JP3367149B2 - 導電性酸化物粉末の製造方法 - Google Patents
導電性酸化物粉末の製造方法Info
- Publication number
- JP3367149B2 JP3367149B2 JP16219793A JP16219793A JP3367149B2 JP 3367149 B2 JP3367149 B2 JP 3367149B2 JP 16219793 A JP16219793 A JP 16219793A JP 16219793 A JP16219793 A JP 16219793A JP 3367149 B2 JP3367149 B2 JP 3367149B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- hydroxide
- mixed
- conductive oxide
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 title claims description 66
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 36
- 238000010438 heat treatment Methods 0.000 claims description 31
- 239000007864 aqueous solution Substances 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 24
- 229910052723 transition metal Inorganic materials 0.000 claims description 24
- 239000012298 atmosphere Substances 0.000 claims description 23
- 239000007858 starting material Substances 0.000 claims description 21
- 150000003624 transition metals Chemical class 0.000 claims description 17
- 239000011164 primary particle Substances 0.000 claims description 13
- 239000011261 inert gas Substances 0.000 claims description 12
- 229910052718 tin Inorganic materials 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 238000000975 co-precipitation Methods 0.000 claims description 7
- 150000004679 hydroxides Chemical class 0.000 claims description 7
- 229910052738 indium Inorganic materials 0.000 claims description 7
- 229910052787 antimony Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 5
- 229910001428 transition metal ion Inorganic materials 0.000 claims description 5
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052745 lead Inorganic materials 0.000 claims description 4
- 239000011812 mixed powder Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000002994 raw material Substances 0.000 description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000002244 precipitate Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 238000010304 firing Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- -1 Furthermore Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 238000000889 atomisation Methods 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical class [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 101100323029 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) alc-1 gene Proteins 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910020935 Sn-Sb Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910008757 Sn—Sb Inorganic materials 0.000 description 1
- 229910007717 ZnSnO Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910001293 incoloy Inorganic materials 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- BNEMLSQAJOPTGK-UHFFFAOYSA-N zinc;dioxido(oxo)tin Chemical compound [Zn+2].[O-][Sn]([O-])=O BNEMLSQAJOPTGK-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Description
ム (ITO) 、アンチモンドープ酸化錫 (ATO) など
を代表例とする、2種以上の混合遷移金属酸化物からな
る電子伝導性による導電性酸化物粉末 (n型酸化物半導
体粉末) の製造方法に関する。
2 μm以下、好ましくは0.1 μm以下で、しかも圧粉体
(50 kgf/cm2) の体積抵抗率が10Ω・cm以下という、透
明性と導電性に優れた導電性酸化物粉末を量産性に優れ
た方法で製造することができる方法に関する。特に本発
明の方法をITO粉末の製造に適用した場合には、一次
粒子径0.05μm以下、体積抵抗率が0.1 Ω・cm以下とい
う低抵抗・超微粉の導電性酸化物粉末を量産することが
できる。
的な製造方法として、2種以上の原料遷移金属イオンを
含有する水溶液 (例、ITO粉末の場合にはSnとInを塩
化物または硝酸塩として溶解した水溶液) をアルカリ水
溶液と反応させて、原料金属の水酸化物を共沈させ、こ
の共沈水酸化物を出発原料として、これを大気中で加熱
処理して酸化物に変換させる方法がある。この方法は、
ITO粉末のみならず、ATO粉末や他のその他の電子
伝導型導電性酸化物粉末についても、安定で低抵抗のサ
ブミクロンの微粉末を製造できることが知られている。
粉末の利用分野としては、例えば平均一次粒子径を0.1
μm以下に制御した微粉末状の導電性酸化物粉末を溶媒
とバインダー樹脂からなる溶液中に分散させ、塗料化し
た導電性塗料 (皮膜形成材)がある。この塗料は、ガラ
ス、プラスチック等の基材に浸漬、塗布、印刷、スピン
コート或いは噴霧などの手段で塗工し、乾燥することに
よって、透明導電膜を基材上に形成することができる。
等の帯電防止やほこりの付着防止に有効であり、例えば
TVブラウン管や計測器の窓ガラスの帯電防止やほこり
の付着防止用として利用されている。
導電性酸化物の微粉末は、ICパッケージ回路形成、ク
リーンルーム内装材、各種ガラスやフィルム等の帯電防
止やほこりの付着防止、塗布型透明電極あるいは面発熱
体等の用途に利用もしくは検討が行われており、今後の
需要の伸びが期待されている。
化物粉末に対する要求性能も高まってきており、特にI
TO粉末を塗布、印刷などの塗工手段により適用して透
明導電膜を形成する用途においては、一段と高い透明性
と導電性が求められている。このため、塗料化における
分散技術の検討が行われる一方で、導電性酸化物粉末自
体についてもさらなる微粒化と低抵抗化の手段が模索さ
れている。
酸化物半導体) の導電機構は、例えばITOを例にとる
と、In2O3 結晶の3価のInサイトに4価のSnが置換配置
することによるn型ドナーの作用 (キャリア電子の発
生) に加えて、格子欠陥による酸素空孔のドナー効果に
よってバルク中のキャリア電子密度が高められることが
主な原因であることが知られている。ITOの製造にお
いては、ドープのSn含有量を1〜15 mol%の範囲内で調
整し、酸素欠陥に起因する導電性をより高めるために、
焼成雰囲気の酸素分圧を制御したり、あるいは還元性の
気流で焼成する等の工夫をして低抵抗化を図ることが知
られている。
仕込まれた原料の上部 (表面部分)と下部では酸素欠陥
の発生しやすさに差が生じて、導電性が不均一になる。
従って、超微粒且つ低抵抗化を同時に満足させるために
は、仕込原料をなるべく薄く敷いて、低温で焼成しなけ
ればならないが、そのような条件下での焼成は、特性の
ばらつきを生じると同時に量産性にも問題を生じる。こ
のため、特に最近要求されている一次粒子径0.05μm以
下、体積抵抗率が0.1 Ω・cm以下という低抵抗・超微粉
末のITOを工業的に量産することはこれまで困難であ
った。
粒子径0.2 μm以下、好ましくは0.1 μm以下で、しか
も圧粉体 (50 kgf/cm2) の体積抵抗率が10Ω・cm以下で
ある、透明性と導電性に優れた導電性酸化物粉末を量産
可能な製造方法を提供することである。
以下、体積抵抗率が0.1 Ω・cm以下の低抵抗・超微粉末
状のITO粉末を量産することができる導電性酸化物粉
末の製造方法を提供することである。
化物粉末の原料 (2種以上の遷移金属の混合水酸化物お
よび/または酸化物) を不活性ガスの密閉加圧条件下で
熱処理することにより上記目的が達成できることを見出
し、本発明を完成した。
混合水酸化物および/または酸化物からなる出発原料
を、圧力2kgf/cm2 以上の密閉した加圧不活性ガス雰囲
気下に温度 350〜1000℃で加熱処理することを特徴とす
る、導電性酸化物粉末の製造方法を要旨とする。
属イオンを含む水溶液とアルカリ水溶液との反応による
共沈で得た含水混合水酸化物、(2) この含水混合水酸化
物の加熱脱水乾燥した混合水酸化物および/または加熱
脱水した混合酸化物、(3) 公知方法で得た導電性酸化物
粉末、または(4) 2種以上の遷移金属の含水水酸化物、
水酸化物および/または酸化物の混合粉末を使用するこ
とができる。
あるITO粉末、SbとSnの組合わせであるATO粉末、
さらにはAl、Sn、In、Fe、Ga、Co、Si、Ge、SbまたはPb
とZnとの組合せである酸化亜鉛系の導電性酸化物粉末の
製造および処理に適用することができる。
造方法における出発原料は2種以上の遷移金属の混合水
酸化物および/または酸化物からなる。この出発原料と
しては、(1) 2種以上の遷移金属イオンを含む水溶液と
アルカリ水溶液との反応による共沈で得た含水混合水酸
化物、或いは(2) この含水混合水酸化物の加熱乾燥また
は加熱脱水により得た混合水酸化物および/または酸化
物を使用することが、超微粒化と低抵抗化への効果が高
いことから好ましい。
粉末、または(4) 2種以上の遷移金属の含水水酸化物、
水酸化物および/または酸化物の混合粉末を使用するこ
ともできる。
以上の異なる遷移金属の水溶性の塩を水に溶解させて、
これら遷移金属のイオンを含有する水溶液を調製する。
水溶性塩の種類は限定されないが、例えば、塩酸塩、硝
酸塩、硫酸塩などの無機酸塩、さらには酢酸塩などの有
機酸塩が例示される。2種以上の塩の混合物を用いてて
もよい。一方、アルカリ水溶液としては、アルカリ金属
(例、ナトリウムまたはカリウム) またはアンモニウム
の水酸化物、炭酸塩、炭酸水素塩の水溶液が使用でき
る。遷移金属塩の水溶液とアルカリ水溶液の濃度も特に
制限されないが、通常は 200〜400 g/l の範囲内であろ
う。
応を行う。この反応により各遷移金属塩が加水分解し
て、2種以上の遷移金属水酸化物が共沈する。微細な沈
殿を得るために、一方の水溶液を他方の水溶液に攪拌下
に滴下して徐々に混合を行うことが好ましい。反応温度
は、遷移金属の種類、濃度、ドープ量等によって加水分
解の容易さが異なるため、実験により適宜決定すればよ
いが、通常は常温〜100℃の範囲内でよい。反応に用い
るアルカリ水溶液の量は、導電性粉末の種類によっても
異なるが、混合後の溶液のpHが4〜9となる量とする
ことが好ましい。必要であれば、混合後に攪拌をさらに
続けてもよい。
すると、2種以上の遷移金属の混合含水水酸化物が得ら
れる。必要に応じて、沈殿を回収前または回収後に水洗
してもよい。この共沈で得た含水水酸化物は、乾燥せず
にそのまま本発明の方法の出発原料(1) として使用でき
る。
物を加熱乾燥すると混合水酸化物となり、さらに加熱を
続けて脱水すると混合酸化物となる。加熱条件によって
は、水酸化物と酸化物との混合物が得られる。このよう
にして得た混合水酸化物および/または酸化物は、本発
明において出発原料(2) として使用できる。これらの混
合水酸化物および/または酸化物は、一次粒子径が0.1
μm以下であることが好ましい。
ば、一般に200 ℃以下、好ましくは150 ℃以下で十分で
ある。脱水して酸化物に転化させる場合には、加熱温度
は最高で900 ℃までとすることができるが、500 ℃以下
にとどめておくことが好ましい。この時の加熱温度が高
すぎると、加熱中に粒成長が起こり、最終的に得られる
導電性酸化物粉末が粗大化しやすい。加熱は大気中で行
えばよいが、雰囲気は特に制限されない。加熱時間は目
的とする乾燥または脱水が達成される限り、できるだけ
短時間とすることが好ましい。特に、酸化物まで脱水す
る場合には、粒成長を可及的に防止するように加熱条件
を設定することが望ましい。
合酸化物は、上記のように共沈で得た含水混合水酸化物
を加熱脱水したものが好ましいが、前記出発原料(3) と
して述べたように、公知方法で水酸化物および/または
酸化物の焼成により得た導電性酸化物粉末自体を出発原
料とすることもできる。例えば、前記(1) または(2)の
出発原料を公知方法に従って還元性雰囲気中で焼成して
得た導電性酸化物粉末を、本発明の方法の出発原料とし
て使用できる。この場合には、この導電性酸化物粉末に
本発明方法を適用することによって、粉末の体積抵抗率
をさらに低下させることができる。
末を出発原料とする場合も、この酸化物粉末の平均一次
粒子径が0.1 μm以下であると、超微粒化と低抵抗化に
効果が高いことから好ましい。粒子径が 0.1〜0.2 μm
程度になると、本発明方法に従って不活性雰囲気下で加
圧下に加熱処理しても、不均一で、低抵抗化にあまり効
果がない。また、粒子径が0.2 μmを超えると、分散系
において優れた透明性を発現させることが難しい。
料(4) として、共沈ではなく、個々に沈殿させて得た2
種以上の遷移金属の含水水酸化物、水酸化物および/ま
たは酸化物の混合粉末を使用することもできる。この場
合も、平均一次粒子径は上記と同様に0.1 μm以下であ
ることが好ましい。
せは、周期表で互いに異なる族の組合せを選択する。即
ち、母体となる酸化物の遷移金属元素と、ドナーとなり
得る元素 (母体元素より周期表で右側にある遷移金属元
素) との組合わせを選択して、電子伝導性による導電体
(n型半導体) を構成するのが一般的である。このドナ
ーとなる遷移金属元素はドープ剤として母材遷移金属元
素に対して少量となるように使用する。
物粉末の例としては、In2O3 にSnをSn/(Sn+In)モル比=
0.01〜0.15となるようにドープしたITO粉末、SnO2に
SbをSn/(Sb+Sn)モル比=0.01〜0.15となるようにドープ
したATO粉末、およびZnOにAlをAl/(Al+Zn)モル比=
0.01〜0.15となるようにドープしたAZO粉末 (アルミ
ニウムドープ酸化亜鉛) などが代表的である。これに限
らず、ドープ剤は導電性を高めるもの (ドナー) であれ
ばいかなるものであってもよく、2種以上の遷移金属元
素をドープすることもできる。例えば、ZnO に対して
は、Al以外に、Sn、In、Fe、Ga、Co、Si、Ti、Ge、Sbお
よびPbの1種もしくは2種以上をドープすることができ
る。また、母体となる酸化物も2種以上の金属元素から
なる複合酸化物であってもよく、例えばZnSnO3 (錫酸亜
鉛) におけるZnとSnの化学量論組成のずれから生ずる導
電性酸化物粉末、およびこれにAl、In、Fe、Ga、Co、S
i、Ti、Ge、SbまたはPb等のドープ剤を添加したもので
あってもよい。
の出発原料を、圧力2kgf/cm2 以上の密閉した加圧不活
性ガス雰囲気下に温度 350〜1000℃で加熱処理する。不
活性ガスとしては、アルゴン、ヘリウムなどの希ガス、
窒素、或いはこれらの混合ガスを使用することができ
る。ここで、圧力とは、その加圧雰囲気の室温における
圧力 (全圧) を意味する。
チューブ) 内に出発原料を装入し、容器内の酸素をパー
ジするために、容器内の空気を雰囲気に用いる不活性ガ
スで置換するか、或いは真空脱気をした後、容器を不活
性ガスで圧力2kgf/cm2 以上に加圧して密閉し、 350〜
1000℃の範囲内の所定温度に昇温させ、この温度に保持
することにより実施できる。
に少量であれば他のガスが混入していてもよい。しか
し、雰囲気中の酸素分圧が0.2 kgf/cm2 (150 Torr)を超
えると、低抵抗化しないばかりか、粒成長も著しくなる
ので、酸素の混入は酸素分圧が0.2 kgf/cm2 より低くな
るように抑制する。低抵抗化と微粒化の効果を高めるに
は、酸素分圧を0.02 kgf/cm2 (15 Torr)以下とすること
が好ましい。
kgf/cm2 以上であればよい。不活性雰囲気中での焼成
は、大気中 (酸素含有雰囲気) での焼成と比較して、粉
末の粒成長が加速されることが知られているが、本発明
に従って雰囲気の圧力を2kgf/cm2 以上の加圧雰囲気と
すると、不活性ガス雰囲気であっても加熱処理中の粒成
長が抑えられことが判明した。しかも、加圧雰囲気とす
ることで、系内の雰囲気が均一化され、焼成炉中に仕込
まれた出発原料の上部 (表面部分) から下部にかけて比
較的均一に低抵抗化を達成することができる。そのた
め、従来のように、出発原料を薄く敷いて焼成する必要
がなく、大量の出発原料を処理することができる。
あるばかりか、原料の上部と下部では不均一な特性とな
り、また低抵抗化の効果もほとんどない。雰囲気の圧力
を5〜60 kgf/cm2の範囲内とすると、上記効果がさらに
高まるので好ましい。圧力が60 kgf/cm2を超えると、効
果の改善はほとんど認められなくなる上、加圧に要する
費用が増大するので、実用上はこれ以上圧力を加えても
無駄である。
であればよいが、好ましくは 400〜800 ℃の範囲内であ
る。処理温度が350 ℃より低いと、微粒化は達成されて
も、低抵抗化することはできない。一方、処理温度が10
00℃を超えると、加熱処理中に0.1 μm以上に粒成長し
てしまい、低抵抗化と微粒化を得ることが困難となる。
加熱処理時間については、原料の仕込充填量と温度との
関係によるが、原料の均一な加熱処理が達成されればよ
く、一般には1〜4時間の範囲内である。昇温、降温時
間については特に制限されない。
が、本発明は実施例のみに限定されるものではない。
(A) 〜 (C) に記載の方法でそれぞれ共沈法により調
製した含水混合水酸化物を、表1に示すようにそのまま
未乾燥で、或いは加熱処理して乾燥ないしは脱水したも
のである。
液 (Sn金属30g含有)0.2 Lとの混合水溶液を、NH4HCO
3 3000g/12 Lの水溶液中に、70℃の加温下で攪拌しな
がら滴下し、最終pH8にしてIn−Sn共沈水酸化物を析
出させた。次に、静置して沈殿を沈降させた後、上澄み
液を除去し、イオン交換水を加えて静置・沈降と上澄み
液除去の操作を6回 (水の添加量は1回につき10L) 繰
り返すことにより、沈殿を十分に水洗した後、吸引濾過
により沈殿を濾別して、含水水酸化物の沈殿を得た。
液 (Sb金属80g含有)0.2 Lとの混合水溶液を、NaOH 90
0g/12 Lの水溶液中に、90℃の加温下で攪拌しながら
滴下し、最終pH7にしてSn−Sb共沈水酸化物を析出さ
せた。その後、上記 (A) と同様に沈殿を洗浄および濾
別して、含水水酸化物の沈殿を得た。
25g (Al金属14g含有) とを溶解した35℃の水溶液10L
中に、Na2CO3 1250 g/10 Lの水溶液を攪拌しながら滴
下し、最終pH7 にして、Al−Zn共沈水酸化物を析出さ
せた。その後、上記 (A) と同様に沈殿を洗浄および濾
別して、含水水酸化物の沈殿を得た。
m 、長さ700 mmのインコロイ800 製チューブを使用した
密閉加圧管状炉に、原料250 gを長さ250 mmの半割石英
ボートに入れて装入し、使用した不活性ガスで系内の酸
素をパージした後、所定圧力に加圧し、次いで8℃/mi
n で所定温度に昇温させ、3時間温度保持することによ
り行った。処理条件 (雰囲気、圧力、温度) を表2に示
す。
均一次粒子径を、比表面積 (BET)の測定値から、a (μ
m) =6/ (ρ×B) [a:平均粒子径、ρ:真比重、
B:比表面積(m2/g)] なる粒子径式に基づいて算出し
た。こうして比表面積から求めた粒子径は透過式電子顕
微鏡から直接観察した粒子径とほぼ一致する。BET 法に
よる比表面積は、マイクロトラック社製のベータソーブ
自動表面積計4200型を用いて測定した。
kgf/cm2圧粉体) を、三菱油化製のロレスタAP粉体抵抗
システムを使用して求めた。体積抵抗率の測定は、ボー
トの上部と下部から採取した試料について別個に行い、
その平均値を表示した。これらの試験結果も表2に併せ
て示す。
例である本発明例1〜8は、いずれも極めて微細で低抵
抗の導電性酸化物粉末を形成した。また、上部と下部で
体積抵抗率は均一であった。一方、常圧の不活性雰囲気
下で加熱処理した比較例1〜3では、上部と下部では体
積抵抗率に1〜2桁の違いが生じ、不均一である上、体
積抵抗率自体も本発明例での結果に比べて高かった。ま
た、平均粒子径も本発明例より大きくなった。
1 μm以下で、体積抵抗率が非常に低く、特性が均一で
ばらつきの少ない微粒・低抵抗導電性酸化物粉末を、量
産性良く製造することができる。特に本発明方法によっ
てITO粉末を製造する場合には、表2の結果からもわ
かるように、平均一次粒子径0.05μm以下で、かつ体積
抵抗率が0.1 Ω・cm以下の低抵抗超微粉末を、量産性良
く製造することが可能となる。その結果、この粉末を用
いた分散インクを基材に塗布することによるガラスやフ
ィルム等の帯電防止やほこりの付着防止をはじめ、透明
電極、あるいは面発熱体等にITO粉末の利用が拡大す
ることが期待され、本発明はITO粉末をはじめとする
各種導電性酸化物粉末の利用拡大に貢献するものであ
る。
Claims (2)
- 【請求項1】 (1) 2種以上の遷移金属イオンを含む水
溶液とアルカリ水溶液との反応による共沈で得た含水混
合水酸化物、(2) この含水混合水酸化物を加熱乾燥した
混合水酸化物および/または加熱脱水した混合酸化物、
(3) 公知方法で得た導電性酸化物粉末、および(4) 2種
以上の遷移金属の含水水酸化物、水酸化物および/また
は酸化物の混合粉末、よりなる群から選ばれた、2種以
上の遷移金属の混合水酸化物および/または酸化物から
なる出発原料 (但し、酸化物の原料は平均一次粒子径が
0.1 μm以下の粉末である) を、圧力2kgf/cm2 以上の
密閉した加圧不活性ガス雰囲気下に温度 350〜1000℃で
加熱処理することを特徴とする導電性酸化物粉末の製造
方法。 - 【請求項2】 遷移金属がSnとInとの、SbとSnとの、ま
たはAl、Sn、In、Fe、Ga、Co、Si、Ge、SbもしくはPbと
Znとの組合せである、請求項1記載の導電性粉末の製造
方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16219793A JP3367149B2 (ja) | 1993-06-30 | 1993-06-30 | 導電性酸化物粉末の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16219793A JP3367149B2 (ja) | 1993-06-30 | 1993-06-30 | 導電性酸化物粉末の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0721831A JPH0721831A (ja) | 1995-01-24 |
JP3367149B2 true JP3367149B2 (ja) | 2003-01-14 |
Family
ID=15749840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16219793A Expired - Lifetime JP3367149B2 (ja) | 1993-06-30 | 1993-06-30 | 導電性酸化物粉末の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3367149B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007186352A (ja) * | 2006-01-11 | 2007-07-26 | Idemitsu Kosan Co Ltd | 酸化物粒子の製造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3746824B2 (ja) * | 1996-01-30 | 2006-02-15 | 株式会社クレハ | 可視域外光線吸収体 |
JP4841029B2 (ja) * | 2000-08-30 | 2011-12-21 | 三井金属鉱業株式会社 | 酸化錫添加酸化インジウム粉末及びその製造方法 |
US7115219B2 (en) | 2002-09-11 | 2006-10-03 | Sumitomo Chemical Company, Limited | Method of producing Indium Tin Oxide powder |
JP4120887B2 (ja) * | 2002-12-27 | 2008-07-16 | 住友金属鉱山株式会社 | 日射遮蔽用In4Sn3O12複合酸化物微粒子及びその製造方法並びに日射遮蔽膜形成用塗布液及び日射遮蔽膜及び日射遮蔽用基材 |
JP2008285378A (ja) * | 2007-05-18 | 2008-11-27 | Idemitsu Kosan Co Ltd | 導電性金属酸化物粉末、その製造方法、および、焼結体 |
JP5395345B2 (ja) * | 2007-10-03 | 2014-01-22 | 関西ペイント株式会社 | エアロゾルを用いたアルミニウムドープ酸化亜鉛透明導電膜の製造方法 |
JP4889623B2 (ja) * | 2007-12-26 | 2012-03-07 | 三洋電機株式会社 | 透明導電膜及び透明導電膜を用いた太陽電池 |
JP5754580B2 (ja) * | 2010-10-26 | 2015-07-29 | 三菱マテリアル電子化成株式会社 | インジウム錫酸化物粉末 |
-
1993
- 1993-06-30 JP JP16219793A patent/JP3367149B2/ja not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007186352A (ja) * | 2006-01-11 | 2007-07-26 | Idemitsu Kosan Co Ltd | 酸化物粒子の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPH0721831A (ja) | 1995-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5039452A (en) | Metal oxide varistors, precursor powder compositions and methods for preparing same | |
EP1527017B1 (en) | Doped zinc oxide powder, process for its preparation, and its use | |
JP3301755B2 (ja) | スパッタリングターゲット及びその製法 | |
JP5109418B2 (ja) | ZnO蒸着材及びその製造方法並びにZnO膜の形成方法 | |
WO1994013851A1 (en) | Transparent conductive film, transparent conductive base material, and conductive material | |
US4681717A (en) | Process for the chemical preparation of high-field ZnO varistors | |
JP4994068B2 (ja) | 酸化物導電性材料及びその製造方法 | |
JP3367149B2 (ja) | 導電性酸化物粉末の製造方法 | |
EP0486182A1 (en) | Zinc oxide sintered body, and production and application thereof | |
JP2013139589A (ja) | 銀微粒子及びその製造法並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス | |
KR100444142B1 (ko) | Ito 미분말 및 그의 제조방법 | |
JPH0350148A (ja) | 酸化亜鉛焼結体及びその製造法並びに用途 | |
JP5082928B2 (ja) | ZnO蒸着材及びその製造方法並びにそれにより形成されたZnO膜 | |
JP4389368B2 (ja) | 導電性顔料粉末及びこれを用いて作られた透明導電膜 | |
KR101650611B1 (ko) | Ito 분말 및 그 제조 방법 | |
EP0289582B1 (en) | Method for preparing a metal oxide varistor precursor powder | |
JP4253721B2 (ja) | スズドープ酸化インジウム粉末およびその製造方法 | |
JP4841029B2 (ja) | 酸化錫添加酸化インジウム粉末及びその製造方法 | |
DE19840527B4 (de) | Verfahren zur Herstellung von Suspensionen und Pulvern von Indium-Zinn-Oxid | |
JP2012176859A (ja) | インジウム錫酸化物粒子及びその製造方法 | |
WO2011152682A2 (ko) | 투명도전막, 투명도전막용 타겟 및 투명도전막용 타겟의 제조방법 | |
JP2003054949A (ja) | Sn含有In酸化物とその製造方法およびそれを用いた塗料ならびに導電性塗膜 | |
JP2008115024A (ja) | 導電性酸化物粉体及び導電性酸化物粉体の製造方法 | |
KR101729366B1 (ko) | Ito 분말 및 그 제조 방법 | |
JP2001302240A (ja) | 導電性酸化物粉末およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021008 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071108 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081108 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081108 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091108 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091108 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101108 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101108 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101108 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101108 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111108 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121108 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121108 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131108 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |