JP3357991B2 - Electrostatic suction device - Google Patents
Electrostatic suction deviceInfo
- Publication number
- JP3357991B2 JP3357991B2 JP17409591A JP17409591A JP3357991B2 JP 3357991 B2 JP3357991 B2 JP 3357991B2 JP 17409591 A JP17409591 A JP 17409591A JP 17409591 A JP17409591 A JP 17409591A JP 3357991 B2 JP3357991 B2 JP 3357991B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- electrostatic chuck
- insulator
- electrode
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、被処理物を静電的に
基体に吸着して例えばスパッタリングの処理を施すため
に使用され、特に被処理物と基体との間で均一で良好な
熱伝導を得るに適した静電吸着装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for electrostatically adhering an object to be processed to a substrate and performing, for example, a sputtering process. The present invention relates to an electrostatic suction device suitable for obtaining conduction.
【0002】[0002]
【従来の技術】従来、静電吸着装置として、例えば図1
に示すような冷却水配管等の冷却機構1aを備えた基体
1の上部の被処理物5を静電的に固定する静電チャック
3を、直流電源6に接続した電極2と、該電極2の下部
の基体に貼着した絶縁物4aと該電極2の上部の被処理
物5に密着するゴム状の絶縁物4bで構成したものが知
られている。2. Description of the Related Art Conventionally, for example, FIG.
An electrostatic chuck 3 for electrostatically fixing an object 5 to be processed on an upper portion of a base 1 provided with a cooling mechanism 1a such as a cooling water pipe as shown in FIG. And a rubber-like insulator 4b that is in close contact with the workpiece 5 above the electrode 2 is known.
【0003】また、図2に示すように、冷却機構1aを
備えた基体1の上部の被処理物5を静電的に固定する静
電チャック3を、直流電源6に接続した電極2とこれを
覆うセラミックス等の絶縁物4とで構成し、該静電チャ
ック3の被処理物5の吸着面に、絶縁物4及び基体1を
貫通したガス供給孔7に連なる円弧状の溝8を形成し、
該溝8から被処理物5と絶縁物4との隙間にガスを流す
ようにしたものも知られている。Further, as shown in FIG. 2, an electrostatic chuck 3 for electrostatically fixing an object 5 to be processed on an upper portion of a base 1 provided with a cooling mechanism 1a is connected to an electrode 2 connected to a DC power source 6 and And an arc-shaped groove 8 connected to a gas supply hole 7 penetrating through the insulator 4 and the base 1 on the suction surface of the electrostatic chuck 3 on the object 5 to be processed. And
It is also known that a gas is caused to flow from the groove 8 to a gap between the workpiece 5 and the insulator 4.
【0004】上記図1に示したものは、まず被処理物5
を静電チャック3に載せ、電極2に電圧を印加すると、
被処理物5に F=ε・(S/d2)・(V/2)2 なる吸引力が働き、被処理物5がゴム状の絶縁物4bに
密着する。ここで、εはゴム状絶縁物4bの誘電率、d
はゴム状絶縁物4bの厚み、Sは電極2の被処理物5に
対向する面の面積、Vは直流電源6の電圧である。次
に、熱伝導性の良いアルミニウム等の金属でできた基体
1を冷媒の循環等により冷却機構1aで冷却すると、被
処理物5の熱がゴム状絶縁物4bと絶縁物4aを介して
基体1に伝達され、被処理物5の冷却が行なわれる。し
たがって、例えば被処理物5にエッチング処理を行なう
場合、エッチングプラズマの熱負荷が被処理物5にかか
っても、被処理物5の温度を低く保つことができる。し
かしながら、この時、ゴム状絶縁物4bが反応性のエッ
チングガス等に侵されて変質したり、その処理後に直流
電源6を切り被処理物5を静電チャック3から取り外す
際に被処理物5がゴム状絶縁物に粘着して剥がれ難くな
る問題が起きる。FIG. 1 shows an object 5 to be processed.
Is placed on the electrostatic chuck 3 and a voltage is applied to the electrode 2.
A suction force of F = ε · (S / d 2 ) · (V / 2) 2 acts on the object 5, and the object 5 comes into close contact with the rubber-like insulator 4 b. Here, ε is the dielectric constant of the rubber-like insulator 4b, d
Is the thickness of the rubber-like insulator 4b, S is the area of the surface of the electrode 2 facing the workpiece 5, and V is the voltage of the DC power supply 6. Next, when the substrate 1 made of a metal such as aluminum having good heat conductivity is cooled by a cooling mechanism 1a by circulation of a coolant or the like, heat of the object 5 is transferred through the rubber-like insulator 4b and the insulator 4a. 1, and the object 5 is cooled. Therefore, for example, when the etching process is performed on the object 5, the temperature of the object 5 can be kept low even if the thermal load of the etching plasma is applied to the object 5. However, at this time, the rubber-like insulator 4b is deteriorated by being eroded by a reactive etching gas or the like. When the DC power source 6 is turned off and the workpiece 5 is detached from the electrostatic chuck 3 after the processing, the workpiece 5 However, there arises a problem that the rubber adheres to the rubber-like insulator and is hardly peeled off.
【0005】図2に示した従来例では、被処理物5が載
置される静電チャック3の絶縁物4に例えばセラミック
スのような堅い材料が使用されているので上記の如き問
題は生じることがないが、電極2に電圧を印加して絶縁
物4の上に被処理物5を吸着固定した場合、例えばアル
ミニウム製の基体1を冷却機構1aで冷却すると熱伝導
により絶縁物4を冷却することができても、被処理物5
は絶縁物4が堅いために絶縁物4と点接触状態で接触す
るため、平均10μ程度の間隔が被処理物と絶縁物との
間に存在し、被処理物5の熱が絶縁物4に伝達されにく
い。そこで、更に静電チャック3の被処理物5の吸着面
域内に設けられた溝8から上記間隔にガスを流し、ガス
を介して被処理物の熱を絶縁物に伝達して被処理物を冷
却するようにしている。したがって、例えばエッチング
プラズマなどの熱負荷が被処理物にかかっても、被処理
物の温度を低く保つことができる。In the conventional example shown in FIG. 2, the above-described problem occurs because a rigid material such as ceramics is used for the insulator 4 of the electrostatic chuck 3 on which the workpiece 5 is placed. However, when a voltage is applied to the electrode 2 to fix the workpiece 5 on the insulator 4 by suction, for example, when the aluminum base 1 is cooled by the cooling mechanism 1a, the insulator 4 is cooled by heat conduction. Even if the object 5
Because the insulator 4 is rigid and makes contact with the insulator 4 in a point contact state, there is an average interval of about 10 μ between the workpiece and the insulator, and heat of the workpiece 5 is applied to the insulator 4. Not easily transmitted. Therefore, a gas is further flowed from the groove 8 provided in the suction surface area of the workpiece 5 of the electrostatic chuck 3 at the above-mentioned interval, and the heat of the workpiece is transferred to the insulator through the gas to remove the workpiece. I'm trying to cool. Therefore, even if a thermal load such as etching plasma is applied to the object, the temperature of the object can be kept low.
【0006】[0006]
【発明が解決しようとする課題】上記のように被処理物
を冷却する一手段として被処理物と絶縁物の隙間にガス
を流す図2の形式の静電吸着装置に於いては、隙間がガ
スの平均自由行程より小さいか同じ程度のとき、単位面
積当たりの熱伝達Qは次式のようになる。 Q=(3/2)・κ・α1・(T−Tg)・Γ ただし Γ=(1/4)・n・υ =(1/4)・P/(κ・Tg)・{8・κ・Tg/(π・m)}1/2 Tg=(α1・T+α2・T0)/(α1+α2) である。ここで、κはボルツマン定数、α1は静電チャ
ックの被処理物吸着面に対するガス分子の熱的適応係
数、Tは被処理物の温度、T0は絶縁物の温度、Tgは
ガス分子の温度、Γは静電チャックの被処理物吸着面に
入射するガス分子の面密度、nはガス分子の密度、υは
ガス分子の平均速度、mはガス分子の質量、Pは静電チ
ャックの被処理物吸着面のガスの圧力をそれぞれ表して
いる。上記の式から、単位面積当たりの熱伝達Qは、静
電チャックの被処理物吸着面のガス圧力Pに比例するこ
とがわかる。また、被処理物にドライエッチングを施す
場合、ガスとして不活性ガスを使用することが好まし
く、特にヘリウムガスは熱伝達が大きいので好都合であ
る。従来の図2の静電吸着装置では、被処理物吸着面の
溝から例えば10Torr程度のヘリウムガスを噴出させた
場合、溝のコンダクタンスが小さいために、ガスが噴出
する溝から吸着面の外周に向かって圧力降下が大きくな
り、被処理物の外周の温度が高くなるという問題があっ
た。また、静電チャック3の電極2の上面に設けられる
絶縁物の厚さは200〜300μ程度と薄く、コンダク
タンスを大きくするために絶縁物に大きな溝を形成する
と表面絶縁層が薄くなり絶縁破壊を起こす危険がある。
例えば被処理物が6インチウエハで、溝が吸着面の中心
近くに設けられている場合のガス圧力分布は、図3のよ
うにウエハの外周付近で低くなる。この場合の溝でのヘ
リウムガスの圧力は9.6Torr、ウエハ周囲の雰囲気は
0.01Torrである。この状態でウエハに1.18W/
cm2の熱負荷をかけた場合、ウエハ内の熱伝導を考慮し
てもウエハの温度分布は図4のようになり、ウエハ外周
付近での温度が高くなってしまう。外周付近の温度は熱
負荷が大きくなればなる程高くなり、例えばドライエッ
チングでは選択性やエッチング形状が均一でなくなる不
都合やウエハ上のレジスト膜が焼ける等の不都合をもた
らす。As described above, in the electrostatic chuck of the type shown in FIG. 2 in which a gas is passed through a gap between an object and an insulator as one means for cooling the object, the gap is reduced. When less than or about the same as the mean free path of the gas, the heat transfer Q per unit area is: Q = (3/2) · κ · α 1 · (T−Tg) · Γ where Γ = (1/4) · n · υ = (1/4) · P / (κ · Tg) · {8 · κ · Tg / (π · m )} 1/2 Tg = (α 1 · T + α 2 · T 0) is a / (α 1 + α 2) . Here, κ is Boltzmann's constant, α 1 is the coefficient of thermal adaptation of the gas molecules to the adsorption surface of the electrostatic chuck, T is the temperature of the object, T 0 is the temperature of the insulator, and Tg is the temperature of the gas molecules. Temperature, Γ is the surface density of gas molecules incident on the adsorption surface of the workpiece of the electrostatic chuck, n is the density of gas molecules, υ is the average velocity of gas molecules, m is the mass of gas molecules, P is the electrostatic chuck. The pressure of the gas on the adsorption surface of the processing object is shown. From the above equation, it can be seen that the heat transfer Q per unit area is proportional to the gas pressure P on the workpiece suction surface of the electrostatic chuck. In addition, when dry etching is performed on an object to be processed, an inert gas is preferably used as a gas, and helium gas is particularly advantageous because heat transfer is large. In the conventional electrostatic adsorption apparatus shown in FIG. 2, when helium gas of, for example, about 10 Torr is ejected from the groove of the object adsorption surface, the conductance of the groove is small. There is a problem in that the pressure drop increases toward the temperature, and the temperature of the outer periphery of the processing object increases. Further, the thickness of the insulator provided on the upper surface of the electrode 2 of the electrostatic chuck 3 is as thin as about 200 to 300 μm. If a large groove is formed in the insulator to increase the conductance, the surface insulating layer becomes thinner and dielectric breakdown occurs. There is a risk of starting.
For example, when the object to be processed is a 6-inch wafer and the groove is provided near the center of the suction surface, the gas pressure distribution becomes low near the outer periphery of the wafer as shown in FIG. In this case, the pressure of the helium gas in the groove is 9.6 Torr, and the atmosphere around the wafer is 0.01 Torr. In this state, 1.18 W /
When a thermal load of cm 2 is applied, the temperature distribution of the wafer becomes as shown in FIG. 4 even when heat conduction in the wafer is taken into consideration, and the temperature near the outer periphery of the wafer increases. The temperature in the vicinity of the outer periphery increases as the thermal load increases. For example, in the case of dry etching, the selectivity and the etching shape are not uniform, and the resist film on the wafer is burned.
【0007】本発明は、このような問題、不都合を解決
し、被処理物吸着面の熱伝導性が均一になる静電吸着装
置を提供することを目的とするものである。SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and disadvantages and to provide an electrostatic attraction device in which the heat conductivity of the attraction surface of an object to be treated becomes uniform.
【0008】[0008]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明では、冷却機構により冷却された基体と、
被処理物を静電的に吸着固定するセラミックスの絶縁物
により覆われた少なくとも1対の電極を有し、該基体に
接着された静電チャックと、該静電チャックの吸着面に
吸着した被処理物の熱を静電チャックに伝達するための
ガスを噴出するガス噴出孔と、該ガス噴出孔と接続され
且つ該静電チャックの電極の背面を覆うセラミックスの
絶縁物内に形成された該ガスの流通空間とを有し、上記
静電チャックの電極を覆う絶縁物はセラミックスの薄板
から成り、該電極の表面側を1枚のセラミックスの薄板
で覆い、その背面側を複数枚のセラミックスの薄板で多
層に覆うようにし、その背面側の多層の薄板のうちの中
間層の薄板に長孔を形成して薄板を重ねたとき上記流通
空間が形成されるようにしたことを特徴とする。上記流
通空間は上記吸着面の領域の外周付近に対応した箇所に
形成され、ガス供給口と上記外周付近に略等間隔で設け
た複数個のガス噴出孔とが該流通空間に接続して設けら
れ、該流通空間を該静電チャックと被処理物との間で形
成される空間の圧力を保持し得る容積に形成し、また、
上記静電チャックの電極を覆う絶縁物はセラミックスの
薄板から成り、該電極の表面側を1枚のセラミックスの
薄板で覆い、その背面側を複数枚のセラミックスの薄板
で多層に覆うようにし、その背面側の多層の薄板のうち
の中間層の薄板に長孔を形成して薄板を重ねたとき上記
流通空間が形成される。According to the present invention, there is provided a substrate cooled by a cooling mechanism.
An electrostatic chuck having at least one pair of electrodes covered with a ceramic insulator for electrostatically adhering and fixing the object to be processed, and an electrostatic chuck adhered to the substrate; A gas ejection hole for ejecting a gas for transmitting heat of the processing object to the electrostatic chuck, and a gas ejection hole formed in a ceramic insulator connected to the gas ejection hole and covering a back surface of an electrode of the electrostatic chuck. It has a and the distribution space of the gas, the above-mentioned
The insulator covering the electrodes of the electrostatic chuck is a thin ceramic plate
Consisting of a single ceramic thin plate
And the back side is covered with multiple ceramic sheets.
Layer, and the inside of the multilayer sheet on the back side
When the thin plate is stacked by forming a long hole in the thin plate of the interlayer
It is characterized in that a space is formed . The flow space is formed at a location corresponding to the vicinity of the outer periphery of the area of the adsorption surface, and a gas supply port and a plurality of gas ejection holes provided at substantially equal intervals in the vicinity of the outer periphery are provided so as to be connected to the flow space. The flow space is formed in a volume capable of holding the pressure of the space formed between the electrostatic chuck and the object to be processed,
The insulator covering the electrodes of the electrostatic chuck is made of a ceramic thin plate. The surface side of the electrode is covered with one ceramic thin plate, and the back side is covered with a plurality of ceramic thin plates in multiple layers. When a long hole is formed in the middle layer thin plate among the multilayer thin plates on the back side and the thin plates are stacked, the above-mentioned flow space is formed.
【0009】[0009]
【作用】ガス噴出孔から噴出するガスは、静電チャック
の吸着面に吸着した被処理物と絶縁物との隙間に拡散す
るが、該ガス噴出孔は絶縁物の内部に形成した流通空間
に接続されているため高い圧力でガスを噴出させること
ができ、被処理物から静電チャックへ良好な熱伝達を行
なうことができる。噴出するガスの圧力が高まることに
よりその外周側の圧力も高まり、被処理物の外周側で温
度が高くなることを防止できる。また、該流通空間は静
電チャックの電極の背面を覆う絶縁物内に形成されるの
で、電極表面の絶縁物の厚さを損なうことがなく、絶縁
破壊をもたらすこともない。The gas ejected from the gas ejection holes diffuses into the gap between the object to be processed and the insulator adsorbed on the suction surface of the electrostatic chuck, and the gas ejection holes enter the flow space formed inside the insulator. Since it is connected, gas can be ejected at a high pressure, and good heat transfer from the object to be processed to the electrostatic chuck can be performed. As the pressure of the gas to be jetted increases, the pressure on the outer peripheral side also increases, and it is possible to prevent the temperature from increasing on the outer peripheral side of the workpiece. Further, since the flow space is formed in the insulator covering the back surface of the electrode of the electrostatic chuck, the thickness of the insulator on the electrode surface is not impaired, and the dielectric breakdown does not occur.
【0010】[0010]
【実施例】本発明の実施例を図面に基づき説明すると、
図5乃至図7はドライエッチング装置の真空室内に設け
た静電吸着装置の実施例を示し、この例では、冷却水配
管等の冷却機構1aを備えたアルミニウム製の基体1の
上部に、アルミナ製の絶縁物4で一対の半円形円板状の
電極2を覆って構成した静電チャック3が設けられ、各
電極2に直流電源6から電位が与えられると該静電チャ
ック3に静電気が発生してその表面に6インチウエハ等
の被処理物が吸着される。該静電チャック3の背面は基
体1に貼着され、電極2の前面を厚さ300μの薄板か
ら成る円板状の絶縁物4cで覆い、これと同形同厚の薄
板を5枚重ねた絶縁物4dで該電極2の背面を覆った。
一対の電極2の直径は絶縁物4c,4dの直径よりも多
少小さい程度に構成される。静電チャック3の吸着面は
電極2の直径にほぼ等しく、該吸着面の外周から10mm
程度内側に均等の間隔を存して例えばヘリウムガスが噴
出するガス噴出孔7が12個形成され、噴出したガスは
被処理物5と静電チャック3の吸着面との隙間を流れ
る。該電極2の背面を覆う絶縁物4dの内部には平面か
ら見て円弧状の流通空間9が形成され、前記ガス噴出孔
7はこの流通空間9に連通するように形成される。10
は該流通空間9へガスを供給するガス供給口である。BRIEF DESCRIPTION OF THE DRAWINGS FIG.
FIGS. 5 to 7 show an embodiment of an electrostatic suction device provided in a vacuum chamber of a dry etching device. In this example, an alumina substrate 1 provided with a cooling mechanism 1a such as a cooling water pipe is provided with an alumina substrate. Electrostatic chucks 3 are formed by covering a pair of semicircular disc-shaped electrodes 2 with an insulator 4 made of stainless steel. When a potential is applied to each electrode 2 from a DC power supply 6, static electricity is applied to the electrostatic chucks 3. Then, an object to be processed such as a 6-inch wafer is adsorbed on the surface. The back surface of the electrostatic chuck 3 is adhered to the substrate 1, the front surface of the electrode 2 is covered with a disk-shaped insulator 4c made of a thin plate having a thickness of 300 μm, and five thin plates of the same shape and thickness are stacked. The back surface of the electrode 2 was covered with the insulator 4d.
The diameter of the pair of electrodes 2 is configured to be slightly smaller than the diameter of the insulators 4c and 4d. The suction surface of the electrostatic chuck 3 is almost equal to the diameter of the electrode 2 and is 10 mm from the outer periphery of the suction surface.
Twelve gas ejection holes 7 for ejecting, for example, helium gas are formed at equal intervals on the inside, and the ejected gas flows through the gap between the workpiece 5 and the suction surface of the electrostatic chuck 3. An arc-shaped flow space 9 is formed inside the insulator 4 d covering the back surface of the electrode 2 when viewed from above, and the gas ejection holes 7 are formed so as to communicate with the flow space 9. 10
Is a gas supply port for supplying gas to the circulation space 9.
【0011】該流通空間9は静電チャック3の吸着面の
領域の外周付近に対応した箇所に形成され、この流通空
間9の断面積は該ガス噴出孔7の断面積よりも大きく形
成される。該流通空間9は、電極2の背面側を覆うセラ
ミックスの薄板のうち、中間層の薄板の何枚かにパンチ
ング等により円弧状の長孔を形成しておき、薄板を重ね
て接着することにより形成することができる。The flow space 9 is formed at a location corresponding to the vicinity of the outer periphery of the area of the suction surface of the electrostatic chuck 3, and the cross-sectional area of the flow space 9 is formed larger than the cross-sectional area of the gas ejection holes 7. . The circulation space 9 is formed by forming an arc-shaped long hole by punching or the like on some of the thin plates of the intermediate layer among the thin plates of ceramics covering the back side of the electrode 2, and laminating and bonding the thin plates. Can be formed.
【0012】この実施例に於いて、被処理物5を静電チ
ャック3の上に載せたのち電極2に電圧を印加すると、
静電チャック3に発生する静電気により被処理物5が吸
着固定される。次いで基体1を冷却機構1aで冷却する
と、熱伝導により絶縁物4が冷却され、更にガス噴出孔
7からヘリウムガスを噴出させると、被処理物5の熱が
ヘリウムガスを介して絶縁物4に伝達され、その結果、
被処理物5が冷却される。このときの吸着面に於けるヘ
リウムガスの圧力分布は、容積の大きい流通空間9から
ガス噴出孔7へとガスが供給されるために、図8に示す
ように、吸着面の中心から外周付近まで約5Torr台のヘ
リウム圧力が保たれる。この場合のガス噴出孔7でのヘ
リウムガスの圧力は7Torr、被処理物5の周囲の雰囲気
は0.01Torrで、雰囲気に洩れ出すヘリウムの流量は
1.61×10- 2Torr・リットル/secである。被
処理物5のウエハをエッチング処理するために、被処理
物5に均一に1.18W/cm2の熱負荷がかかった場合
の温度分布は図9に示す如くとなり、被処理物5の中心
部から外周付近にかけての温度は低く保たれた。In this embodiment, when a workpiece 5 is placed on the electrostatic chuck 3 and then a voltage is applied to the electrode 2,
The workpiece 5 is attracted and fixed by the static electricity generated in the electrostatic chuck 3. Next, when the substrate 1 is cooled by the cooling mechanism 1a, the insulator 4 is cooled by heat conduction. Further, when helium gas is ejected from the gas ejection holes 7, heat of the object 5 is transferred to the insulator 4 via the helium gas. And consequently,
The workpiece 5 is cooled. At this time, the pressure distribution of the helium gas on the adsorption surface is such that the gas is supplied from the large-volume circulation space 9 to the gas ejection holes 7, as shown in FIG. Helium pressure on the order of about 5 Torr is maintained up to this point. The pressure of the helium gas in the gas ejection hole 7 in this case is 7 Torr, the atmosphere surrounding the object to be treated 5 is 0.01 Torr, the flow rate of the helium leaking to atmosphere 1.61 × 10 - 2 Torr · liter / sec It is. FIG. 9 shows the temperature distribution when a thermal load of 1.18 W / cm 2 is uniformly applied to the workpiece 5 in order to etch the wafer of the workpiece 5. The temperature from the part to the vicinity of the outer periphery was kept low.
【0013】該絶縁物4には熱伝導の良い他のセラミッ
クを使用しても良く、また、ガス噴出孔7の位置は、ヘ
リウムガスの洩れ量が問題にならないときは、更に吸着
面の外周寄りに設けることもできる。被処理物5はウエ
ハ以外のものであってもよい。又、前記実施例では、ガ
スをガス噴出孔より噴出させたが、第10図のようにス
リット状のガス噴出溝11よりガスを噴出させても同じ
ような効果が得られる。The insulator 4 has another ceramic having good heat conductivity.
If the leakage of helium gas does not matter, the gas ejection hole 7 can be further provided near the outer periphery of the adsorption surface. The workpiece 5 may be something other than a wafer. Further, in the above-described embodiment, the gas is ejected from the gas ejection holes. However, the same effect can be obtained by ejecting the gas from the slit-shaped gas ejection grooves 11 as shown in FIG.
【0014】[0014]
【発明の効果】以上のように本発明においては、静電チ
ャックのガス噴出孔をその電極の背面を覆うセラミック
スの絶縁物内に形成した流通空間に接続するようにした
ので、静電チャックの被処理物吸着面の外周付近に於い
ても圧力の高いガスを流すことが出来、絶縁破壊の危険
をもたらさずに被処理物の吸着面の熱伝導性を均一化し
て外周付近も良好に冷却することができるようになり、
被処理物を例えばドライエッチング処理する場合に選択
性やエッチング形状の均一性を向上させ得られ、該流通
空間は絶縁物を構成する一部の薄板にパンチング等で長
孔を形成しておくことにより比較的簡単に形成すること
が出来るので、製作性もよい等の効果がある。As described above, in the present invention, the gas ejection hole of the electrostatic chuck is formed by a ceramic covering the back surface of the electrode.
Connection with the flow space formed in the insulator of the electrostatic chuck, it is possible to flow high-pressure gas even near the outer periphery of the workpiece suction surface of the electrostatic chuck, and there is a danger of dielectric breakdown.
The outer periphery near to uniform the thermal conductivity of the suction surface of the object is also able to be cooled well without causing,
For example, when the object to be processed is dry-etched, the selectivity and the uniformity of the etched shape can be improved. Thus, since it can be formed relatively easily, there are effects such as good manufacturability.
【図1】 従来例の截断側面図FIG. 1 is a cutaway side view of a conventional example.
【図2】 他の従来例の截断側面図FIG. 2 is a sectional side view of another conventional example.
【図3】 図2の従来例に於けるヘリウムガスの圧力
分布図FIG. 3 is a pressure distribution diagram of helium gas in the conventional example of FIG.
【図4】 図2の従来例に於ける被処理物の温度分布
図FIG. 4 is a temperature distribution diagram of an object to be processed in the conventional example of FIG. 2;
【図5】 本発明の実施例の截断側面図FIG. 5 is a cutaway side view of an embodiment of the present invention.
【図6】 図5の6−6線部分の截断平面図FIG. 6 is a cutaway plan view taken along line 6-6 of FIG. 5;
【図7】 図5の要部の拡大断面図FIG. 7 is an enlarged sectional view of a main part of FIG. 5;
【図8】 図5の実施例に於けるヘリウムガスの圧力
分布図FIG. 8 is a pressure distribution diagram of helium gas in the embodiment of FIG.
【図9】 図5の実施例に於ける被処理物の温度分布
図FIG. 9 is a temperature distribution diagram of an object to be processed in the embodiment of FIG.
【図10】 本発明の他の実施例の截断平面図FIG. 10 is a cutaway plan view of another embodiment of the present invention.
1 基体 1a 冷却機構 2 電極 3 静電チャック 4、4c、4d 絶縁物 5 被処理物 6 直流電源 7 ガス噴出孔 9 流通空間 DESCRIPTION OF SYMBOLS 1 Substrate 1a Cooling mechanism 2 Electrode 3 Electrostatic chuck 4, 4c, 4d Insulator 5 Workpiece 6 DC power supply 7 Gas ejection hole 9 Flowing space
フロントページの続き (72)発明者 林 俊雄 神奈川県茅ヶ崎市萩園2500番地 日本真 空技術株式会社内 (72)発明者 野田 和夫 愛知県名古屋市瑞穂区高辻町14番18号 日本特殊陶業株式会社内 (56)参考文献 特開 平2−98957(JP,A) 特開 昭63−300517(JP,A) 特開 平2−67745(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/68 C23C 14/50 Continuing on the front page (72) Inventor Toshio Hayashi 2500 Hagizono, Chigasaki-shi, Kanagawa Prefecture Inside Japan Sky Technology Co., Ltd. (72) Inventor Kazuo Noda 14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi, Aichi Japan Nippon Special Ceramic Company (56) reference Patent flat 2-98957 (JP, a) JP Akira 63-300517 (JP, a) JP flat 2-67745 (JP, a) (58 ) investigated the field (Int.Cl. 7 , DB name) H01L 21/68 C23C 14/50
Claims (2)
により覆われた少なくとも1対の電極を有し、該基体に
接着された静電チャックと、 該静電チャックの吸着面に吸着した被処理物の熱を静電
チャックに伝達するためのガスを噴出するガス噴出孔
と、 該ガス噴出孔と接続され且つ該静電チャックの電極の背
面を覆うセラミックスの絶縁物内に形成された該ガスの
流通空間とを有し、 上記静電チャックの電極を覆う絶縁物はセラミックスの
薄板から成り、該電極の表面側を1枚のセラミックスの
薄板で覆い、その背面側を複数枚のセラミックスの薄板
で多層に覆うようにし、その背面側の多層の薄板のうち
の中間層の薄板に長孔を形成して薄板を重ねたとき上記
流通空間が形成されるようにした ことを特徴とする静電
吸着装置。A substrate cooled by a cooling mechanism, and at least one pair of electrodes covered with a ceramic insulator for electrostatically adsorbing and fixing an object to be processed; A chuck, a gas ejection hole for ejecting a gas for transmitting heat of the processing object adsorbed on the adsorption surface of the electrostatic chuck to the electrostatic chuck, and an electrode of the electrostatic chuck connected to the gas ejection hole. rear possess a circulation space of said gas formed in the insulating material of the ceramic covering, insulator covering the electrode of the electrostatic chuck ceramic
It consists of a thin plate, and the surface side of the electrode is
Cover with a thin plate, the back side of which is made of multiple ceramic thin plates
To cover multiple layers, and of the multilayer sheet on the back side
When a thin plate is laminated by forming a long hole in the thin plate of the intermediate layer
An electrostatic suction device, wherein a circulation space is formed .
付近に対応した箇所に形成され、ガス供給口と上記外周
付近に略等間隔で設けた複数個のガス噴出孔とが該流通
空間に接続して設けられ、該流通空間を該静電チャック
と被処理物との間で形成される空間の圧力を保持し得る
容積に形成したことを特徴とする請求項1に記載の静電
吸着装置。2. The flow space is formed at a position corresponding to the vicinity of the outer periphery of the area of the suction surface, and a gas supply port and a plurality of gas ejection holes provided at substantially equal intervals in the vicinity of the outer periphery are formed by the flow space. The electrostatic space according to claim 1, wherein the flow space is formed to have a volume capable of holding a pressure of a space formed between the electrostatic chuck and the workpiece. Suction device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17409591A JP3357991B2 (en) | 1991-07-15 | 1991-07-15 | Electrostatic suction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17409591A JP3357991B2 (en) | 1991-07-15 | 1991-07-15 | Electrostatic suction device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0521585A JPH0521585A (en) | 1993-01-29 |
JP3357991B2 true JP3357991B2 (en) | 2002-12-16 |
Family
ID=15972568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17409591A Expired - Lifetime JP3357991B2 (en) | 1991-07-15 | 1991-07-15 | Electrostatic suction device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3357991B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5511799A (en) * | 1993-06-07 | 1996-04-30 | Applied Materials, Inc. | Sealing device useful in semiconductor processing apparatus for bridging materials having a thermal expansion differential |
US5633073A (en) * | 1995-07-14 | 1997-05-27 | Applied Materials, Inc. | Ceramic susceptor with embedded metal electrode and eutectic connection |
US5817406A (en) * | 1995-07-14 | 1998-10-06 | Applied Materials, Inc. | Ceramic susceptor with embedded metal electrode and brazing material connection |
JPH09167794A (en) * | 1995-12-15 | 1997-06-24 | Sony Corp | Electrostatic chuck and plasma processing method |
US6731496B2 (en) * | 2000-05-10 | 2004-05-04 | Ibiden Co., Ltd. | Electrostatic chuck |
TWI254403B (en) * | 2000-05-19 | 2006-05-01 | Ngk Insulators Ltd | Electrostatic clamper, and electrostatic attracting structures |
JP2007266455A (en) * | 2006-03-29 | 2007-10-11 | Tokyo Electron Ltd | Substrate processing apparatus and method, and storage medium |
JP2007317756A (en) * | 2006-05-24 | 2007-12-06 | Sumitomo Electric Ind Ltd | Wafer holder for semiconductor manufacturing apparatus, manufacturing method thereof, and semiconductor manufacturing apparatus |
JP5462272B2 (en) * | 2009-10-05 | 2014-04-02 | キヤノンアネルバ株式会社 | Substrate cooling apparatus, sputtering apparatus, and electronic device manufacturing method |
JP2014049685A (en) * | 2012-09-03 | 2014-03-17 | Ngk Spark Plug Co Ltd | Component for semiconductor production |
-
1991
- 1991-07-15 JP JP17409591A patent/JP3357991B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0521585A (en) | 1993-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4559595B2 (en) | Apparatus for placing object to be processed and plasma processing apparatus | |
JP3982854B2 (en) | Electrostatic chuck with flow regulator | |
US5885469A (en) | Topographical structure of an electrostatic chuck and method of fabricating same | |
JP3693388B2 (en) | Electrostatic chuck for magnetic flux processing | |
EP0794566B1 (en) | Wafer spacing mask for a substrate support chuck and method of fabricating same | |
US5847918A (en) | Electrostatic clamping method and apparatus for dielectric workpieces in vacuum processors | |
US5841624A (en) | Cover layer for a substrate support chuck and method of fabricating same | |
US7655579B2 (en) | Method for improving heat transfer of a focus ring to a target substrate mounting device | |
JP3357991B2 (en) | Electrostatic suction device | |
JPH0267745A (en) | Wafer holding apparatus | |
KR20040028989A (en) | Showerhead electrode design for semiconductor processing reactor | |
JP2638649B2 (en) | Electrostatic chuck | |
JPH09167794A (en) | Electrostatic chuck and plasma processing method | |
TW432453B (en) | Apparatus for protecting a substrate support surface and method of fabricating same | |
JPH1064986A (en) | Substrate supporting chuck having contamination suppressing layer and its manufacture | |
TW200818311A (en) | Heat conductive structure and substrate treatment apparatus | |
JP2521471B2 (en) | Electrostatic suction device | |
JP2767282B2 (en) | Substrate holding device | |
JP4456218B2 (en) | Plasma processing equipment | |
JPS62193141A (en) | Wafer holding mechanism | |
JP2004319972A (en) | Etching method and etching device | |
JP4602528B2 (en) | Plasma processing equipment | |
JPH07130828A (en) | Semiconductor manufacturing apparatus | |
JPH04371579A (en) | Electrostatic attraction device | |
JP7632812B2 (en) | Electrostatic chuck, substrate fixing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111011 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |