JP3364137B2 - Method for manufacturing silicon-based thin film photoelectric conversion device - Google Patents
Method for manufacturing silicon-based thin film photoelectric conversion deviceInfo
- Publication number
- JP3364137B2 JP3364137B2 JP30709397A JP30709397A JP3364137B2 JP 3364137 B2 JP3364137 B2 JP 3364137B2 JP 30709397 A JP30709397 A JP 30709397A JP 30709397 A JP30709397 A JP 30709397A JP 3364137 B2 JP3364137 B2 JP 3364137B2
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- silicon
- thin film
- film
- conversion device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Chemical Vapour Deposition (AREA)
- Photovoltaic Devices (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は薄膜光電変換装置の
製造方法に関し、特に、シリコン系薄膜光電変換装置の
低コスト化と性能改善に関するものである。なお、本明
細書において、「結晶質」と「微結晶」の用語は、部分
的にアモルファス状態を含むものをも意味するものとす
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film photoelectric conversion device, and more particularly to a cost reduction and performance improvement of a silicon-based thin film photoelectric conversion device. Note that in this specification, the terms “crystalline” and “microcrystalline” also include those partially including an amorphous state.
【0002】[0002]
【従来の技術】薄膜光電変換装置の代表的なものとして
アモルファスシリコン系太陽電池があり、アモルファス
光電変換材料は通常200℃前後の低い成膜温度の下で
プラズマCVD法によって形成されるので、ガラス,ス
テンレス,有機フィルム等の安価な基板上に形成するこ
とができ、低コストの光電変換装置のための有力材料と
して期待されている。また、アモルファスシリコンにお
いては可視光領域での吸収係数が大きいので、500n
m以下の薄い膜厚のアモルファス光電変換層を用いた太
陽電池において15mA/cm2 以上の短絡電流が実現
されている。2. Description of the Related Art A typical example of a thin film photoelectric conversion device is an amorphous silicon solar cell, and an amorphous photoelectric conversion material is usually formed by a plasma CVD method at a low film forming temperature of about 200 ° C. , Which can be formed on inexpensive substrates such as stainless steel and organic films, and is expected as a promising material for low-cost photoelectric conversion devices. Also, since amorphous silicon has a large absorption coefficient in the visible light region,
A short circuit current of 15 mA / cm 2 or more has been realized in a solar cell using an amorphous photoelectric conversion layer having a thin film thickness of m or less.
【0003】しかし、アモルファスシリコン系材料で
は、Stebler-Wronskey効果と呼ばれるように、光電変換
特性が長期間の光照射によって低下するなどの問題を抱
えており、さらにその有効感度波長領域が800nm程
度までである。したがって、アモルファスシリコン系材
料を用いた光電変換装置においては、その信頼性や高性
能化には限界が見られ、基板選択の自由度や低コストプ
ロセスを利用し得るという本来の利点が十分には生かさ
れていない。However, amorphous silicon-based materials have a problem that photoelectric conversion characteristics are deteriorated by long-term light irradiation, as called the Stebler-Wronskey effect, and their effective sensitivity wavelength range is up to about 800 nm. Is. Therefore, in a photoelectric conversion device using an amorphous silicon-based material, there is a limit in reliability and high performance, and the original advantage that the degree of freedom in substrate selection and the low cost process can be used is not sufficient. Not alive.
【0004】これに対して、近年では、たとえば多結晶
シリコンや微結晶シリコンのような結晶質シリコンを含
む薄膜を利用した光電変換装置の開発が精力的に行なわ
れている。これらの開発は、安価な基板上に低温プロセ
スで良質の結晶質シリコン薄膜を形成することによって
光電変換装置の低コスト化と高性能化を両立させるとい
う試みであり、太陽電池だけでなく光センサ等のさまざ
まな光電変換装置への応用が期待されている。On the other hand, in recent years, a photoelectric conversion device utilizing a thin film containing crystalline silicon such as polycrystalline silicon or microcrystalline silicon has been vigorously developed. These developments are attempts to achieve both low cost and high performance of a photoelectric conversion device by forming a good quality crystalline silicon thin film on an inexpensive substrate by a low temperature process. It is expected to be applied to various photoelectric conversion devices such as.
【0005】これらの結晶質シリコン薄膜の形成方法と
しては、たとえばCVD法やスパッタリング法にて基板
上に直接堆積させるか、同様のプロセスで一旦アモルフ
ァス膜を堆積させた後に熱アニールやレーザアニールを
行なうことによって結晶化を図るなどの方法があるが、
いずれにしても前述のような安価な基板を用いるために
は550℃以下のプロセスで行なう必要がある。As a method for forming these crystalline silicon thin films, for example, CVD or sputtering is used to deposit directly on the substrate, or an amorphous film is once deposited by the same process and then thermal annealing or laser annealing is performed. There are methods such as crystallization by
In any case, it is necessary to perform the process at 550 ° C. or lower in order to use the inexpensive substrate as described above.
【0006】そのようなプロセスの中でも、プラズマC
VD法によって直接結晶質シリコン薄膜を堆積させる手
法は、プロセスの低温化や薄膜の大面積化が最も容易で
あり、しかも比較的簡便なプロセスで高品質な膜が得ら
れるものと期待されている。このような手法で多結晶シ
リコン薄膜を得る場合、結晶質を含む高品質シリコン薄
膜を何らかのプロセスで一旦基板上に形成した後に、こ
れをシード層または結晶化制御層としてその上に成膜を
することによって、比較的低温でも良質の多結晶シリコ
ン薄膜が形成され得る。Among such processes, plasma C
The method of directly depositing a crystalline silicon thin film by the VD method is expected to be the easiest to lower the temperature of the process and to increase the area of the thin film, and is expected to obtain a high quality film by a relatively simple process. . When a polycrystalline silicon thin film is obtained by such a method, a high quality silicon thin film containing a crystalline material is once formed on a substrate by some process and then formed as a seed layer or a crystallization control layer. As a result, a good quality polycrystalline silicon thin film can be formed even at a relatively low temperature.
【0007】一方、水素でシラン系原料ガスを10倍以
上希釈しかつプラズマ反応室内圧力を10mTorr〜
1Torrの範囲内に設定してプラズマCVD法で成膜
することによって、微結晶シリコン薄膜が得られること
はよく知られており、この場合には200℃前後の温度
でもシリコン薄膜が容易に微結晶化され得る。たとえ
ば、微結晶シリコンのpin接合からなる光電変換ユニ
ットを含む光電変換装置がAppl, Phys, Lett., Vol 65,
1994, p.860に記載されている。この光電変換ユニット
は、簡便にプラズマCVD法で順次積層されたp型半導
体層、光電変換層たるi型半導体層およびn型半導体層
からなり、これらの半導体層のすべてが微結晶シリコン
であることを特徴としている。ところが、高品質の結晶
質シリコン膜、さらには高性能のシリコン系薄膜光電変
換装置を得るためには、従来の製法や条件の下ではその
成膜速度が厚さ方向で10nm/分に満たないほど遅
く、アモルファスシリコン膜の場合と同程度かもしくは
それ以下でしかない。On the other hand, the silane source gas is diluted 10 times or more with hydrogen and the pressure in the plasma reaction chamber is set to 10 mTorr.
It is well known that a microcrystalline silicon thin film can be obtained by setting the film thickness within the range of 1 Torr by the plasma CVD method. In this case, the silicon thin film can be easily microcrystallized even at a temperature of about 200 ° C. Can be transformed. For example, a photoelectric conversion device including a photoelectric conversion unit composed of a pin junction of microcrystalline silicon is described in Appl, Phys, Lett., Vol 65,
1994, p.860. This photoelectric conversion unit is composed of a p-type semiconductor layer, an i-type semiconductor layer and an n-type semiconductor layer, which are photoelectric conversion layers, which are simply sequentially stacked by a plasma CVD method, and all of these semiconductor layers are microcrystalline silicon. Is characterized by. However, in order to obtain a high-quality crystalline silicon film and further a high-performance silicon-based thin film photoelectric conversion device, the film formation rate is less than 10 nm / min in the thickness direction under the conventional manufacturing method and conditions. It is as slow as it is, and is as low as or less than that of the amorphous silicon film.
【0008】他方、低温プラズマCVD法で比較的高い
5Torrの圧力条件の下でシリコン膜を形成した例
が、特開平4−137725に記載されている。しか
し、この事例はガラス等の基板上に直接シリコン薄膜を
堆積させたものであり、特開平4−137725に開示
された発明に対する比較例であって、その膜の品質は低
くて光電変換装置へ応用できるものではない。On the other hand, an example in which a silicon film is formed by a low temperature plasma CVD method under a relatively high pressure condition of 5 Torr is described in JP-A-4-137725. However, this example is a case where a silicon thin film is directly deposited on a substrate such as glass, which is a comparative example with respect to the invention disclosed in Japanese Patent Laid-Open No. 4-137725. It cannot be applied.
【0009】また、一般にプラズマCVD法の圧力条件
を高くすれば、プラズマ反応室内にパウダー状の生成物
やダストなどが大量に発生する。その場合、堆積中の膜
表面にそれらのダスト等が飛来して堆積膜中に取り込ま
れる危険性が高く、膜中のピンホールの発生原因とな
る。そして、そのような膜質の劣化を低減するために
は、反応室内のクリーニングを頻繁に行なわなければな
らなくなる。特に、550℃以下のような低温条件で成
膜する場合には、反応室圧力を高くした場合のこれらの
問題が顕著となる。しかも、太陽電池のような光電変換
装置の製造においては、大面積の薄膜を堆積させる必要
があるので、製品歩留りの低下や成膜装置維持管理ため
の労力およびコストの増大という深刻な問題を招く。Generally, if the pressure condition of the plasma CVD method is raised, a large amount of powdery products and dusts are generated in the plasma reaction chamber. In that case, there is a high risk that those dusts and the like fly to the surface of the film being deposited and are taken into the deposited film, which causes pinholes in the film. Then, in order to reduce such deterioration of the film quality, it is necessary to frequently clean the reaction chamber. In particular, when a film is formed under a low temperature condition such as 550 ° C. or less, these problems become remarkable when the reaction chamber pressure is increased. Moreover, in manufacturing a photoelectric conversion device such as a solar cell, it is necessary to deposit a large-area thin film, which causes serious problems such as a decrease in product yield and an increase in labor and cost for maintaining the film forming device. .
【0010】したがって、薄膜光電変換装置をプラズマ
CVD法を用いて製造する場合には、上述のように従来
から1Torr以下の圧力条件が用いられている。Therefore, when the thin film photoelectric conversion device is manufactured by using the plasma CVD method, the pressure condition of 1 Torr or less is conventionally used as described above.
【0011】[0011]
【発明が解決しようとする課題】前述のような結晶質シ
リコン系薄膜光電変換層を含む光電変換装置において
は、以下のような問題がある。すなわち、多結晶シリコ
ンであろうと部分的にアモルファス相を含む微結晶シリ
コンであろうと、太陽電池の光電変換層として用いる場
合には、結晶質シリコンの吸収係数を考えれば、太陽光
を十分に吸収させるためには少なくとも数μmから数十
μmもの膜厚が要求される。これは、アモルファスシリ
コン光電変換層の場合に比べれば1桁弱から2桁も厚い
ことになる。The photoelectric conversion device including the crystalline silicon-based thin film photoelectric conversion layer as described above has the following problems. In other words, whether it is polycrystalline silicon or microcrystalline silicon partially containing an amorphous phase , when it is used as a photoelectric conversion layer of a solar cell, considering the absorption coefficient of crystalline silicon, it absorbs sunlight sufficiently. To achieve this, a film thickness of at least several μm to several tens of μm is required. This is one to two orders of magnitude thicker than that of the amorphous silicon photoelectric conversion layer.
【0012】しかるに、これまでの技術によれば、プラ
ズマCVD法によって低温で良質の結晶質シリコン系薄
膜を得るためには、温度,反応室内圧力,高周波パワ
ー,ならびにガス流量比というような種々の成膜条件パ
ラメータを検討しても、その成膜速度はアモルファスシ
リコン膜の場合と同程度もしくはそれ以下であって、た
とえば10nm/分程度にしかならなかった。この問題
を言い換えれば、結晶質シリコン薄膜光電変換層はアモ
ルファスシリコン光電変換層の何倍から何10倍もの成
膜時間を要することになり、光電変換装置の製造工程の
スループットの向上が困難となって低コスト化の妨げと
なる。However, according to the conventional techniques, in order to obtain a good quality crystalline silicon thin film at a low temperature by the plasma CVD method, various factors such as temperature, pressure in the reaction chamber, high frequency power, and gas flow rate ratio are used. Examination of the film forming condition parameters revealed that the film forming rate was about the same as or lower than that of the amorphous silicon film, for example, only about 10 nm / min. In other words, the crystalline silicon thin film photoelectric conversion layer requires a film formation time which is many times to several tens of times longer than that of the amorphous silicon photoelectric conversion layer, which makes it difficult to improve the throughput of the manufacturing process of the photoelectric conversion device. Thus hindering cost reduction.
【0013】上述のような従来技術の課題に鑑み、本発
明の目的は、低温プラズマCVD法で形成する結晶質シ
リコン系光電変換層の成膜速度を高速化することによっ
て製造工程のスループットを向上させ、かつ光電変換装
置の性能をも改善させることにある。In view of the above problems of the prior art, an object of the present invention is to improve the throughput of the manufacturing process by increasing the film formation rate of the crystalline silicon photoelectric conversion layer formed by the low temperature plasma CVD method. And to improve the performance of the photoelectric conversion device.
【0014】[0014]
【課題を解決するための手段】本発明によるシリコン系
薄膜光電変換装置の製造方法においては、その光電変換
装置が基板上に形成された少なくとも1つの光電変換ユ
ニットを含み、この光電変換ユニットは高周波プラズマ
CVD法によって順次積層された1導電型半導体層と、
結晶質を含むシリコ系膜光電変換層と、逆導電型半導体
層とを含むものであり、その光電変換層をプラズマCV
D法で堆積する条件として:下地温度が550℃以下で
あり;プラズマ反応室内に導入されるガスの主要成分と
してシラン系ガスと水素ガスを含み、かつシラン系ガス
に対する水素ガスの流量が50倍以上であり;プラズマ
反応室内の圧力が3Torr以上に設定され;高周波と
して150MHz以下の周波数で0.05W/cm 2 以
上の電力が印加され;そして、厚さ方向に16nm/分
以上の速度で0.5〜20μmの範囲内の膜厚まで堆積
し、これによって、前記光電変換層は多結晶シリコン膜
または体積結晶化分率80%以上の微結晶シリコン膜で
あってかつ0.5原子%以上で30原子%以下の水素を
含有するものとして形成されることを特徴としている。In the method for manufacturing a silicon-based thin film photoelectric conversion device according to the present invention, the photoelectric conversion device includes at least one photoelectric conversion unit formed on a substrate, and the photoelectric conversion unit has a high frequency. A semiconductor layer of one conductivity type sequentially stacked by a plasma CVD method,
A silicon-based film photoelectric conversion layer containing a crystalline material and an opposite conductivity type semiconductor layer are included, and the photoelectric conversion layer is a plasma CV.
As conditions for depositing by the D method: the base temperature is 550 ° C. or lower; the silane-based gas and the hydrogen gas are included as the main components of the gas introduced into the plasma reaction chamber, and the flow rate of the hydrogen gas is 50 times the silane-based gas There above; plasma reaction pressure in the chamber is set to more than 3 Torr; RF and
0.05W / cm 2 or more at frequencies below 150MHz to
Power above is applied; element, deposited in the thickness direction 16 nm / min or faster to a thickness in the range of 0.5~20μm
As a result, the photoelectric conversion layer becomes a polycrystalline silicon film.
Or a microcrystalline silicon film with a volume crystallization fraction of 80% or more
And at least 0.5 atomic% and less than 30 atomic% hydrogen
It is characterized in that it is formed as containing .
【0015】[0015]
【発明の実施の形態】図1は、本発明の1つの実施の形
態により製造されるシリコン系薄膜光電変換装置を模式
的な斜視図で図解している。この装置の基板201には
ステンレス等の金属、有機フィルム、または低融点の安
価なガラス等が用いられ得る。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic perspective view illustrating a silicon-based thin film photoelectric conversion device manufactured according to one embodiment of the present invention. A metal such as stainless steel, an organic film, an inexpensive glass having a low melting point, or the like can be used for the substrate 201 of this device.
【0016】基板201上の裏面電極210は、下記の
薄膜(A)と(B)のうちの1以上を含み、たとえば蒸
着法やスパッタリング法によって形成され得る。
(A) Ti,Cr,Al,Ag,Au,CuおよびP
tから選択された少なくとも1以上の金属またはこれら
の合金からなる金属薄膜。
(B) ITO,SnO2 およびZnOから選択された
少なくとも1以上の酸化物からなる透明導電性薄膜。The back electrode 210 on the substrate 201 includes one or more of the following thin films (A) and (B), and can be formed by, for example, a vapor deposition method or a sputtering method. (A) Ti, Cr, Al, Ag, Au, Cu and P
A metal thin film comprising at least one metal selected from t or alloys thereof. (B) A transparent conductive thin film made of at least one oxide selected from ITO, SnO 2 and ZnO.
【0017】裏面電極210上には光電変換ユニット2
11の内の1導電型半導体層204がプラズマCVD法
にて堆積される。この1導電型半導体層204として
は、たとえば導電型決定不純物原子であるリンが0.0
1原子%以上ドープされたn型シリコン層、またはボロ
ンが0.01原子%以上ドープされたp型シリコン層な
どが用いられ得る。しかし、1導電型半導体層204に
関するこれらの条件は限定的なものではなく、不純物原
子としてはたとえばp型シリコン層においてはアルミニ
ウム等でもよく、またシリコンカーバイドやシリコンゲ
ルマニウムなどの合金材料を用いてもよい。導電型シリ
コン系薄膜204は、多結晶,微結晶,またはアモルフ
ァスのいずれでもよく、その膜厚は1〜100nmの範
囲内に設定され、より好ましくは2〜30nmの範囲内
に設定される。The photoelectric conversion unit 2 is provided on the back electrode 210.
One of the 11 semiconductor layers 204 of one conductivity type is deposited by the plasma CVD method. As the 1-conductivity type semiconductor layer 204, for example, phosphorus which is a conductivity-type determining impurity atom is 0.0
An n-type silicon layer doped with 1 atomic% or more, a p-type silicon layer doped with 0.01 atomic% or more of boron, or the like can be used. However, these conditions for the one-conductivity-type semiconductor layer 204 are not limited, and the impurity atom may be, for example, aluminum or the like in the p-type silicon layer, or an alloy material such as silicon carbide or silicon germanium. Good. The conductive type silicon-based thin film 204 may be polycrystalline, microcrystalline, or amorphous, and its film thickness is set within the range of 1 to 100 nm, more preferably within the range of 2 to 30 nm.
【0018】結晶質を含むシリコン系薄膜の光電変換層
205としては、ノンドープのi型多結晶シリコン薄膜
や体積結晶化分率80%以上のi型微結晶シリコン薄
膜、または微量の不純物を含む弱p型もしくは弱n型で
光電変換機能を十分に備えているシリコン系薄膜材料が
使用され得る。光電変換層205の膜厚は0.5〜20
μmの範囲内にあり、結晶質シリコン薄膜光電変換層と
して必要かつ十分な膜厚を有している。The photoelectric conversion layer 205 of a silicon-based thin film containing a crystalline material is a non-doped i-type polycrystalline silicon thin film, an i-type microcrystalline silicon thin film having a volume crystallization fraction of 80% or more, or a weak impurity containing a trace amount of impurities. p-type or silicon-based thin film material is provided with sufficient photoelectric conversion function with a weak n-type that could be used. The film thickness of the photoelectric conversion layer 205 is 0.5 to 20
It is in the range of μm and has a film thickness necessary and sufficient for a crystalline silicon thin film photoelectric conversion layer.
【0019】結晶質シリコン系光電変換層205の成膜
は、通常に広く用いられている平行平板型RFプラズマ
CVD法で行なわれ得るほか、周波数が150MHz以
下でRF帯からVHF帯までの高周波電源を用いたプラ
ズマCVD法で行なわれてもよい。The crystalline silicon-based photoelectric conversion layer 205 can be formed by a parallel plate type RF plasma CVD method which is widely used in general, and a high frequency power source from RF band to VHF band with a frequency of 150 MHz or less. May be performed by a plasma CVD method using.
【0020】なお、これらのプラズマCVD法における
結晶質シリコン系光電変換層205の成膜温度は、上述
した安価な基板が使用され得る550℃以下である。The film formation temperature of the crystalline silicon type photoelectric conversion layer 205 in these plasma CVD methods is 550 ° C. or lower at which the above-mentioned inexpensive substrate can be used.
【0021】結晶質シリコン系薄膜光電変換層205
は、プラズマCVD法における反応室内圧力が3Tor
r以上で、より好ましくは5Torr以上の条件下で堆
積される。また、そのときの高周波パワー密度は20m
W/cm2 以上であることが好ましく、50mW/cm
2 以上であることがより好ましい。さらに、反応室内に
導入されるガスの主成分としてシラン系ガスと水素ガス
を含み、かつシラン系ガスに対する水素ガスの流量は5
0倍以上にされる。シラン系ガスとしてはモノシラン,
ジシラン等が好ましいが、これらに加えて四フッ化ケイ
素,四塩化ケイ素,ジクロルシラン等のハロゲン化ケイ
素ガスを用いてもよい。また、これらに加えて希ガス等
の不活性ガス、好ましくはヘリウム,ネオン,アルゴン
等を用いもよい。Crystalline silicon-based thin film photoelectric conversion layer 205
Has a reaction chamber pressure of 3 Torr in the plasma CVD method.
It is deposited under a condition of not less than r, more preferably not less than 5 Torr. The high frequency power density at that time is 20 m.
W / cm 2 or more, preferably 50 mW / cm
It is more preferably 2 or more. Furthermore, the main components of the gas introduced into the reaction chamber include silane-based gas and hydrogen gas, and the flow rate of hydrogen gas with respect to the silane-based gas is 5
It is made 0 times or more. Monosilane as the silane-based gas,
Disilane and the like are preferable, but in addition to these, a silicon halide gas such as silicon tetrafluoride, silicon tetrachloride, and dichlorosilane may be used. In addition to these, an inert gas such as a rare gas, preferably helium, neon, argon or the like may be used.
【0022】本発明は、以上のような結晶質シリコン系
光電変換層205の形成条件において、その成膜速度が
16nm/分以上にされ得ることを特徴としている。The present invention is characterized in that the film formation rate can be set to 16 nm / min or more under the above-mentioned formation conditions of the crystalline silicon-based photoelectric conversion layer 205.
【0023】この結晶質シリコン系薄膜光電変換層20
5に含まれる結晶粒の多くは、下地層204から上方に
柱状に延びて成長している。これらの多くの結晶粒は膜
面に平行に(110)の優先結晶配向面を有し、そのX
線回折で求めた(220)回折ピークに対する(11
1)回折ピークの強度比は1/10以下であることが好
ましく、1/20以下であることがより好ましい。ま
た、下地層である1導電型層204の表面形状が実質的
に平面である場合でも、光電変換層205の形成後のそ
の表面にはその膜厚よりも約1桁ほど小さい間隔の微細
な凹凸を有する表面テクスチャ構造が形成される。This crystalline silicon-based thin film photoelectric conversion layer 20
Most of the crystal grains contained in No. 5 grow in a columnar shape extending upward from the underlayer 204. Many of these crystal grains have a (110) preferred crystallographic orientation plane parallel to the film plane, and
(11) for the (220) diffraction peak obtained by line diffraction
1) The intensity ratio of diffraction peaks is preferably 1/10 or less, and more preferably 1/20 or less. Even when the surface shape of the one-conductivity-type layer 204, which is the underlayer, is substantially flat, the surface after the formation of the photoelectric conversion layer 205 has minute intervals smaller than the film thickness by about one digit. A surface texture structure having irregularities is formed.
【0024】また、得られる結晶質シリコン系薄膜20
5は、2次イオン質量分析法により求められる水素含有
量が0.5原子%以上で30原子%以下の範囲内にある
ことが好ましく、1原子%以上で20原子%以下の範囲
内にあることがより好ましい。Further, the obtained crystalline silicon type thin film 20.
5, the hydrogen content determined by secondary ion mass spectrometry is preferably in the range of 0.5 atom% or more and 30 atom% or less, and preferably in the range of 1 atom% or more and 20 atom% or less. Is more preferable.
【0025】本発明における結晶質シリコン系薄膜光電
変換層205の形成方法では、従来の3Torr未満の
圧力条件に比べれば高圧力であるので、膜中のイオンダ
メージが極力低減できる。したがって、成膜速度を速め
るために高周波パワーを高くしたりガス流量を増加させ
ても、堆積膜表面でのイオンダメージが少なくて、良質
の膜が高速度で形成され得る。また、高圧力条件で成膜
を行なえば反応室内のパウダー生成による汚染が懸念さ
れるが、原料ガスが水素のような高熱伝導性ガスで大量
に希釈されているので、このような問題も起こりにく
い。In the method of forming the crystalline silicon type thin film photoelectric conversion layer 205 of the present invention, since the pressure is higher than the conventional pressure condition of less than 3 Torr, ion damage in the film can be reduced as much as possible. Therefore, even if the high frequency power is increased or the gas flow rate is increased in order to increase the film formation speed, the ion damage on the surface of the deposited film is small and a good quality film can be formed at a high speed. Also, if film formation is performed under high pressure conditions, contamination due to powder formation in the reaction chamber may occur, but since the raw material gas is diluted with a large amount of highly thermally conductive gas such as hydrogen, this problem also occurs. Hateful.
【0026】さらに、以下のような理由により、本発明
では、従来法の場合に比べて高品質の結晶質シリコン系
薄膜205が得られる。まず、成膜速度が速いので、反
応室内に残留している酸素や窒素等の不純物原子が膜中
に取り込まれる割合が減少する。また、膜成長初期にお
ける結晶核生成時間が短いために相対的に核発生密度が
減少し、大粒径で強く結晶配向した結晶粒が形成されや
すくなる。さらに、高圧力で成膜すれば、結晶粒界や粒
内の欠陥が水素でパッシベーションされやすく、それら
の欠陥密度も減少する。Further, for the following reasons, the present invention can provide a crystalline silicon-based thin film 205 of higher quality than in the conventional method. First, since the film forming rate is high, the ratio of the impurity atoms such as oxygen and nitrogen remaining in the reaction chamber taken into the film is reduced. Further, since the crystal nucleation time in the initial stage of film growth is short, the nucleation density is relatively reduced, and crystal grains having a large grain size and strongly crystallized are likely to be formed. Furthermore, if the film is formed at a high pressure, defects in crystal grain boundaries and grains are likely to be passivated by hydrogen, and the defect density of those defects is also reduced.
【0027】光電変換層205上には、その下地層20
4とは逆タイプの導電型半導体層206としてのシリコ
ン系薄膜がプラズマCVD法によって堆積される。この
逆導電型シリコン系薄膜206としては、たとえば導電
型決定不純物原子であるボロンが0.01原子%以上ド
ープされたp型シリコン薄膜、またはリンが0.01原
子%以上ドープされたn型シリコン薄膜などが用いられ
得る。しかし、逆導電型半導体層206についてのこれ
らの条件は限定的なものではなく、不純物原子としては
たとえばp型シリコンにおいてはアルミニウム等でもよ
く、またシリコンカーバイドやシリコンゲルマニウム等
の合金材料の膜を用いてもよい。この逆導電型シリコン
系薄膜206は、多結晶,微結晶,またはアモルファス
のいずれでもよく、その膜厚は3〜100nmの範囲内
に設定され、より好ましくは5〜50nmの範囲内に設
定される。The underlying layer 20 is formed on the photoelectric conversion layer 205.
A silicon type thin film as a conductivity type semiconductor layer 206 of the opposite type to that of No. 4 is deposited by the plasma CVD method. The reverse conductivity type silicon-based thin film 206 is, for example, a p-type silicon thin film doped with 0.01 atom% or more of boron, which is a conductivity determining impurity atom, or an n-type silicon doped with 0.01 atom% or more of phosphorus. Thin films and the like can be used. However, these conditions for the opposite conductivity type semiconductor layer 206 are not limited, and aluminum or the like may be used as the impurity atom in p-type silicon, and a film of an alloy material such as silicon carbide or silicon germanium is used. May be. The reverse conductivity type silicon-based thin film 206 may be polycrystalline, microcrystalline, or amorphous, and its film thickness is set within the range of 3 to 100 nm, more preferably within the range of 5 to 50 nm. .
【0028】光電変換ユニット111上には、ITO,
SnO2 ,ZnO等から選択された少なくとも1以上の
層からなる透明導電性酸化膜207が形成され、さらに
この上にグリッド電極としてAl,Ag,Au,Cu,
Pt等から選択された少なくとも1以上の金属またはこ
れらの合金の層を含む櫛形状の金属電極208がスパッ
タリング法または蒸着法によって形成され、これによっ
て図1に示されているような光電変換装置が完成する。On the photoelectric conversion unit 111, ITO,
A transparent conductive oxide film 207 composed of at least one layer selected from SnO 2 , ZnO, etc. is formed, and Al, Ag, Au, Cu, and
A comb-shaped metal electrode 208 including a layer of at least one metal selected from Pt or the like or an alloy thereof is formed by a sputtering method or a vapor deposition method, whereby a photoelectric conversion device as shown in FIG. 1 is obtained. Complete.
【0029】図2は、本発明のもう1つの実施の形態に
おいて製造されるタンデム型シリコン系薄膜光電変換装
置を模式的な斜視図で図解している。図2のタンデム型
光電変換装置においては、図1の場合と同様に基板40
1上の複数の層402〜406が、図1の基板201上
の複数の層202〜206に対応して同様に形成され
る。FIG. 2 is a schematic perspective view illustrating a tandem type silicon-based thin film photoelectric conversion device manufactured according to another embodiment of the present invention. In the tandem photoelectric conversion device of FIG. 2, the substrate 40 is used as in the case of FIG.
1 to the plurality of layers 402 to 406 are similarly formed corresponding to the plurality of layers 202 to 206 on the substrate 201 of FIG.
【0030】しかし、図2のタンデム型光電変換装置に
おいては、第1の光電変換ユニット411上に重ねて、
プラズマCVD法にて第2の光電変換ユニット412が
さらに形成される。第2の光電変換ユニット412は、
第1の光電変換ユニット411上に順次積層された第1
導電型の微結晶またはアモルファスのシリコン系薄膜4
13、実質的に真性半導体であるアモルファスシリコン
系薄膜光電変換層414、および逆導電型の微結晶また
はアモルファスのシリコン系薄膜415を含んでいる。However, in the tandem type photoelectric conversion device of FIG. 2, it is stacked on the first photoelectric conversion unit 411,
The second photoelectric conversion unit 412 is further formed by the plasma CVD method. The second photoelectric conversion unit 412 is
The first photoelectric conversion unit 411 is sequentially laminated on the first photoelectric conversion unit 411.
Conductive microcrystal or amorphous silicon-based thin film 4
13, an amorphous silicon-based thin film photoelectric conversion layer 414 that is substantially an intrinsic semiconductor, and a microcrystalline or amorphous silicon-based thin film 415 of the opposite conductivity type.
【0031】第2の光電変換ユニット412上には、前
面透明電極407および櫛形状金属電極408が図1中
の対応する要素207および208と同様に形成され、
これによって図2のタンデム型光電変換装置が完成す
る。A front transparent electrode 407 and a comb-shaped metal electrode 408 are formed on the second photoelectric conversion unit 412 in the same manner as the corresponding elements 207 and 208 in FIG.
As a result, the tandem photoelectric conversion device of FIG. 2 is completed.
【0032】また、本発明のさらに他の実施の形態とし
て、図3に示されているようなガラス基板側光入射タイ
プのタンデム型シリコン系薄膜光電変換装置が製造され
得る。この図3の光電変換装置においては、まず透明基
板601上に図2中の透明導電層407に対応する層6
07が形成される。そして、この透明導電層607上に
は、図2中の複数の層402〜406と413〜415
にそれぞれ対応する複数の層602〜606と613〜
615が積層順序を逆にして堆積される。このとき、図
3中の各層602〜607と613〜615は図2中の
対応する各層402〜407と413〜415に準じて
同様に形成され得る。As still another embodiment of the present invention, a tandem type silicon-based thin film photoelectric conversion device of the light incident type on the glass substrate side as shown in FIG. 3 can be manufactured. In the photoelectric conversion device of FIG. 3, first, the layer 6 corresponding to the transparent conductive layer 407 in FIG. 2 is formed on the transparent substrate 601.
07 is formed. Then, on the transparent conductive layer 607, a plurality of layers 402 to 406 and 413 to 415 in FIG.
To a plurality of layers 602-606 and 613-
615 is deposited with the stacking order reversed. At this time, the layers 602 to 607 and 613 to 615 in FIG. 3 can be formed similarly according to the corresponding layers 402 to 407 and 413 to 415 in FIG.
【0033】以上述べたシリコン系薄膜光電変換装置の
一連の製造工程のうちで、スループットを向上させる上
で従来から最も大きな課題であったのは、大きな膜厚を
必要とする結晶質光電変換層(205,405,60
5)の製造工程であったことは言うまでもない。しかし
ながら、本発明によれば、その結晶質光電変換層の成膜
速度が大幅に向上し、しかも、より良質の膜が得られる
ことから、シリコン系薄膜光電変換装置の高性能化と低
コスト化に大きく貢献することができる。In the series of manufacturing steps of the silicon-based thin film photoelectric conversion device described above, the biggest problem in the past in improving throughput is a crystalline photoelectric conversion layer requiring a large film thickness. (205,405,60
It goes without saying that it was the manufacturing process of 5). However, according to the present invention, the film formation speed of the crystalline photoelectric conversion layer is significantly improved, and a film of higher quality can be obtained. Therefore, high performance and low cost of the silicon-based thin film photoelectric conversion device are achieved. Can greatly contribute to.
【0034】[0034]
【実施例】以下において、本発明のいくつかの実施例に
よるシリコン系薄膜光電変換装置としてのシリコン系薄
膜太陽電池が、比較例による太陽電池とともに説明され
る。EXAMPLES Hereinafter, silicon-based thin film solar cells as silicon-based thin film photoelectric conversion devices according to some examples of the present invention will be described together with solar cells according to comparative examples.
【0035】(実施例1)図1の実施の形態に対応し
て、実施例1としての結晶質シリコン薄膜太陽電池が作
製された。まず、ガラス基板201上に裏面電極210
として、厚さ300nmのAg膜202とその上の厚さ
100nmのZnO膜203のそれぞれがスパッタリン
グ法によって形成された。裏面電極210上には、厚さ
30nmでリンドープされたn型微結晶シリコン層20
4、厚さ3μmでノンドープの多結晶シリコン薄膜光電
変換層205、および厚さ15nmでボロンドープされ
たp型微結晶シリコン層206がそれぞれRFプラズマ
CVD法により成膜され、nip光電変換ユニット21
1が形成された。光電変換ユニット211上には、前面
電極207として、厚さ80nmの透明導電性ITO膜
がスパッタリング法にて堆積され、その上に電流取出の
ための櫛形Ag電極208が蒸着法にて堆積された。Example 1 A crystalline silicon thin film solar cell as Example 1 was produced corresponding to the embodiment shown in FIG. First, the back electrode 210 is formed on the glass substrate 201.
As a result, the Ag film 202 having a thickness of 300 nm and the ZnO film 203 having a thickness of 100 nm thereon were each formed by the sputtering method. On the back electrode 210, a 30-nm-thick phosphorus-doped n-type microcrystalline silicon layer 20 is formed.
4, a non-doped polycrystalline silicon thin film photoelectric conversion layer 205 having a thickness of 3 μm, and a boron-doped p-type microcrystalline silicon layer 206 having a thickness of 15 nm are respectively formed by the RF plasma CVD method, and the nip photoelectric conversion unit 21 is formed.
1 was formed. On the photoelectric conversion unit 211, a transparent conductive ITO film having a thickness of 80 nm was deposited as a front electrode 207 by a sputtering method, and a comb-shaped Ag electrode 208 for extracting a current was deposited thereon by an evaporation method. .
【0036】多結晶シリコン薄膜光電変換層205は、
13.56MHzの高周波電源を用いたRFプラズマC
VD法により堆積された。そのときに用いられた反応ガ
スにおいてはシランと水素の流量比が1:60で混合さ
れ、反応室内圧力は3.0Torrにされた。また、放
電パワー密度は80mW/cm2 で、成膜温度は400
℃に設定された。このような成膜条件の下では、多結晶
シリコン薄膜光電変換層205の成膜速度は16nm/
分であった。また、この光電変換層205についてX線
回折で求めた(220)回折ピークに対する(111)
回折ピークの強度比は1/16であり、2次イオン質量
分析法から求めた水素含有量は0.8原子%であった。The polycrystalline silicon thin film photoelectric conversion layer 205 is
RF plasma C using a 13.56 MHz high frequency power supply
It was deposited by the VD method. In the reaction gas used at that time, the flow ratio of silane and hydrogen was mixed at 1:60, and the pressure in the reaction chamber was set to 3.0 Torr. The discharge power density is 80 mW / cm 2 , and the film formation temperature is 400
Was set to ° C. Under such film forming conditions, the film forming rate of the polycrystalline silicon thin film photoelectric conversion layer 205 is 16 nm /
It was a minute. Further, with respect to the (220) diffraction peak obtained by X-ray diffraction for this photoelectric conversion layer 205, (111)
The intensity ratio of diffraction peaks was 1/16, and the hydrogen content determined by secondary ion mass spectrometry was 0.8 atom%.
【0037】この実施例1の多結晶シリコン薄膜太陽電
池に入射光209としてAM1.5の光を100mW/
cm2 の光量で照射したときの出力特性においては、開
放端電圧が0.498V、短絡電流密度が27.0mA
/cm2 、曲線因子が71.5%、そして変換効率が
9.6%であった。As the incident light 209, AM1.5 light of 100 mW / is incident on the polycrystalline silicon thin film solar cell of the first embodiment.
With respect to the output characteristics when irradiated with a light amount of cm 2 , the open end voltage is 0.498 V and the short circuit current density is 27.0 mA.
/ Cm 2 , fill factor 71.5%, and conversion efficiency 9.6%.
【0038】(実施例2)実施例2においては、実施例
1に類似した多結晶シリコン薄膜太陽電池が作製され
た。すなわち、この実施例2において、多結晶シリコン
薄膜光電変換層205の成膜条件が変更されたことを除
けば、他の層の成膜条件およびデバイス構造は実施例1
の場合と全く同じであった。(Example 2) In Example 2, a polycrystalline silicon thin film solar cell similar to that of Example 1 was produced. That is, except that the film forming conditions of the polycrystalline silicon thin film photoelectric conversion layer 205 were changed in the second embodiment, the film forming conditions and the device structure of the other layers were the same as those in the first embodiment.
It was exactly the same as.
【0039】実施例2における多結晶シリコン薄膜光電
変換層205は、13.56MHzの高周波電源を用い
たRFプラズマCVD法により堆積された。反応ガスに
おいてはシランと水素の流量比が1:120で混合さ
れ、反応室内圧力は5.0Torrにされた。また、放
電パワー密度は120mW/cm2 で、成膜温度は40
0℃に設定された。このような成膜条件の下では、多結
晶シリコン薄膜光電変換層205の成膜速度は23nm
/分であった。また、この光電変換層205についてX
線回折で求めた(220)回折ピークに対する(11
1)回折ピークの強度比は1/30であり、2次イオン
質量分析法から求めた水素含有量は1.6原子%であっ
た。The polycrystalline silicon thin film photoelectric conversion layer 205 in Example 2 was deposited by the RF plasma CVD method using a 13.56 MHz high frequency power source. In the reaction gas, silane and hydrogen were mixed at a flow rate ratio of 1: 120, and the reaction chamber pressure was adjusted to 5.0 Torr. The discharge power density is 120 mW / cm 2 , and the film formation temperature is 40
It was set to 0 ° C. Under such film forming conditions, the film forming rate of the polycrystalline silicon thin film photoelectric conversion layer 205 is 23 nm.
/ Min. Further, regarding this photoelectric conversion layer 205, X
(11) for the (220) diffraction peak obtained by line diffraction
1) The intensity ratio of diffraction peaks was 1/30, and the hydrogen content determined by secondary ion mass spectrometry was 1.6 atom%.
【0040】この実施例2の多結晶シリコン薄膜太陽電
池に入射光209としてAM1.5の光を100mW/
cm2 の光量で照射したときの出力特性においては、開
放端電圧が0.520V、短絡電流密度が27.4mA
/cm2 、曲線因子が75.1%、そして変換効率が1
0.5%であった。As the incident light 209, AM1.5 light of 100 mW / m is applied to the polycrystalline silicon thin film solar cell of the second embodiment.
In the output characteristics when irradiated with a light amount of cm 2 , the open end voltage is 0.520 V and the short circuit current density is 27.4 mA.
/ Cm 2 , fill factor 75.1%, and conversion efficiency 1
It was 0.5%.
【0041】(実施例3〜8)実施例3〜8として、多
結晶シリコン薄膜光電変換層205の成膜条件が表1に
示された条件に変更されたことを除けば実施例1および
2と同様にガラス基板上に多結晶シリコン薄膜太陽電池
が作製された。これらの実施例3〜8において形成され
た多結晶シリコン薄膜光電変換層205の物性およびそ
れを含んで製造された太陽電池の特性が表2に示されて
いる。なお、表1と表2において、実施例1と2に関す
る成膜条件、その条件により形成された膜の物性および
その膜を含む太陽電池の各種特性も併記されている。Examples 3 to 8 Examples 1 to 2 are the same as Examples 3 to 8 except that the conditions for forming the polycrystalline silicon thin film photoelectric conversion layer 205 are changed to those shown in Table 1. A polycrystalline silicon thin film solar cell was fabricated on a glass substrate in the same manner as in. Table 2 shows the physical properties of the polycrystalline silicon thin film photoelectric conversion layer 205 formed in Examples 3 to 8 and the characteristics of the solar cell manufactured including the same. In addition, in Tables 1 and 2, film forming conditions relating to Examples 1 and 2, physical properties of a film formed under the conditions, and various characteristics of a solar cell including the film are also shown.
【0042】[0042]
【表1】 [Table 1]
【0043】[0043]
【表2】 [Table 2]
【0044】(比較例1〜4)比較例1〜4として、表
3に示された成膜条件の下で多結晶シリコン薄膜光電変
換層が形成されたことを除けば実施例1〜8の場合と同
様にガラス基板上に多結晶シリコン薄膜太陽電池が作製
された。そして、この比較例1〜4において形成された
多結晶シリコン薄膜の物性およびそれを含む太陽電池の
種々の特性が表4に示されている。(Comparative Examples 1 to 4) Comparative Examples 1 to 4 are the same as Examples 1 to 8 except that the polycrystalline silicon thin film photoelectric conversion layer was formed under the film forming conditions shown in Table 3. A polycrystalline silicon thin film solar cell was produced on a glass substrate as in the case. Table 4 shows the physical properties of the polycrystalline silicon thin films formed in Comparative Examples 1 to 4 and various characteristics of solar cells including the same.
【0045】[0045]
【表3】 [Table 3]
【0046】[0046]
【表4】 [Table 4]
【0047】表3および表4からわかるように、比較例
1においては従来の成膜条件で光電変換層が形成されて
いるので成膜速度が遅く、その光電変換層を含む太陽電
池も実施例に比べて光電変換効率が低くなっている。比
較例2では、放電パワーが増大されているので光電変換
層の成膜速度が大きくなっているが、その光電変換層を
含む太陽電池の光電変換効率は大幅に小さくなってい
る。比較例3においては、反応室圧力と放電パワーの両
方が増大されているので光電変換層の成膜速度が大きく
なっているが、シランと水素の流量比が従来通りなの
で、その光電変換層を含む太陽電池の光電変換効率はさ
らに小さくなっている。比較例4においては、放電パワ
ーが増大されているが水素に対するシランのガス流量比
が大幅に小さくされかつ圧力が従来通りであるので、光
電変換層の成膜速度が小さくなっているとともに、その
光電変換層を含む太陽電池の変換効率がさらに小さくな
っている。As can be seen from Tables 3 and 4, in Comparative Example 1, since the photoelectric conversion layer was formed under the conventional film formation conditions, the film formation rate was slow, and a solar cell including the photoelectric conversion layer was also used in the Example. The photoelectric conversion efficiency is lower than that of. In Comparative Example 2, since the discharge power was increased, the film formation rate of the photoelectric conversion layer was increased, but the photoelectric conversion efficiency of the solar cell including the photoelectric conversion layer was significantly reduced. In Comparative Example 3, since the reaction chamber pressure and the discharge power were both increased, the film formation rate of the photoelectric conversion layer was high. However, since the flow rate ratio of silane and hydrogen was the same as before, the photoelectric conversion layer was The photoelectric conversion efficiency of the solar cell including it is further reduced. In Comparative Example 4, the discharge power was increased, but the gas flow rate ratio of silane to hydrogen was significantly reduced and the pressure was the same as before, so that the film formation rate of the photoelectric conversion layer was reduced, and The conversion efficiency of the solar cell including the photoelectric conversion layer is further reduced.
【0048】(実施例9)上述のような実施例1〜8に
示された低温で高速に結晶質シリコン系薄膜光電変換層
205を形成する工程を含む結晶質シリコン薄膜太陽電
池の製造方法は、その製造プロセスがほぼ類似している
アモルファスシリコン系光電変換ユニットをさらに積層
したタンデム型の太陽電池の作製にも有用である。図2
の実施の形態に対応するこの実施例9では、多結晶シリ
コン薄膜光電変換ユニット411上に0.3μm厚さの
ノンドープ層からなるアモルファスシリコン光電変換層
414を含むアモルファス光電変換ユニット412を積
層したタンデム型太陽電池において、上記の実施例1と
同様の光照射条件の下で、1.40Vの開放端電圧、1
3.4mA/cm2 の短絡電流密度、および14.0%
の変換効率が得られた。(Embodiment 9) A method of manufacturing a crystalline silicon thin film solar cell including the step of forming the crystalline silicon thin film photoelectric conversion layer 205 at a low temperature and at a high speed as shown in the above-described Examples 1 to 8 is as follows. It is also useful for manufacturing a tandem solar cell in which amorphous silicon-based photoelectric conversion units whose manufacturing processes are substantially similar are further laminated. Figure 2
In Example 9 corresponding to the above embodiment, a tandem in which an amorphous photoelectric conversion unit 412 including an amorphous silicon photoelectric conversion layer 414 composed of a non-doped layer having a thickness of 0.3 μm is laminated on a polycrystalline silicon thin film photoelectric conversion unit 411. Type solar cell, under the same light irradiation conditions as in Example 1 above, an open-ended voltage of 1.40 V, 1
Short circuit current density of 3.4 mA / cm 2 and 14.0%
The conversion efficiency of was obtained.
【0049】[0049]
【発明の効果】以上のように、本発明によれば、結晶質
を含むシリコン系薄膜光電変換層をプラズマCVD法に
よって低温で形成する際に従来技術に比べて成膜速度を
大幅に向上させることができ、しかもよりよい膜質が得
られるので、シリコン系薄膜光電変換装置の高性能化と
低コスト化の両方に大きく貢献することができる。As described above, according to the present invention, when the silicon-based thin film photoelectric conversion layer containing a crystalline material is formed at a low temperature by the plasma CVD method, the film formation rate is significantly improved as compared with the prior art. Since it is possible to obtain a better film quality, it can greatly contribute to both high performance and cost reduction of the silicon-based thin film photoelectric conversion device.
【図1】本発明の1つの実施の形態による結晶質シリコ
ン系薄膜光電変換装置を示す模式的な斜視図である。FIG. 1 is a schematic perspective view showing a crystalline silicon-based thin film photoelectric conversion device according to one embodiment of the present invention.
【図2】本発明のもう1つの実施の形態による非晶質シ
リコン薄膜/結晶質シリコン薄膜型のタンデム型光電変
換装置を示す模式的な斜視図である。FIG. 2 is a schematic perspective view showing an amorphous silicon thin film / crystalline silicon thin film tandem photoelectric conversion device according to another embodiment of the present invention.
【図3】本発明のさらに他の実施の形態による非晶質シ
リコン薄膜/結晶質シリコン薄膜型のタンデム型光電変
換装置を示す模式的な斜視図である。FIG. 3 is a schematic perspective view showing an amorphous silicon thin film / crystalline silicon thin film type tandem photoelectric conversion device according to still another embodiment of the present invention.
201,401,601:ガラス等の基板
202,402,602:Ag等の膜
203,403,603:ZnO等の膜
204,404,604:たとえばn型の第1導電型微
結晶シリコン層
205,405,605:結晶質シリコン光電変換層
206,406,606:たとえばp型の逆導電型多結
晶シリコン層
207,407,607:ITO等の透明導電膜
208,408:Ag等の櫛形電極
209,409,609:照射光
210,410,610:裏面電極
211,411,611:結晶質シリコン光電変換ユニ
ット
412,612:アモルファスシリコン光電変換ユニッ
ト
413,613:たとえばn型の第1導電型シリコン系
層
414,614:i型のアモルファスシリコン光電変換
層
415,615:たとえばp型の逆導電型シリコン系層201, 401, 601: substrates 202, 402, 602 made of glass or the like: films 203, 403, 603 made of Ag or the like 204, 404, 604 made of ZnO or the like 204: for example, n-type first conductivity type microcrystalline silicon layer 205, 405, 605: crystalline silicon photoelectric conversion layers 206, 406, 606: for example p-type reverse conductivity type polycrystalline silicon layers 207, 407, 607: transparent conductive films 208, 408 such as ITO, comb-shaped electrodes 209 such as Ag, 409, 609: Irradiated light 210, 410, 610: Backside electrodes 211, 411, 611: Crystalline silicon photoelectric conversion units 412, 612: Amorphous silicon photoelectric conversion units 413, 613: For example, n-type first conductivity type silicon-based layer 414, 614: i-type amorphous silicon photoelectric conversion layers 415, 615: for example, p-type reverse conductivity Silicon-based layer
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−63221(JP,A) 特開 平9−162431(JP,A) 特開 昭62−271418(JP,A) 特開 平7−45540(JP,A) 特開 平2−54922(JP,A) 特開 平2−231773(JP,A) 特開 平5−67797(JP,A) 特開 平4−137725(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-5-63221 (JP, A) JP-A-9-162431 (JP, A) JP-A-62-171418 (JP, A) JP-A-7- 45540 (JP, A) JP-A-2-54922 (JP, A) JP-A-2-231773 (JP, A) JP-A-5-67797 (JP, A) JP-A-4-137725 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 31/04-31/078
Claims (4)
であって、 前記光電変換装置は基板上に形成された少なくとも1つ
の光電変換ユニットを含み、この光電変換ユニットは高
周波プラズマCVD法によって順次積層された1導電型
半導体層と、結晶質を含むシリコン系薄膜光電変換層
と、逆導電型半導体層とを含むものであり、 前記光電変換層を前記プラズマCVD法で堆積する条件
として、 下地温度が550℃以下であり、 プラズマ反応室内に導入されるガスの主成分としてシラ
ン系ガスと水素ガスを含み、かつシラン系ガスに対する
水素ガスの流量が50倍以上であり、 前記プラズマ反応室内の圧力が3Torr以上に設定さ
れ、前記高周波として150MHz以下の周波数で0.05
W/cm 2 以上の電力が印加され、 そして、厚さ方向に16nm/分以上の速度で0.5〜
20μmの範囲内の膜厚まで堆積し、 これによって、前記光電変換層は多結晶シリコン膜また
は体積結晶化分率80%以上の微結晶シリコン膜であっ
てかつ0.5原子%以上で30原子%以下の水素を含有
するものとして形成される ことを特徴とするシリコン系
薄膜光電変換装置の製造方法。1. A method for manufacturing a silicon-based thin-film photoelectric conversion device, the photoelectric conversion device includes at least one photoelectric conversion unit formed on a substrate, the photoelectric conversion units high
A one-conductivity-type semiconductor layer sequentially laminated by a frequency plasma CVD method, a silicon-based thin film photoelectric conversion layer containing a crystalline material, and a reverse-conductivity-type semiconductor layer, wherein the photoelectric conversion layer is formed by the plasma CVD method. As the deposition conditions, the base temperature is 550 ° C or lower, the silane-based gas and the hydrogen gas are contained as the main components of the gas introduced into the plasma reaction chamber, and the flow rate of the hydrogen gas with respect to the silane-based gas is 50 times or more. The pressure in the plasma reaction chamber is set to 3 Torr or more, and the high frequency is 0.05 at a frequency of 150 MHz or less.
W / cm 2 or more power is applied, elements, 0.5 at 16 nm / min or faster in the thickness direction
The photoelectric conversion layer is deposited to a film thickness within a range of 20 μm.
Is a microcrystalline silicon film with a volume crystallization fraction of 80% or more.
And contains 0.5 atomic% or more and 30 atomic% or less of hydrogen
A method for manufacturing a silicon-based thin-film photoelectric conversion device, which is formed as
r以上に設定されることを特徴とする請求項1に記載の
シリコン系薄膜光電変換装置の製造方法。2. The pressure in the plasma reaction chamber is 5 Tor.
2. The method for manufacturing a silicon-based thin film photoelectric conversion device according to claim 1, wherein the value is set to r or more.
10)の優先結晶配向面を有し、そのX線回折における
(220)回折ピークに対する(111)回折ピークの
強度比が1/10以下であることを特徴とする請求項1
または2に記載のシリコン系薄膜光電変換装置の製造方
法。3. The photoelectric conversion layer is (1
10. The preferred crystallographic orientation plane of 10), wherein the intensity ratio of the (111) diffraction peak to the (220) diffraction peak in X-ray diffraction is 1/10 or less.
Or the method of manufacturing a silicon-based thin-film photoelectric conversion device according to 2.
系光電変換ユニットとを積層することによってタンデム
型の光電変換装置にすることを特徴とする請求項1から
3のいずれかの項に記載のシリコン系薄膜光電変換装置
の製造方法。4. A tandem type photoelectric conversion device is obtained by stacking the photoelectric conversion unit and an amorphous silicon type photoelectric conversion unit.
4. The method for manufacturing a silicon-based thin film photoelectric conversion device according to any one of item 3 .
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30709397A JP3364137B2 (en) | 1997-11-10 | 1997-11-10 | Method for manufacturing silicon-based thin film photoelectric conversion device |
AU96494/98A AU9649498A (en) | 1997-11-10 | 1998-10-28 | Method of producing silicon thin-film photoelectric transducer and plasma cvd apparatus used for the method |
US09/554,164 US6337224B1 (en) | 1997-11-10 | 1998-10-28 | Method of producing silicon thin-film photoelectric transducer and plasma CVD apparatus used for the method |
PCT/JP1998/004875 WO1999025029A1 (en) | 1997-11-10 | 1998-10-28 | Method of producing silicon thin-film photoelectric transducer and plasma cvd apparatus used for the method |
EP10173539A EP2251913A3 (en) | 1997-11-10 | 1998-10-28 | Method of Manufacturing Silicon-Based Thin Film Photoelectric Converter and Plasma CVD Apparatus Used for Such Method |
EP98950423A EP1041646B1 (en) | 1997-11-10 | 1998-10-28 | Method of producing silicon thin-film photoelectric transducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30709397A JP3364137B2 (en) | 1997-11-10 | 1997-11-10 | Method for manufacturing silicon-based thin film photoelectric conversion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11145499A JPH11145499A (en) | 1999-05-28 |
JP3364137B2 true JP3364137B2 (en) | 2003-01-08 |
Family
ID=17964949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30709397A Expired - Lifetime JP3364137B2 (en) | 1997-11-10 | 1997-11-10 | Method for manufacturing silicon-based thin film photoelectric conversion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3364137B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001135841A (en) * | 1999-08-24 | 2001-05-18 | Canon Inc | Method of manufacturing photovoltaic device |
JP4592866B2 (en) * | 2000-03-23 | 2010-12-08 | 株式会社カネカ | Hybrid thin film photoelectric conversion device and manufacturing method thereof |
DE102007024986A1 (en) * | 2007-05-28 | 2008-12-04 | Forschungszentrum Jülich GmbH | Temperature-stable TCO layer, method of manufacture and application |
WO2011132775A1 (en) | 2010-04-22 | 2011-10-27 | 京セラ株式会社 | Method for manufacturing a thin-film solar cell |
-
1997
- 1997-11-10 JP JP30709397A patent/JP3364137B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11145499A (en) | 1999-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0994515B1 (en) | Method of manufacturing silicon-based thin-film photoelectric conversion device | |
JP2000277439A (en) | Plasma cvd method for crystalline silicon thin-film and manufacture of silicon thin-film photoelectric conversion device | |
WO1999025029A1 (en) | Method of producing silicon thin-film photoelectric transducer and plasma cvd apparatus used for the method | |
JP3672754B2 (en) | Manufacturing method of silicon-based thin film photoelectric conversion device | |
JPH11330520A (en) | Manufacture for silicon system thin film photoelectric converter and plasma cvd device for use in the method | |
JP3792376B2 (en) | Silicon-based thin film photoelectric conversion device | |
JP3364137B2 (en) | Method for manufacturing silicon-based thin film photoelectric conversion device | |
JP4335351B2 (en) | Manufacturing method of silicon-based thin film photoelectric conversion device | |
JPH11186574A (en) | Silicon-based thin-film photoelectric converter | |
JP4038263B2 (en) | Tandem silicon thin film photoelectric conversion device | |
JP3672750B2 (en) | Manufacturing method of silicon-based thin film photoelectric conversion device | |
JP3933334B2 (en) | Silicon-based thin film photoelectric conversion device and manufacturing method thereof | |
JPH1187742A (en) | Silicon-based thin film photoelectric conversion device | |
JP3556483B2 (en) | Method for manufacturing silicon-based thin film photoelectric conversion device | |
JPH10294482A (en) | Silicon-based thin film photoelectric converter | |
JP2000174309A (en) | Tandem thin-film photoelectric conversion device and its manufacture | |
JP3746607B2 (en) | Manufacturing method of silicon-based thin film photoelectric conversion device | |
JP4409654B2 (en) | Manufacturing method of silicon-based thin film photoelectric conversion device | |
JP3753528B2 (en) | Manufacturing method of silicon-based thin film photoelectric conversion device | |
JP2000058889A (en) | Silicon base thin film and silicon base thin film photoelectric converter | |
JP2000022182A (en) | Silicon based thin film photoelectric converter | |
JP2001237187A (en) | Manufacturing method of crystalline silicon semiconductor thin film | |
JPH11266027A (en) | Silicon-based thin-film photoelectric conversion device | |
JP3655098B2 (en) | Manufacturing method of silicon-based thin film photoelectric conversion device | |
JP2001168364A (en) | Method of manufacturing amorphous silicon thin film photoelectric transfer device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020924 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071025 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091025 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091025 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121025 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121025 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131025 Year of fee payment: 11 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131025 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |