JP3364142B2 - Artificial heart valve - Google Patents
Artificial heart valveInfo
- Publication number
- JP3364142B2 JP3364142B2 JP36588497A JP36588497A JP3364142B2 JP 3364142 B2 JP3364142 B2 JP 3364142B2 JP 36588497 A JP36588497 A JP 36588497A JP 36588497 A JP36588497 A JP 36588497A JP 3364142 B2 JP3364142 B2 JP 3364142B2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- recess
- curved surface
- blood
- valve seat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Prostheses (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は人工心臓弁、特に、
三尖型人工心臓弁に関する。FIELD OF THE INVENTION This invention relates to prosthetic heart valves, and in particular to
The present invention relates to a tricuspid artificial heart valve.
【0002】[0002]
【従来の技術】心臓弁は血液循環システムにおける水圧
弁の作用をし、血流を同一方向に維持すると共に心臓へ
の血流を制御する。心臓弁は病変もしくは退化のために
その機能を喪失する。Heart valves act as hydraulic valves in a blood circulation system to maintain blood flow in the same direction and control blood flow to the heart. Heart valves lose their function due to lesions or degeneration.
【0003】病変もしくは退化した心臓弁は弁閉鎖不全
症あるいは弁狭窄症を招く。弁閉鎖不全は弁が完全に閉
じないために血液が逆流する現象であり、弁狭窄は弁が
完全に開かないために血液の抵抗が増加する現象であ
る。これらの現象は心臓の負荷を増大させる。このよう
な心臓の負担を軽減させるために、外科手術により心臓
弁を人工心臓弁に取り替えることが必要である。A diseased or degenerated heart valve leads to valvular insufficiency or stenosis. Valve insufficiency is a phenomenon in which blood flows backward because the valve does not close completely, and valve stenosis is a phenomenon in which blood resistance increases because the valve does not open completely. These phenomena increase the load on the heart. In order to reduce the burden on the heart, it is necessary to replace the heart valve with an artificial heart valve by a surgical operation.
【0004】心臓弁置換手術は心臓弁膜症の末期患者に
対する完成した有効な治療法である。人工心臓弁は19
66年にアメリカでスターエドワード(Starr Edward)
の名称により初めて商品化されて以来、心臓弁置換手術
は通常の臨床措置となった。Heart valve replacement surgery is a complete and effective treatment for end-stage patients with valvular heart disease. 19 artificial heart valves
Starr Edwards in America in 1966
Since its first commercialization under the name, heart valve replacement surgery has become a routine clinical procedure.
【0005】人工心臓弁は、生物弁と機械弁とに大きく
分類される。Artificial heart valves are roughly classified into biological valves and mechanical valves.
【0006】生物弁は薬物処理された豚の心臓弁及び牛
の心臓薄膜により構成されている。豚の心臓弁は、豚の
大動脈から取り出され、化学的処理がなされた後に低圧
(0〜10mmHg)下で支持体に固定したものである。ま
た、牛の心臓薄膜は、牛の心臓薄膜を裁断し、化学的処
理がなされた後に支持体に縫い付けたものである。生物
弁の幾何学的形状は、正常な人間の大動脈弁に非常に類
似しているので、優れた心臓血流の動的メカニズムを有
しており、1970年代には、臨床市場の約70%を占
有するに至った。しかしながら、生物弁は、石灰化のた
めに耐久性に限界がある。たとえば、手術後5年経過す
ると、生物弁は変形し始め、再手術が必要となる。他
方、機械弁は耐久性に優れており、手術後何年経過して
も再手術の必要がない。このため、生物弁の臨床市場で
占有する割合は低下し、現在では30%未満となってい
る。また、生物弁は生理石灰化率(physiology calcifi
cation) が高いために若い患者に適さず、65才以上の
患者に適する。The biovalve is composed of a drug-treated porcine heart valve and a bovine heart membrane. A porcine heart valve is one that has been removed from the porcine aorta, chemically treated and then fixed to a support under low pressure (0-10 mmHg). The bovine heart thin film is obtained by cutting the bovine heart thin film, chemically treating it, and then sewing it to a support. The biovalve geometry is very similar to that of a normal human aortic valve, so it has excellent dynamic mechanisms of cardiac blood flow, and in the 1970s, about 70% of the clinical market Came to occupy. However, biovalves have limited durability due to calcification. For example, five years after surgery, the biological valve begins to deform and requires re-operation. On the other hand, the mechanical valve has excellent durability and does not require reoperation for many years after the operation. As a result, the share of biovalves in the clinical market has declined, and is now less than 30%. In addition, the biological valve has a physiological calcifi rate.
It is not suitable for young patients because of high cation but is suitable for patients over 65 years old.
【0007】他方、機械弁は、幾可学的構造から、ボー
ル弁、傾斜単一円弁及び二尖型弁に分類される。いずれ
の機械弁も血栓症等の臨床上の問題を避けて通れず、従
って、長期間に亘って抗凝固剤を服用しなければならな
い。On the other hand, mechanical valves are classified into ball valves, tilted single-circle valves and bicuspid valves according to their geometrical structure. None of the mechanical valves can avoid clinical problems such as thrombosis, and therefore, the anticoagulant must be taken for a long period of time.
【0008】血液が機械弁を流れると、血液の通路上に
位置する閉鎖体(occluder) が移動し、弁種類によって
異なる効果を生ずる。すなわち、ボール弁では、周辺血
液を生じ、傾斜単一円弁では、横方向血流を生じ、二尖
型弁では、中心血流を生じる。いずれの機械弁でも、閉
鎖体後方に、渦流、よどみ領域、乱流及びキャビテーシ
ョン等の攪乱が生じる。これらの攪乱は血栓形成の主要
要因と考えられている。長期間に亘る臨床観察による
と、一般的に、二尖型弁は、傾斜単一円弁よりも、血栓
形式の恐れはなく、従って、現在比較的に人気があり、
そのうち、SJM(ST. Jude Medical) 弁が最も広く用
いられている。また、流体力学の点からみると、二尖型
弁を流れる血液の方が、他の2つの弁よりもむらがなく
かつ乱流が少ない。しかしながら、二尖型弁において
は、2枚の弁が弁座の中央を横切るので、流れ場は3つ
のジェット流に分割され、また、2つの弁の開閉の非同
時性のために、両端のジェット流は軸対称性を欠く。こ
の結果、非対称の速度分布を生じ、また、大きな速度勾
配及び乱流を生じることになる。このような欠点を改良
するために、三尖型人工弁が提案されている。When the blood flows through the mechanical valve, the occluder located on the blood passage moves, which produces different effects depending on the valve type. That is, a ball valve produces peripheral blood, a tilted single-circle valve produces lateral blood flow, and a bicuspid valve produces central blood flow. Disturbances such as vortex flow, stagnation region, turbulence and cavitation occur behind the closed body in any mechanical valve. These perturbations are believed to be a major factor in thrombus formation. Long-term clinical observations indicate that bicuspid valves are generally less prone to thrombotic forms than tilted single-circle valves and are therefore relatively popular today.
Among them, the SJM (ST. Jude Medical) valve is most widely used. From the point of view of fluid dynamics, blood flowing through the bicuspid valve is more uniform and less turbulent than the other two valves. However, in a bicuspid valve, the two fields cross the center of the valve seat, so the flow field is divided into three jet streams, and due to the non-simultaneous opening and closing of the two valves, Jet flow lacks axial symmetry. This results in an asymmetric velocity distribution and also large velocity gradients and turbulence. In order to improve such a defect, a tricuspid artificial valve has been proposed.
【0009】第1の従来の三尖型人工弁においては(参
照:米国特許第4416029号、1983年11月2
2日発行)、各弁が円盤を3分割した部分よりなり、弁
の内周側から伸びた6つの支持棒によって弁の開閉は制
御されている。弁の全開時には、3つの弁が開き、弁の
環の中央部に向って延びる。血液が支持棒及び弁を通過
するときに軌跡(wake)が形成される。In the first conventional tricuspid artificial valve (see US Pat. No. 4416029, Nov. 2, 1983).
Issued on the 2nd), each valve consists of a disk divided into three parts, and the opening and closing of the valve is controlled by six support rods extending from the inner peripheral side of the valve. When the valves are fully open, the three valves open and extend towards the center of the valve annulus. A wake is formed as blood passes through the support rod and valve.
【0010】第2の従来の三尖型人工弁においては(参
照:米国特許第4,820,299号,1989年4月
11日発行)、弁は円弧状をなしており、弁の開閉は弁
座の3つのフックによって制御されている。In the second conventional tricuspid artificial valve (see US Pat. No. 4,820,299, issued Apr. 11, 1989), the valve has an arc shape, and the valve is opened and closed. It is controlled by three hooks on the valve seat.
【0011】第3の従来の三尖型人工弁においては(参
照:米国特許第5,207,707号、1993年5月
4日発行)、弁は環の内側に設けられている。これらの
弁は平板状をなしており、弁の全開時には、中央に六角
形の開口部が形成される。また、環の縁部分には、完全
には中央血流に関係しない3つの半月状の開口部が形成
される。In a third conventional tricuspid prosthetic valve (see US Pat. No. 5,207,707, issued May 4, 1993), the valve is located inside the annulus. These valves have a flat plate shape, and when the valves are fully opened, a hexagonal opening is formed in the center. In addition, three half-moon shaped openings that are not completely related to the central blood flow are formed in the edge portion of the ring.
【0012】第4の従来の三尖型人工弁においては(参
照:米国特許第5,522,886号、1996年6月
4日)、弁は円弧状をなしており、これらの弁の下流側
の形状は内側で凸かつ外側で凹の正弦波状をなしてお
り、また、回転軸は楕円形をなして弁座内側の凹溝で回
転自在となっている。In the fourth conventional tricuspid prosthetic valve (see US Pat. No. 5,522,886, June 4, 1996), the valves are arcuate and downstream of these valves. The side has a sinusoidal shape with a convex inside and a concave outside, and the axis of rotation is elliptical so that it can rotate in a concave groove inside the valve seat.
【0013】第5の従来の三尖型人工弁においては(参
照:米国特許第5,628,791号、1997年5月
13日)、弁は平板状をなしている。In the fifth conventional tricuspid prosthetic valve (see US Pat. No. 5,628,791, May 13, 1997), the valve is flat.
【0014】[0014]
【発明が解決しようとする課題】しかしながら、上述の
第1〜第5の従来の三尖型人工弁においては、全開時の
血液の流れ場が理想的でなく、血栓が形成されるという
課題があった。However, in the above-mentioned first to fifth conventional tricuspid artificial valves, there is a problem that the blood flow field at the time of full opening is not ideal and a thrombus is formed. there were.
【0015】[0015]
【課題を解決するための手段】上述の課題を解決するた
めの手段は、中央が開き中心を血液が流れ、人体におけ
る大動脈弁の開閉方式と類似しているセンターフロー方
式人工心臓弁において、弧状の弁を利用することにより
全開時の弁の曲率を円形に近づけ、有効開口面積を大き
くし、これにより血液流出量を増加させる。[Means for Solving the Problems] The means for solving the above-mentioned problems are arc-shaped in a center flow type artificial heart valve which is similar to the opening / closing method of the aortic valve in the human body, with the center opened and blood flowing through the center. By using the valve of (1), the curvature of the valve at the time of fully opening is approximated to a circle, and the effective opening area is increased, thereby increasing the blood outflow amount.
【0016】また、弁の突出高度を小さくし、開弁時の
弁の高度断面差が小さくすることにより、順圧下で境界
層の分離をなくし、また圧力降下や乱流の発生を抑え
る。Further, by reducing the protrusion height of the valve and reducing the difference in height profile of the valve when the valve is opened, separation of the boundary layer is eliminated under normal pressure, and pressure drop and turbulent flow are suppressed.
【0017】さらに、弁の支点は弁座の内側に突出した
小さい三角形状の回転支持部で、回転及びスライド方式
を探ることによって素早く開閉し、循環流量の発生を減
らす。支持環の高さは弁を載置するのに十分であり、且
つ圧力降下に影響を及ぼすに至らない。この設計理念全
体が、流体ダイナミクス上引き起こされる血栓形成の課
題を解決し、人工弁が理想的な域に達せられるようにす
るものある。Further, the fulcrum of the valve is a small triangular rotation support portion projecting inward of the valve seat, which quickly opens and closes by exploring the rotation and slide system to reduce the generation of circulating flow. The height of the support ring is sufficient to mount the valve and does not affect the pressure drop. This entire design philosophy solves the problem of thrombus formation caused by fluid dynamics and allows the artificial valve to reach the ideal range.
【0018】さらにまた、閉弁時には弁全体は円錐状の
外観を呈する。他方、開弁時には弁全体は花びらが開い
たような形状を呈し、最も好ましい流れ場が得られる。
弁は弧を有する扇型の弁3枚からなっており、全開時に
は境界層の分離を防ぎ、圧力差を減少させ、従って、よ
どみ領域の発生を防ぎ、開閉時の血液と弁との間及び血
液と管壁との間の衝撃を和らげる。Furthermore, when the valve is closed, the entire valve has a conical appearance. On the other hand, when the valve is opened, the entire valve has a shape with petals opened, and the most preferable flow field is obtained.
The valve consists of three fan-shaped valves with arcs, which prevents the boundary layer from separating when fully open and reduces the pressure differential, thus preventing the formation of a stagnation region and between the blood and the valve when opening and closing. Relieves the shock between blood and the tube wall.
【0019】[0019]
【発明の実施の形態】図1は本発明に係る三尖型人工心
臓弁の実施の形態を示す斜視図であって、(A)は開弁
状態、(B)は閉弁状態を示す。図1において、心臓弁
は、環状の弁座300、弁400、弁座300に設けら
れた三角形の回転支持部500よりなる。弁座300の
内面の中央通路は血液が心臓弁を流れる主要通路であ
る。弁座300は、主として、弁400を固定する一
方、血流との干渉を減少させるように設計されている。
弁400は上流側曲面部46及び下流側曲面部45より
なる。つまり、弁400は血液の流入側で凹、流出側で
凸である扇状の弧面をなしている。弁座300と弁40
0とは、弁400の円弧両端の凸部に形成された回転耳
状部44を弁座300の回転支持部500の凹部33に
差込むことによって支持されている。これにより、弁4
00は弁座300を外れることなく、自然に回転して弁
400の開閉を制御し、この結果、血液の順流を促進し
また血流の逆流を防止する。回転耳状部44は弁400
の曲面部45、46の変化に応じて回転し、回転支持部
500の凹部33はこの回転耳状部44の回転に一致す
るように形成されている。回転耳状部44の下流側曲面
部において、弁400の開閉時に回転耳状部44の曲面
と回転支持部500の凹部33との接触によって弁40
0の位置が制御される。他方、回転耳状部44の上流側
曲面部において、弁400の開閉時に回転耳状部44の
端面と回転支持部500の凹部33の底面との接触によ
って弁400の位置が制御される。1 is a perspective view showing an embodiment of a tricuspid artificial heart valve according to the present invention, in which (A) shows a valve open state and (B) shows a valve closed state. In FIG. 1, the heart valve includes an annular valve seat 300, a valve 400, and a triangular rotation support portion 500 provided on the valve seat 300. The central passageway on the inner surface of the valve seat 300 is the main passageway for blood to flow through the heart valve. The valve seat 300 is primarily designed to secure the valve 400 while reducing interference with blood flow.
The valve 400 includes an upstream curved surface portion 46 and a downstream curved surface portion 45. That is, the valve 400 has a fan-shaped arc surface that is concave on the inflow side and convex on the outflow side. Valve seat 300 and valve 40
0 is supported by inserting the rotating ear-shaped portions 44 formed on the convex portions at both ends of the arc of the valve 400 into the concave portions 33 of the rotation supporting portion 500 of the valve seat 300. This allows the valve 4
00 does not disengage from the valve seat 300 and rotates naturally to control the opening and closing of the valve 400. As a result, the forward flow of blood is promoted and the reverse flow of blood flow is prevented. The rotating ear 44 is a valve 400.
The rotation support portion 500 is rotated in accordance with the change of the curved surface portions 45 and 46, and the recess 33 of the rotation support portion 500 is formed so as to coincide with the rotation of the rotation ear portion 44. At the curved surface on the downstream side of the rotary ear portion 44, when the valve 400 is opened and closed, the curved surface of the rotary ear portion 44 and the recess 33 of the rotation support portion 500 come into contact with each other, so that the valve 40 is closed.
The position of 0 is controlled. On the other hand, in the upstream curved surface of the rotary ear 44, the position of the valve 400 is controlled by the contact between the end surface of the rotary ear 44 and the bottom surface of the recess 33 of the rotary support 500 when the valve 400 is opened and closed.
【0020】弁座300は、弁400の円滑な開閉を調
節するように、また、不要な突出物を減少して流れ場の
障害物を排除するように、設計されている。The valve seat 300 is designed to regulate the smooth opening and closing of the valve 400 and to reduce unwanted protrusions and eliminate flow field obstructions.
【0021】図2は図1の弁座300の上面図である。
回転支持部500として3つの三角形状の凸部が弁座3
00に形成され、各凸部には弁400を支持するための
凹部33が形成されている。FIG. 2 is a top view of the valve seat 300 of FIG.
As the rotation support portion 500, three triangular protrusions are provided on the valve seat 3
00, and a concave portion 33 for supporting the valve 400 is formed in each convex portion.
【0022】図3は図2の断面図であって、(A)は図
2のA−A線断面図、(B)は図2のB−B線断面図で
ある。図3に示すように、弁座300の外壁34は環組
織(tissue annulus) の構造に適合するように形成され
ている。また、弁座300の外壁34及び内壁35は流
れ場の分離及び渦の発生を防止するために滑かな形状を
なしている。すなわち、弁座300のエッジ部分には丸
みRをつけてある。FIG. 3 is a sectional view of FIG. 2, in which (A) is a sectional view taken along the line AA of FIG. 2 and (B) is a sectional view taken along the line BB of FIG. As shown in FIG. 3, the outer wall 34 of the valve seat 300 is shaped to conform to the structure of the tissue annulus. Further, the outer wall 34 and the inner wall 35 of the valve seat 300 have a smooth shape in order to prevent separation of the flow field and generation of vortices. That is, the edge portion of the valve seat 300 is rounded.
【0023】図3に示すように、弁座300の回転支持
部500の凹部33は弁400の回転耳状部44の回転
が滑からになるように設計されている。この凹部33は
直線エッジ36及び4つの曲線エッジ30、37、3
8、39よりなる。各エッジ30、36、37、38、
39の交差部分には丸みをつけ滑らかにしてある。直線
エッジ36及び曲線エッジ30、37は開弁時に弁40
0の回転耳状部44(図1の(A))に一致し、曲線エ
ッジ38、39は閉弁時に弁400の回転耳状部44
(図1の(A))に一致する。これらの曲線エッジの曲
線はすべて2次曲線であり、多項方程式を解くことによ
り計算できる。エッジ30、36、37、38、39に
よって構成される面は図2のB−B線に平行であり、か
つエッジ30、36、37、38、39は凹部33の内
の面に垂直である。これにより、弁400の回転を防止
して制御する。また、凹部33のエッジには、R31、
R32に示すごとく、丸みをつけてあり、これにより、
閉弁時には凹部33を血液で洗うようにし、よどみ領域
の発生を防止して血栓の形成を防止する。As shown in FIG. 3, the recess 33 of the rotary support 500 of the valve seat 300 is designed so that the rotation of the rotary ear 44 of the valve 400 is smooth. This recess 33 has a straight edge 36 and four curved edges 30, 37, 3
It consists of 8, 39. Each edge 30, 36, 37, 38,
The intersection of 39 is rounded and smooth. The straight edge 36 and the curved edges 30 and 37 have the valve 40 when opened.
0 rotator ears 44 (FIG. 1A) and the curved edges 38, 39 have the rotator ears 44 of valve 400 when closed.
(It corresponds to (A) of FIG. 1). The curves of these curved edges are all quadratic and can be calculated by solving polynomial equations. The plane defined by the edges 30, 36, 37, 38, 39 is parallel to the line BB in FIG. 2 and the edges 30, 36, 37, 38, 39 are perpendicular to the plane inside the recess 33. . As a result, the rotation of the valve 400 is prevented and controlled. Further, R31,
As shown in R32, it is rounded, so that
When the valve is closed, the recess 33 is washed with blood to prevent the formation of a stagnation region and prevent the formation of thrombus.
【0024】図4は図1の弁400の斜視図であって、
図5の(A)は図4のA−A面から見た斜視図、図5の
(B)は図4のB−B面から見た斜視図である。図4に
示すように、弁400は円盤を3分割した部分よりな
り、2つの直線エッジ48、49及び曲線エンジ51よ
りなる。図5の(A)に示すごとく、弁400は上流側
曲面部46及び下流側曲面部45に分割され、弁400
の厚さ47は全体で均一である。また、曲線エッジ51
は2次曲線である。FIG. 4 is a perspective view of the valve 400 of FIG.
5A is a perspective view seen from the AA plane of FIG. 4, and FIG. 5B is a perspective view seen from the BB plane of FIG. As shown in FIG. 4, the valve 400 is formed by dividing a disk into three parts, and is composed of two straight edges 48, 49 and a curved edge 51. As shown in FIG. 5A, the valve 400 is divided into an upstream curved surface portion 46 and a downstream curved surface portion 45, and the valve 400
Has a uniform thickness 47 throughout. Also, the curved edge 51
Is a quadratic curve.
【0025】図4の直線エッジ48、49は、図5の
(B)に示すごとく、曲線状とすることにより、弁40
0同志がぴったりと一致できる。曲線化されたエッジ4
8と上流側曲面部46との交差部分には丸みRをつけ、
これにより、弁同志の重なりを防止して弁の開閉を容易
にする。また、曲線化されたエッジ48、49に隣接す
る面54は垂直面であり、図2のB−B面と平行であ
る。従って、面54は凹部33の面と平行であり、かつ
小さい距離55で隣り合っており(図6の(B)参
照)、弁回転時にこれらの面の間に磨耗が生じないよう
にする。The straight edges 48, 49 of FIG. 4 are curved as shown in FIG.
0 comrades can match exactly. Curved edge 4
Rounded R is added to the intersection of 8 and the upstream curved surface portion 46,
This prevents the valves from overlapping and facilitates the opening and closing of the valves. Further, the surface 54 adjacent to the curved edges 48, 49 is a vertical surface and is parallel to the BB plane in FIG. Therefore, the surfaces 54 are parallel to the surfaces of the recess 33 and are adjacent to each other by a small distance 55 (see FIG. 6 (B)), so that wear does not occur between these surfaces during valve rotation.
【0026】図5の(B)に示すように、曲線エッジ5
1は弁400の湾曲部である。図5の(A)に示すよう
に、曲線エッジ51は丸みRをつけられて、曲面部50
を自然に形成し下流側曲面部45に線56において交差
している。この丸みRは下流側曲面部45の円弧部分と
弁座300の内壁35との間の重なりを防止する。As shown in FIG. 5B, the curved edge 5
Reference numeral 1 is a curved portion of the valve 400. As shown in FIG. 5A, the curved edge 51 is rounded so that the curved surface portion 50
Is formed naturally and intersects the downstream curved surface portion 45 at a line 56. The roundness R prevents the arcuate portion of the downstream curved surface portion 45 and the inner wall 35 of the valve seat 300 from overlapping.
【0027】図5の(A)に示すごとく、面54及び曲
面部50に隣接する弁400の両端の回転耳状部44は
耳状をなしている。回転耳状部44の曲面57の変化は
曲線エッジ48の変化と同様である。曲面部50の曲線
59の丸みはRで示され、この曲線59の下半分は回転
耳状部44の曲面57に一致しており、これにより、弁
400を弁座300の回転支持部500に固定する。す
なわち、弁400の開閉時に、耳状回転軸44は回転支
持部500の凹部33内で移動することにより、弁40
0の開閉角度を制御する。たとえば、弁が全開のときに
は、最大開口が得られ、この実施例では、弁はセンター
フロー方式であるので、境界層の分離及び圧力差を減少
させることができる。また、血流のオン、オフいずれの
場合でも、弁400は迅速に応答して開閉し、血液の逆
流を減少させることができる。As shown in FIG. 5A, the rotating ears 44 at both ends of the valve 400 adjacent to the surface 54 and the curved surface 50 are ears. Changes in the curved surface 57 of the rotating ear 44 are similar to changes in the curved edge 48. The roundness of the curve 59 of the curved surface portion 50 is indicated by R, and the lower half of this curve 59 coincides with the curved surface 57 of the rotary ear portion 44, which allows the valve 400 to the rotary support portion 500 of the valve seat 300. Fix it. That is, when the valve 400 is opened and closed, the ear-shaped rotary shaft 44 moves in the recess 33 of the rotation support portion 500, so that the valve 40
Controls the opening and closing angle of 0. For example, when the valve is fully open, maximum opening is obtained, and in this embodiment, the valve is center flow, which can reduce boundary layer separation and pressure differentials. In addition, the valve 400 can quickly open and close in response to whether blood flow is on or off to reduce backflow of blood.
【0028】弁400は弁座300に組込まれる。この
組込は、弁400は熱すると膨張し冷却すると収縮する
ことを利用し、弁400の回転耳状部44を弁座300
の回転支持部500の凹部33に嵌めることによって行
われる。The valve 400 is incorporated in the valve seat 300. This incorporation takes advantage of the fact that the valve 400 expands when heated and contracts when cooled, which causes the rotating ear 44 of the valve 400 to move to the valve seat 300.
It is carried out by fitting it into the concave portion 33 of the rotation support portion 500.
【0029】弁400の回転耳状部44と弁座300の
回転支持部500の凹部33との間には小さい間隙が設
けられ、これにより、弁400が凹部33内を滑らかに
回転し、これらの接触面の磨耗を少なくしている。同様
に、弁300の垂直な面54と凹部33の面との間に
も、小さい間隔が設けられ、これらの接触面の磨耗を少
なくしている。弁400は滑かなメカニズムで開状態と
なるので、血流が少なくても安定した開状態となる。回
転耳状部44を設けることにより回転軸を弁400に設
けた場合に比較して占有体積は小さくなる。また、回転
耳状部44が弁座300の回転支持部500の凹部33
の側面に接触しているので、弁400は振動しにくい。A small gap is provided between the rotary ear 44 of the valve 400 and the recess 33 of the rotary support 500 of the valve seat 300, which allows the valve 400 to rotate smoothly in the recess 33. Wear on the contact surface of is reduced. Similarly, a small spacing is also provided between the vertical surface 54 of the valve 300 and the surface of the recess 33 to reduce wear on these contact surfaces. Since the valve 400 is opened by a smooth mechanism, it can be stably opened even if blood flow is small. By providing the rotary ear portion 44, the occupied volume becomes smaller than that in the case where the rotary shaft is provided in the valve 400. Further, the rotating ear-shaped portion 44 is the recess 33 of the rotation supporting portion 500 of the valve seat 300.
The valve 400 is less likely to vibrate because it is in contact with the side surface of the valve.
【0030】図6の(A)は図1の(A)の人工弁の側
面図、図6の(B)は図6の(A)のB−B面から見た
図である。心臓の収縮期には、心室の血圧は大動脈の血
圧より大きい。従って、弁400は正方向の力を受け、
図6の(A)に示す回転軸Oに沿って回転し、弁400
は自然に開状態となる。このとき、弁400と弁座30
0とは直角をなしており、従って、弁400の上流側曲
面部46と血流の方向60とは平行となる。図6の
(B)に示すごとく、弁400の全開時には、心臓弁を
流れる血流の抵抗は最小となり、また、開口面積は最大
となる。弁400の回転耳状部44と弁座300の回転
支持部500の凹部33の面との接触点では、回転耳状
部44の下半分及び曲線エッジ38は凹部33の底部に
接触し、また、回転耳状部44の曲面59及び曲線エッ
ジ38は凹部33の側面に接触し、弁400の開角度を
制御する。FIG. 6A is a side view of the artificial valve of FIG. 1A, and FIG. 6B is a view seen from the BB plane of FIG. 6A. During systole of the heart, the blood pressure in the ventricles is higher than that in the aorta. Therefore, the valve 400 receives a positive force,
The valve 400 is rotated along the rotation axis O shown in FIG.
Will open naturally. At this time, the valve 400 and the valve seat 30
It is at a right angle to 0, and therefore, the upstream curved surface portion 46 of the valve 400 and the blood flow direction 60 are parallel. As shown in FIG. 6B, when the valve 400 is fully opened, the resistance of the blood flow through the heart valve is minimum and the opening area is maximum. At the point of contact between the rotary ear 44 of the valve 400 and the surface of the recess 33 of the rotary support 500 of the valve seat 300, the lower half of the rotary ear 44 and the curved edge 38 contact the bottom of the recess 33, and The curved surface 59 of the rotating ear 44 and the curved edge 38 contact the side surface of the recess 33 to control the opening angle of the valve 400.
【0031】心臓の弛緩期には、大動脈の血圧は次第に
心室の血圧より大きくなり、大動脈に形成される負圧及
び渦により弁はただちに閉じる。すなわち、心臓が弛緩
期にあるときには、血流は逆向きになる。従って、弛緩
期初期には、弁400の下流側曲面部45が逆向きの血
流に作用し、弁400は閉方向に回転し始める。この瞬
間、弁400の表面を流れる血流の抗力によって弁40
0の閉動作が促進される。この結果、弁400は回転軸
Oに沿って滑かに回転し、弁は開状態から閉状態に移行
する。ここで、凹部33の曲線エッジR31、R32
(図3参照)は回転耳状部44の旋回半径に基づいて形
成されている。During the diastole of the heart, the blood pressure in the aorta gradually becomes higher than that in the ventricle, and the valve immediately closes due to the negative pressure and vortices formed in the aorta. That is, when the heart is in diastole, blood flow is reversed. Therefore, in the early stage of the relaxation period, the downstream curved surface portion 45 of the valve 400 acts on the blood flow in the opposite direction, and the valve 400 starts to rotate in the closing direction. At this moment, the drag force of the blood flow on the surface of the valve 400 causes the valve 40 to move.
The closing operation of 0 is promoted. As a result, the valve 400 smoothly rotates along the rotation axis O, and the valve shifts from the open state to the closed state. Here, curved edges R31 and R32 of the recess 33
(See FIG. 3) is formed based on the turning radius of the rotating ear portion 44.
【0032】図7の(A)は図1の(B)の人工弁の側
面図、図7の(B)は図7の(A)のB−B面から見た
図である。回転耳状部44の上半分は凹部33の直線エ
ッジ36、曲線エッジ37及び底面の側面に接触してお
り、また回転耳状部44の曲面59は凹部33の側面に
接触している。さらに、図7の(B)に示すごとく閉弁
時には、弁400の曲線エッジ51は弁座300の内壁
35と一致し、さらにまた、弁400の直線エッジ4
8、49及びこれらの端点52は互いに一致することに
より、弁の閉弁動作の終了を促進させる。FIG. 7A is a side view of the artificial valve of FIG. 1B, and FIG. 7B is a view seen from the BB plane of FIG. 7A. The upper half of the rotating ear 44 contacts the straight edge 36, the curved edge 37 and the side surface of the bottom surface of the recess 33, and the curved surface 59 of the rotating ear 44 contacts the side surface of the recess 33. Further, as shown in FIG. 7B, when the valve is closed, the curved edge 51 of the valve 400 coincides with the inner wall 35 of the valve seat 300, and further, the straight edge 4 of the valve 400.
8, 49 and their end points 52 coincide with each other to facilitate the end of the valve closing operation.
【0033】以上をまとめると、開弁動作の終了は、
(1)回転耳状部44の部分と凹部33の曲線エッジ3
8との接触、(2)回転耳状部44の曲面59と凹部3
3の曲線エッジ39との接触、によって制御される。こ
れに対し、閉弁動作の終了は、(1)回転耳状部44の
部分と凹部33の直線エッジ36との接触、(2)回転
耳状部44の曲面59と凹部33の曲線エッジ30との
接触、(3)弁400の曲線エッジ51と弁座300の
内壁35との接触、(4)弁400の直線エッジ48、
49の接触、(5)弁400の端点52の接触、によっ
て制御され、これにより、弁の逆流を低減しかつ血流の
漏洩を抑えることができる。To summarize the above, the end of the valve opening operation is
(1) Curved edge 3 of the rotating ear portion 44 and the concave portion 33
8 and (2) the curved surface 59 of the rotating ear-shaped portion 44 and the concave portion 3
3 contact with curved edge 39. On the other hand, the end of the valve closing operation is (1) the contact between the portion of the rotating ear portion 44 and the straight edge 36 of the recess 33, and (2) the curved surface 59 of the rotating ear portion 44 and the curved edge 30 of the recess 33. Contact with (3) curved edge 51 of valve 400 and inner wall 35 of valve seat 300, (4) straight edge 48 of valve 400,
This is controlled by the contact of 49 and (5) the contact of the end point 52 of the valve 400, which can reduce the regurgitation of the valve and suppress the leakage of blood flow.
【0034】閉弁状態では、図7の(A)に示すごと
く、弁400は弁座300と30°の角をなす。言い換
えると、弁400は血流の方向と60°の角をなす。従
って、弁400の開閉角度は60°である。In the valve closed state, the valve 400 forms an angle of 30 ° with the valve seat 300, as shown in FIG. 7 (A). In other words, the valve 400 makes a 60 ° angle with the direction of blood flow. Therefore, the opening / closing angle of the valve 400 is 60 °.
【0035】図6の(B)及び図7の(B)を比較する
と、弁400の開状態から閉状態の変化を推量できる。
すなわち、弁400の側辺が次第に中心に向って近づい
ていくので、血流による管壁への衝撃は小さくなり、従
って、乱流の発生も抑えられる。By comparing FIG. 6B and FIG. 7B, it is possible to infer the change of the valve 400 from the open state to the closed state.
That is, since the side of the valve 400 gradually approaches toward the center, the impact of the blood flow on the tube wall is reduced, and therefore the occurrence of turbulence is also suppressed.
【0036】以上に本発明の好ましい実施の形態を説明
したが、これは本発明を限定するものでなく、特許請求
の範囲に記載された範囲内において、技術に熟知した者
ならば誰でも変更し得る範囲を含むものである。Although the preferred embodiment of the present invention has been described above, this does not limit the present invention, and any person skilled in the art can make modifications within the scope of the claims. It includes the possible range.
【0037】[0037]
【発明の効果】以上説明したように本発明によれば、弁
が流入側で凹、流出側で凸である扇状の弧面をなしてい
るので、全開時に弁の曲率が円に近づき、この結果、理
想的な流れ場が得られ、また、有効開口面積を大きくで
きる。さらに、弁の突出高さが小さく、従って、開閉時
の弁の高度断面積の差が小さいので、血流の順流下の境
界層の分離及びよどみ領域の発生を防止することがで
き、また、血圧降下、乱流の発生も抑止できる。さらに
また、弁の支点は弁座から突出した回転支持部によって
なされているので、曲面状の弁の回転を滑らかにでき
る。さらに、弁の開閉を迅速にできる。As described above, according to the present invention, since the valve has a fan-shaped arc surface which is concave on the inflow side and convex on the outflow side, the curvature of the valve approaches a circle when fully opened. As a result, an ideal flow field can be obtained, and the effective opening area can be increased. Furthermore, since the protruding height of the valve is small, and therefore the difference in height cross-sectional area of the valve when opening and closing is small, it is possible to prevent separation of the boundary layer and the occurrence of a stagnation region under the forward flow of blood flow. It can also prevent blood pressure drop and turbulent flow. Furthermore, since the fulcrum of the valve is formed by the rotation support portion protruding from the valve seat, the curved valve can be smoothly rotated. Further, the valve can be opened and closed quickly.
【図1】本発明に係る三尖型人工心臓弁の実施の形態を
示す斜視図であって、(A)は開弁状態、(B)は閉弁
状態を示す。FIG. 1 is a perspective view showing an embodiment of a tricuspid artificial heart valve according to the present invention, in which (A) shows a valve open state and (B) shows a valve closed state.
【図2】図1の弁座上面図である。FIG. 2 is a top view of the valve seat of FIG.
【図3】図2の断面図であって、図3の(A)は図2の
A−A線断面図、図3の(B)は図2のB−B線断面図
である。3 is a sectional view of FIG. 2, wherein FIG. 3A is a sectional view taken along the line AA of FIG. 2, and FIG. 3B is a sectional view taken along the line BB of FIG.
【図4】図1の弁の斜視図である。FIG. 4 is a perspective view of the valve of FIG.
【図5】図4の拡大図であって、図5の(A)は図4の
A−A面から見た斜視図、図5の(B)は図4のB−B
面から見た斜視図である。5 is an enlarged view of FIG. 4, (A) of FIG. 5 is a perspective view seen from the AA plane of FIG. 4, and (B) of FIG. 5 is BB of FIG.
It is the perspective view seen from the surface.
【図6】図1の(A)の人工弁を示し、図6の(A)は
図1の(A)の人工弁の側面図、図6の(B)は図6の
(A)のB−B面から見た図である。6 shows the artificial valve of FIG. 1 (A), FIG. 6 (A) is a side view of the artificial valve of FIG. 1 (A), and FIG. 6 (B) is of FIG. 6 (A). It is the figure seen from the BB surface.
【図7】図1の(B)の人工弁を示し、図7の(A)は
図1の(B)の人工弁の側面図、図7の(B)は図7の
(A)のB−B面から見た図である。7 shows the artificial valve of FIG. 1 (B), FIG. 7 (A) is a side view of the artificial valve of FIG. 1 (B), and FIG. 7 (B) is of FIG. 7 (A). It is the figure seen from the BB surface.
【符号の説明】 30:曲線エッジ 33:凹部 34:外壁 35:内壁 36:直線エッジ 37:曲線エッジ 38:曲線エッジ 39:曲線エッジ 44:回転耳状部 45:下流側曲面部 46:上流側曲面部 47:厚さ 48:直線エッジ 49:直線エッジ 50:曲面部 51:曲線エッジ 52:端点 54:面 55:距離 56:線 57:曲面 58:回転耳状部の部分 59:曲面 60:血流方向 61:底面 300:弁座 400:弁 500:回転支持部 R31:丸み R32:丸み[Explanation of symbols] 30: Curved edge 33: Recess 34: Outer wall 35: Inner wall 36: Straight edge 37: curved edge 38: curved edge 39: curved edge 44: Rotating ear 45: Downstream curved surface 46: upstream curved surface 47: Thickness 48: Straight edge 49: Straight edge 50: curved surface 51: Curved edge 52: end point 54: surface 55: Distance 56: Line 57: curved surface 58: Rotating ear portion 59: curved surface 60: blood flow direction 61: bottom 300: valve seat 400: valve 500: rotation support R31: Roundness R32: Roundness
───────────────────────────────────────────────────── フロントページの続き (72)発明者 顔 廉育 台湾台北市八徳路3段158巷6−2号3 楼 (56)参考文献 特表 昭63−500146(JP,A) 米国特許5108425(US,A) 米国特許4254508(US,A) 米国特許4328592(US,A) 米国特許4689046(US,A) 米国特許5628791(US,A) 米国特許5641324(US,A) 英国特許出願公開2281371(GB,A) (58)調査した分野(Int.Cl.7,DB名) A61F 2/24 WPI(DIALOG)─────────────────────────────────────────────────── ─── Continuation of the front page (72) Face of the inventor Fengiku, 3rd floor, No. 6-2 No. 6-2, 3rd floor, 8th Road, Taipei City, Taiwan (56) Bibliography (US, A) US Patent 4254508 (US, A) US Patent 4328592 (US, A) US Patent 4689046 (US, A) US Patent 5628791 (US, A) US Patent 5641324 (US, A) UK Patent Application Publication 2281371 (GB, A) (58) Fields surveyed (Int.Cl. 7 , DB name) A61F 2/24 WPI (DIALOG)
Claims (15)
られた弁座(300)と、 該弁座の内壁側に突出して形成され凹部(33)を有す
る複数の回転支持部(500)と、 前記血液の流入側で凹の上流側曲面部(46)及び前記
血液の流出側で凸の下流側曲面部(45)を有する複数
の弁(400)とを具備し、 前記各弁の底部が前記回転支持部の対応する凹部に嵌め
込まれ、前記各弁の開閉動作が前記凹部によって制限さ
れるようにし、 前記各弁は2つの直線エッジ(48、49)及び該2つ
の直線エッジを結ぶ曲線エッジ(51)を有し、 閉弁時には、隣接する前記各弁の直線エッジが一致し、
かつ、前記各弁の曲線エッジが前記弁座の内壁に一致す
るようにし、 前記各弁の曲線エッジに丸みを設けた人工心臓弁。1. A central passage for blood is provided on the inner wall (35) side.
A valve seat (300) and a recess (33) formed so as to project toward the inner wall of the valve seat.
A plurality of rotation supporting parts (500), an upstream curved surface part (46) concave on the blood inflow side, and
Plural that have a convex downstream curved surface portion (45) on the blood outflow side
Valve (400), the bottom of each valve being fitted into a corresponding recess of the rotary support.
The opening / closing operation of each valve is restricted by the recess.
And each valve has two straight edges (48,49) and two
Has a curved edge (51) connecting the straight edges of the above, and when the valves are closed, the straight edges of the adjacent valves coincide with each other,
And the curved edge of each valve matches the inner wall of the valve seat.
And a rounded curved edge of each valve .
弧面をなしており、前記各弁の2つの直線エッジは12
0°の角度をなす請求項1に記載の人工心臓弁。2. Each valve has a fan-shaped arc surface that is substantially 1/3 of a circle, and two straight edges of each valve are 12
The artificial heart valve according to claim 1 , wherein the artificial heart valve forms an angle of 0 °.
工心臓弁。3. The artificial heart valve according to claim 1, wherein the number of the valves is three.
られた弁座(300)と、 該弁座の内壁側に突出して形成され凹部(33)を有す
る複数の回転支持部(500)と、 前記血液の流入側で凹の上流側曲面部(46)及び前記
血液の流出側で凸の下流側曲面部(45)を有する複数
の弁(400)とを具備し、 前記各弁の底部が前記回転支持部の対応する凹部に嵌め
込まれ、前記各弁の開閉動作が前記凹部によって制限さ
れるようにし、 前記各弁の底部は耳状をなした回転耳状部(44)であ
り、 前記回転耳状部の側面は前記弁の直線エッジの側面と同
一形状をなし、前記回転耳状部の下半分は前記弁の曲線
エッジの丸みと一致している人工心臓弁。4. A central passage for blood is provided on the inner wall (35) side.
A valve seat (300) and a recess (33) formed so as to project toward the inner wall of the valve seat.
A plurality of rotation supporting parts (500), an upstream curved surface part (46) concave on the blood inflow side, and
Plural that have a convex downstream curved surface portion (45) on the blood outflow side
Valve (400), the bottom of each valve being fitted into a corresponding recess of the rotary support.
The opening / closing operation of each valve is restricted by the recess.
So as to be the bottom rotating ear portion (44) which forms a ear shape der of the valves
And a side surface of the rotating ear has the same shape as a side surface of a straight edge of the valve, and a lower half of the rotating ear has a rounded curved edge of the valve .
工心臓弁。5. The artificial heart valve according to claim 4 , wherein the number of the valves is three.
られた弁座(300)と、 該弁座の内壁側に突出して形成され凹部(33)を有す
る複数の回転支持部(500)と、 前記血液の流入側で凹の上流側曲面部(46)及び前記
血液の流出側で凸の下流側曲面部(45)を有する複数
の弁(400)とを具備し、 前記各弁の底部が前記回転支持部の対応する凹部に嵌め
込まれ、前記各弁の開閉動作が前記凹部によって制限さ
れるようにし、 前記凹部が、1つの直線エッジ(36)及び4つの曲線
エッジ(30、37、38、39)によって規定された
閉鎖面を有し、各エッジの交差部分に丸みを設け、 前記曲線エッジのうち2つの曲線エッジが前記回転耳状
部の前記凹部内での旋回半径に基づいて形成された人工
心臓弁。6. A central passage for blood is provided on the inner wall (35) side.
A valve seat (300) and a recess (33) formed so as to project toward the inner wall of the valve seat.
A plurality of rotation supporting parts (500), an upstream curved surface part (46) concave on the blood inflow side, and
Plural that have a convex downstream curved surface portion (45) on the blood outflow side
Valve (400), the bottom of each valve being fitted into a corresponding recess of the rotary support.
The opening / closing operation of each valve is restricted by the recess.
So as to be, the recess, one straight edge (36) and four curves
Defined by edges (30, 37, 38, 39)
An artificial body that has a closed surface, is provided with a rounded portion at the intersection of each edge, and two curved edges of the curved edges are formed based on the radius of gyration in the recess of the rotating ear portion.
Heart valve .
部に収められた深さより大きい請求項6に記載の人工心
臓弁。7. The artificial heart valve according to claim 6 , wherein the depth of the recess is larger than the depth of the rotary ear like part accommodated in the recess.
回中心と前記弁座の突出した面上の中心点とが同一点で
あることをもとに定められる請求項7に記載の人工心臓
弁。8. The position of the recess, according to claim 7 which is determined on the basis that the turning center of the wall of the recess and the center point on the projecting surface of the valve seat is the same point Artificial heart valve.
おいて、上流側の端に向かって斜めの平面が切り取られ
て該平面が三角平面に類似し、該平面の3頂点が、該弁
座の突出した双壁の交差する点と、前記弁座の突出した
部分の血液が流入する側の端と前記弁座とが交差する点
とに、それぞれ、交差している請求項8に記載の人工心
臓弁。9. The portion of the valve seat projecting toward the upstream end is cut away from a plane inclined toward the upstream end so that the plane resembles a triangular plane. a point of intersection of the double wall protrudes a valve seat, to the point where the the end of a side the valve seat blood protruding portion of the valve seat flows intersect each to claim 8 intersecting The artificial heart valve described.
けられた弁座(300)と、 該弁座の内壁側に突出して形成され凹部(33)を有す
る複数の回転支持部(500)と、 前記血液の流入側で凹の上流側曲面部(46)及び前記
血液の流出側で凸の下流側曲面部(45)を有する複数
の弁(400)とを具備し、 前記各弁の底部が前記回転支持部の対応する凹部に嵌め
込まれ、前記各弁の開閉動作が前記凹部によって制限さ
れるようにし、 弁が全開時、前記回転支持部では、前記回転耳状部の上
流側曲面部の前記凹部の下半分部分にあたる辺の下半分
は互いに接し、前記回転耳状部の下流側曲面部と前記凹
部の上半分側曲線部を垂直に掘り下げた面とは面対面で
相接しており、これにより、前記弁座の開弁動作を制御
し、 弁の開閉時、前記回転耳状部の側面にあたる曲面と前記
凹部の底面とは中心軸の回転に伴い相接し、該2つの面
間に間隙が残されている人工心臓弁。10. A central passage for blood is provided on the inner wall (35) side.
And a recessed portion (33) formed so as to protrude toward the inner wall of the valve seat (300).
A plurality of rotation supporting parts (500), an upstream curved surface part (46) concave on the blood inflow side, and
Plural that have a convex downstream curved surface portion (45) on the blood outflow side
Valve (400), the bottom of each valve being fitted into a corresponding recess of the rotary support.
The opening / closing operation of each valve is restricted by the recess.
And when the valve is fully open, the rotation support should be above the rotation ear.
Lower half of the side that corresponds to the lower half of the recess on the flow-side curved surface
Are in contact with each other, and the downstream curved surface of the rotating ear and the concave
The surface of the upper half of the curved part is vertically face-down
They are in contact with each other, which controls the valve opening operation of the valve seat.
And, when opening and closing of the valve, the rotation corresponding to the side surface of the ear-like portion curved surface with the phase contact with the rotation of the central shaft and the bottom surface of the recess, an artificial heart valve gap is left between the two surfaces.
けられた弁座(300)と、 該弁座の内壁側に突出して形成され凹部(33)を有す
る複数の回転支持部(500)と、 前記血液の流入側で凹の上流側曲面部(46)及び前記
血液の流出側で凸の下流側曲面部(45)を有する複数
の弁(400)とを具備し、 前記各弁の底部が前記回転支持部の対応する凹部に嵌め
込まれ、前記各弁の開閉動作が前記凹部によって制限さ
れるようにし、 弁が全開時、前記回転支持部では、前記回転耳状部の上
流側曲面部の前記凹部の下半分部分にあたる辺の下半分
は互いに接し、前記回転耳状部の下流側曲面部と前記凹
部の上半分側曲線部を垂直に掘り下げた面とは面対面で
相接しており、これにより、前記弁座の開弁動作を制御
し、 弁が全閉の時、前記回転支持部において、前記回転耳状
部の上流側曲面の上半分にあたる曲線と前記凹部の上半
分側の辺とが辺対辺で相接し、前記弁の側面にあたる垂
直面と前記回転耳状部の側面にあたる曲面とが相接する
ところの厚さを表わす辺と、該凹部の直線エッジとが辺
対辺で相接している人工心臓弁。11. A central passage for blood is provided on the inner wall (35) side.
And a recessed portion (33) formed so as to protrude toward the inner wall of the valve seat (300).
A plurality of rotation supporting parts (500), an upstream curved surface part (46) concave on the blood inflow side, and
Plural that have a convex downstream curved surface portion (45) on the blood outflow side
Valve (400), the bottom of each valve being fitted into a corresponding recess of the rotary support.
The opening / closing operation of each valve is restricted by the recess.
And when the valve is fully open, the rotation support should be above the rotation ear.
Lower half of the side that corresponds to the lower half of the recess on the flow-side curved surface
Are in contact with each other, and the downstream curved surface of the rotating ear and the concave
The surface of the upper half of the curved part is vertically face-down
They are in contact with each other, which controls the valve opening operation of the valve seat.
However , when the valve is fully closed, in the rotation support portion, the curve corresponding to the upper half of the upstream curved surface of the rotating ear portion and the side on the upper half side of the recess are in contact with each other on a side-by-side basis, An artificial heart valve in which a side representing a thickness where a vertical surface corresponding to a side surface and a curved surface corresponding to a side surface of the rotating ear portion contact each other and a straight edge of the recess contact each other on a side-to-side basis.
側曲面部の下半分部分にあたる曲面と前記凹部の下半分
側曲線を垂直に掘り下げた面とが面対面で相接する請求
項11に記載の人工心臓弁。12. When the valve is fully closed, the curved surface corresponding to the lower half portion of the downstream curved surface portion of the rotary ear portion and the surface obtained by vertically digging the lower half side curve of the concave portion are face-to-face contact with each other. The artificial heart valve according to claim 11 .
の弧線分と前記弁座の内壁とが辺対面で相接する請求項
12に記載の人工心臓弁。13. The arc line segment of the upstream curved surface portion of the valve and the inner wall of the valve seat are face-to-face contact with each other when the valve is fully closed.
The artificial heart valve according to 12 .
2辺と面対面で相接する請求項13に記載の人工心臓
弁。14. The artificial heart valve according to claim 13, wherein two sides of the front valve are in face-to-face contact with two sides of another valve when the valve is fully closed.
頂点と他の2つの弁の頂点とが、厚さを表わす垂直な辺
において辺対辺で相接する請求項14に記載の人工心臓
弁。When 15. valve is fully closed, the vertex two sides of the valve intersects the apex of the other two valves, according to claim 14 adjoin at the side opposite sides in the vertical sides representing the thickness Artificial heart valve.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW086213211U TW329667U (en) | 1997-08-04 | 1997-08-04 | Trifoliate artificial heart valve |
TW86213211 | 1997-08-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1147169A JPH1147169A (en) | 1999-02-23 |
JP3364142B2 true JP3364142B2 (en) | 2003-01-08 |
Family
ID=21628392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36588497A Expired - Fee Related JP3364142B2 (en) | 1997-08-04 | 1997-12-22 | Artificial heart valve |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3364142B2 (en) |
TW (1) | TW329667U (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1615595B1 (en) * | 2003-04-24 | 2009-10-21 | Cook Incorporated | Artificial valve prosthesis with improved flow dynamics |
FR2915678B1 (en) * | 2007-05-02 | 2010-04-16 | Lapeyre Ind Llc | MECHANICAL PROTHETIC CARDIAC VALVE |
KR101882479B1 (en) * | 2017-03-09 | 2018-07-27 | 금오공과대학교 산학협력단 | pneumatic pulsatile VAD for preventing thrombosis and backflow |
-
1997
- 1997-08-04 TW TW086213211U patent/TW329667U/en unknown
- 1997-12-22 JP JP36588497A patent/JP3364142B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1147169A (en) | 1999-02-23 |
TW329667U (en) | 1998-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2475212C2 (en) | Mechanical cardiac valve | |
US6395024B1 (en) | Mechanical heart valve | |
CA2134525C (en) | Bi-leaflet prosthetic heart valve | |
US5919226A (en) | Mechanical heart valve prosthesis | |
US5641324A (en) | Prosthetic heart valve | |
US6051022A (en) | Bileaflet valve having non-parallel pivot axes | |
US5123918A (en) | Prosthetic heart valve | |
US4488318A (en) | Prosthetic heart valve | |
CA1066853A (en) | Heart valve with arcuate occluder | |
JPH0214053B2 (en) | ||
JPS6268454A (en) | Artificial heart valve | |
US4416029A (en) | Trileaflet prosthetic heart valve | |
CN115209840A (en) | Mechanical artificial heart valve | |
WO2000038597A1 (en) | Mechanical heart valve prosthesis | |
JP3364142B2 (en) | Artificial heart valve | |
US20080086202A1 (en) | Mechanical heart valve | |
AU2003244523B2 (en) | Mechanical heart valve | |
Cooley | New mitral and aortic valve prostheses: Design and clinical results | |
CZ20004531A3 (en) | Mechanical heart valve | |
MXPA00011791A (en) | Mechanical heart valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091025 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131025 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |