and the amount of raw water (EC value of 0 to 0) according to the measured value is set in the dilution tank 15 so as to reduce the EC value to a constant value (target value).
0.1). The effluent to which the raw water has been added becomes a diluent, the EC value of which is measured again, and a small amount of raw water or effluent is added so that the EC value becomes the target value. [0006] Dilution water having an EC value within a certain range as described above is sent to a liquid supply unit 24, and raw materials are added in the liquid supply unit 24 to maintain a constant fertilizer concentration (for example, an EC value of 2.0). -2.4) A culture solution is prepared, and this culture solution is supplied to the medium. [0007] According to the present invention, since the waste liquid that reaches 10 to 15% of the supply amount is reused as a culture solution, fertilizer (raw material) and raw water are saved, and this does not flow out. Almost no environmental pollution. The wastewater is adjusted in advance to a predetermined EC value by adding necessary raw water in accordance with the EC value, so that a culture medium having a stable EC value by adding a predetermined raw material to the wastewater can be quickly prepared. Is obtained. An embodiment of the present invention will be described. As shown in FIG. 1, a medium 1 made of rock wool is provided in a house 1 and a plurality of pellets 3, 3,... , 4, ...
… Is planted. The drippers 5, 5,... Are inserted into the respective pellets 3, 3,..., And the culture solution sent by the tube 6 is pelletized by the respective drippers 5, 5,. It is sent to the culture medium 2 and the crops 4, 4,... Grow by absorbing this. The above culture solution is sent in excess of the amount absorbed by the crops 4, 4,..., And 10% to 15% of the culture solution is collected as waste liquid. That is, the drainage received in the saucer 7 below the culture medium 2 is collected in the drainage tank 10 via the EC sensor 8 and the flow meter 9 which measure the fertilizer concentration by the electric conductivity (EC value). It has become. Raw water tank 11 containing well water and other raw water, A tank 12 containing a mixed solution of calcium nitrate, ammonium nitrate, and a certain ratio of chelated iron (Fe330), potassium nitrate, potassium dihydrogen phosphate, potassium nitrate, magnesium nitrate,
A B tank 13 containing a mixed solution of manganese sulfate, zinc sulfate, boric acid, copper sulfate and sodium molybdate at a fixed ratio, and an Acid tank 14 containing a solution for adjusting the pH value of the culture solution are arranged. I have. A dilution tank 15 is provided.
Opening 17 allows drainage collected in drainage tank 10 and raw water in raw water tank 11 to be supplied. In the dilution tank 15, a water level gauge 18 and a pump 19 are used to circulate the solution (diluted water) in the dilution tank 15.
EC sensor 20 and PH sensor 2 for measuring C value and PH value
1 is provided. Dilution liquid control unit (computer) 2
The EC sensor 23 for measuring the EC value of the drainage in the drainage tank 10, the measured values of the water level gauge 18 and the EC sensor 20 are input, and the outputs thereof are used as valves 16, 1.
7 is opened and closed as follows. Although the EC value of the drainage generally varies in a wide range of 2.0 to 10.0, the EC sensor 23 measures the actual EC value of the drainage collected in the drainage tank 10. And input it to the diluting liquid control unit 22. The dilution liquid control unit 22
The valve 16 is opened and the drainage liquid is supplied into the dilution tank 15.
Close. Subsequently, the valve 17 is opened, and the diluted water is made by adding the raw water to the discharged water. If the target EC value of the diluted water is set to, for example, 0.5, the amount of the discharged liquid measured by the water level meter 18 is measured. And the EC value measured by the EC sensor 23, the amount of raw water to be added is determined by a simple calculation. The valve 17 closes when the calculated amount of raw water is supplied to the dilution tank 15. After that, the EC sensor 20 measures the actual EC value of the diluted solution formed by mixing the drainage and the raw water. If the actual EC value is higher than the set target value, the valve 17 is opened to add the raw water and the raw water is added. And the valve 16 are opened to add drainage, and this is repeated if necessary, so that the EC value of the diluent in the dilution tank 15 falls within a target value range. A liquid supply unit (mixer) 24 is provided to supply a diluent in the diluting tank 15, a solution in the A tank 12 and the B tank 13 (raw material of fertilizer), and a solution in the Acid tank 14. The respective liquids are mixed in the liquid supply unit 24 to become a culture liquid, and flow into the pipe 6 via the pump 25, the flow meter 26, and the valve 27. A liquid supply control unit (computer) 28 is provided, and the measured values of the EC sensor 8, the flow meter 9, and the flow meter 26 are input, and the valves 29, 3
0, 31 and the pump 25 and the valve 27. That is, when the supply time of the culture solution comes, the valves 29 and 30 are opened to supply the raw materials in the A tank 12 and the B tank 13 to the liquid supply unit 24 at a fixed ratio, the pump 25 is operated, and the valve 27 is operated. Open and supply the culture solution produced in the liquid supply unit 24 to the culture medium 2. The EC value of the drainage is measured by the EC sensor 8. If the EC value is high, the opening degree of the valve 27 is increased to increase the supply amount of the culture solution. Then, the supply amount of the diluent increases, and the EC value of the culture decreases. Conversely, when the EC value measured by the EC sensor 8 is low, the opening degree of the valve 27 is reduced to reduce the supply amount of the culture solution. Then, the supply amount of the diluting solution decreases, and the EC value of the culture solution increases. A pH sensor is provided in the supply unit 24, and the valve 31 is opened and closed according to the measured value to adjust the pH value of the culture solution to, for example, 5.5. In the above, the EC value of the drainage measured by the EC sensor 8 was used to adjust the EC value of the culture solution. However, an EC sensor was provided in the liquid supply unit 24, and the valves 30, 31 and By opening and closing a valve between the dilution tank 15 and the liquid supply unit 24, the EC value of the culture solution can be adjusted to 2.0 (2 to 2.4). FIG. 2 shows another embodiment. That is, a C tank 32 is added, and the solution therein is supplied to the liquid supply unit 24 via the valve 33. Then, the ratio of calcium nitrate and potassium nitrate in the A tank 12 and the B tank 13 is set to, for example, 2
The mixed solution is lowered into the C tank 24. Here, the drainage contains a large amount of components containing Ca, No3 and K, and if this is repeatedly reused, the plant may be adversely affected. Here, when the EC value of the drainage is high and the flow rate is high by the measurement of the EC sensor 8 and the flow meter 9, the liquid supply control unit 28
The valve 33 restricts the flow path from the C tank 32 with the output of
Reduce the inflow of the solution. Conversely, the drainage E
When the C value is low and the flow rate is low, the flow path is opened and the flow rate of the solution in the C tank 32 is increased. In other cases, the flow rate is intermediate as described above. Then, the component of the fertilizer in the case of using drainage can be made closer to the target value. FIG. 3 shows another embodiment. That is, in addition to the one in FIG. 1, the raw water tank 11 and the liquid supply unit 24 are connected by a flow path provided with a valve 34. Then, the dilution liquid in the dilution tank 15, the raw water in the raw water tank 11, and A
The solutions in the tank 12, the B tank 13, and the Acid tank 14 are supplied to a liquid supply unit 24, and these are mixed to prepare a culture solution.

【図面の簡単な説明】 【図1】この発明の実施例のブロック図 【図2】他の実施例のブロック図 【図3】他の実施例のブロック図 【符号の説明】 2 培地 15 稀釈タンク 24 給液ユニット[Brief description of the drawings] FIG. 1 is a block diagram of an embodiment of the present invention. FIG. 2 is a block diagram of another embodiment. FIG. 3 is a block diagram of another embodiment. [Explanation of symbols] 2 Medium 15 Dilution tank 24 Liquid supply unit

Claims (1)

(57)【特許請求の範囲】 【請求項1】 培地2から回収した培養液の排液のEC
値を検出し、その排液に検出したEC値に応じた量の原
水を稀釈タンク15内で加えて一定のEC値を目標にし
た稀釈液を作り、出来上がった稀釈水にそのEC値を検
出しながら原水又は排液を加えてEC値を目標値に納
め、目標のEC値内に納まった稀釈液に給液ユニット2
4内で原料を加えて培養液を作り、この培養液を培地2
に供給する養液栽培方法。
(57) [Claims] [Claim 1] EC of the drainage of the culture solution recovered from the culture medium 2
The dilution value is detected, and the amount of raw water corresponding to the detected EC value is added to the drainage in the dilution tank 15 to make a dilution liquid with a target of a constant EC value, and the EC value is detected in the completed dilution water. While the raw water or drainage is added, the EC value is set to the target value, and the diluted liquid contained within the target EC value is supplied to the liquid supply unit 2.
4 to prepare a culture solution by adding the raw materials.
Nutrient cultivation method to supply to.
JP22032095A 1995-08-29 1995-08-29 Hydroponic cultivation method Expired - Lifetime JP3367294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22032095A JP3367294B2 (en) 1995-08-29 1995-08-29 Hydroponic cultivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22032095A JP3367294B2 (en) 1995-08-29 1995-08-29 Hydroponic cultivation method

Publications (2)

Publication Number Publication Date
JPH0965783A JPH0965783A (en) 1997-03-11
JP3367294B2 true JP3367294B2 (en) 2003-01-14

Family

ID=16749301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22032095A Expired - Lifetime JP3367294B2 (en) 1995-08-29 1995-08-29 Hydroponic cultivation method

Country Status (1)

Country Link
JP (1) JP3367294B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033057A1 (en) * 2015-08-25 2017-03-02 Netafim Ltd. Method and apparatus for fertigation with wastewater
US10143130B2 (en) 2015-08-25 2018-12-04 Netafim Ltd. Method and apparatus for fertigation with wastewater

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299375A (en) * 1998-04-22 1999-11-02 Kaneko Agricult Mach Co Ltd Watering system in plant culture facility
JP2000342090A (en) * 1999-06-02 2000-12-12 Hideki Kobayashi Method and apparatus for feeding nutritious liquid
JP2001017011A (en) * 1999-07-05 2001-01-23 Taiyo Kogyo Co Ltd Method for feeding nutritious liquid for circulating type nutriculture
JP4759820B2 (en) * 2001-03-06 2011-08-31 井関農機株式会社 Hydroponics equipment
JP4636964B2 (en) * 2005-08-04 2011-02-23 隆盛 大出 Water supply management method, water supply management computer program, and water supply management device in plant cultivation apparatus
JP6853497B2 (en) * 2016-10-24 2021-03-31 井関農機株式会社 Hydroponic cultivation system
CN106843307A (en) * 2017-02-22 2017-06-13 佛山市高明区菜花园农业科技有限公司 The control system and control method of a kind of hydroponic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033057A1 (en) * 2015-08-25 2017-03-02 Netafim Ltd. Method and apparatus for fertigation with wastewater
US10143130B2 (en) 2015-08-25 2018-12-04 Netafim Ltd. Method and apparatus for fertigation with wastewater
US10182524B2 (en) 2015-08-25 2019-01-22 Netafim Ltd. Method and apparatus for fertigation with wastewater

Also Published As

Publication number Publication date
JPH0965783A (en) 1997-03-11

Similar Documents

Publication Publication Date Title
Eghball et al. Narrow grass hedge effects on phosphorus and nitrogen in runoff following manure and fertilizer application
Rice et al. Integrating mineralizable nitrogen indices into fertilizer nitrogen recommendations
Yadvinder-Singh et al. Optimal phosphorus management strategies for wheat-rice cropping on a loamy sand
Jayaweera et al. Assessment of ammonia volatilization from flooded soil systems
Yanai et al. Effects of inorganic nitrogen application on the dynamics of the soil solution composition in the root zone of maize
JP3367294B2 (en) Hydroponic cultivation method
McBeath et al. Predicting the response of wheat (Triticum aestivum L.) to liquid and granular phosphorus fertilisers in Australian soils
Zhou et al. Vertical distribution of denitrification end-products in paddy soils
CN104926430A (en) Nutrient solution for hydroponic lettuce and preparation method and application of nutrient solution
Cho Seasonal runoff estimation of N and P in a paddy field of central Korea
Pandey et al. Multi-sensors based smart nutrient reuse management system for closed soilless culture under protected cultivation
Jiang et al. Comparison of RZWQM2 and DNDC models to simulate greenhouse gas emissions under combined inorganic/organic fertilization in a subsurface-drained field
Nan et al. Critical period and pathways of water borne nitrogen loss from a rice paddy in northeast China
CN117223589A (en) Variable fertilizing method and device for hydroponic lettuce
Heinen et al. Soil dynamic models: Predicting the behavior of fertilizers in the soil
Widiasmadi et al. Biohole Effectiveness Analysis Through The Distribution Pattern of Microbes at Each Depth In Real Time On Coastal Sand
Ussiri et al. Nitrous oxide emissions from rice fields
Kupers et al. Diurnal changes in the ion concentration of the supply and return water of a tomato crop grown on rockwool
Priyadharshini et al. Sub-surface drainage system for management of waterlogged saline soils
Concepcion et al. Automated nutrient solution control system using embedded fuzzy logic controller for smart nutrient film technique aquaponics
Thach et al. Estimation of water quality dynamics under long-term anoxic state in organically polluted reservoir by field observations and improved ecosystem model
Brye et al. Phosphorus fertilizer effects on near-surface soil aggregation in furrow-irrigated rice on a silt-loam soil
Gieling et al. Modelling and simulation for control of nutrient application in closed growing systems
JPH05103521A (en) Method for fertilizing to paddy field
Yoshinaga et al. Dissolved nitrogen model for paddy field ponded water during irrigation period

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

EXPY Cancellation because of completion of term