[go: up one dir, main page]

JP3356554B2 - Multipole lens electron optical device - Google Patents

Multipole lens electron optical device

Info

Publication number
JP3356554B2
JP3356554B2 JP17526694A JP17526694A JP3356554B2 JP 3356554 B2 JP3356554 B2 JP 3356554B2 JP 17526694 A JP17526694 A JP 17526694A JP 17526694 A JP17526694 A JP 17526694A JP 3356554 B2 JP3356554 B2 JP 3356554B2
Authority
JP
Japan
Prior art keywords
lens
multipole lens
electrostatic
sample stage
potential distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17526694A
Other languages
Japanese (ja)
Other versions
JPH0845461A (en
Inventor
崎 裕一郎 山
好 元 介 三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17526694A priority Critical patent/JP3356554B2/en
Publication of JPH0845461A publication Critical patent/JPH0845461A/en
Application granted granted Critical
Publication of JP3356554B2 publication Critical patent/JP3356554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、多極子レンズ電子光学
装置に係り、特に複数の静電型多極子レンズによって集
光するとともに、静電型多極子レンズの出口を出た荷電
粒子ビームを減速電界によって減速させて試料台上の試
料へ照射する走査型電子顕微鏡等の多極子レンズ電子光
学装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-pole lens electro-optical device, and more particularly to a multi-pole lens electro-optical device, in which a plurality of electrostatic multi-pole lenses are condensed and a charged particle beam exiting an electrostatic multi-pole lens exit. The present invention relates to a multipole lens electron optical device such as a scanning electron microscope that irradiates a sample on a sample stage with a speed reduced by a deceleration electric field.

【0002】[0002]

【従来の技術】図3に従来の走査型電子顕微鏡等の多極
子レンズ電子光学装置の概略構成の一例を示す。電子銃
1から放出された電子ビーム9は3個の静電型多極子レ
ンズ11、13、15から構成される静電型三重四極子
電極10によって集光され、試料台17上の試料へ照射
される。静電型多極子レンズ11、13、15は、それ
ぞれ電源12、14、16によって電圧が印加される。
静電型多極子レンズ11、13、15は略同一の構成を
有し、それぞれ互いに90度の角度をおいた4個の円柱
状の構成電極から構成された四極子レンズである。
2. Description of the Related Art FIG. 3 shows an example of a schematic configuration of a conventional multipole lens electron optical device such as a scanning electron microscope. An electron beam 9 emitted from the electron gun 1 is condensed by an electrostatic triple quadrupole electrode 10 composed of three electrostatic multipole lenses 11, 13, and 15 and irradiates a sample on a sample stage 17. Is done. A voltage is applied to the electrostatic multipole lenses 11, 13, and 15 by power supplies 12, 14, and 16, respectively.
The electrostatic multipole lenses 11, 13, and 15 have substantially the same configuration, and are quadrupole lenses each including four columnar constituent electrodes that are at an angle of 90 degrees to each other.

【0003】図3(b)に、例として静電型多極子レン
ズ15の構成を示す。構成電極15aと構成電極15c
とが対向配置され、これらの電極の間に電源16aによ
って電圧が印加されている。同様に、構成電極15bと
構成電極15dとが対向配置され、これらの電極の間に
は電源16aとは極性が逆で等しい大きさの電圧を電源
16bによって印加されている。通常、電子銃1から放
出された電子ビーム9は、レンズ収差を小さくするため
に静電型三重四極子電極10によって高加速度で加速さ
れる。
FIG. 3B shows the configuration of an electrostatic multipole lens 15 as an example. Component electrode 15a and component electrode 15c
Are opposed to each other, and a voltage is applied between these electrodes by a power supply 16a. Similarly, the constituent electrode 15b and the constituent electrode 15d are arranged to face each other, and a voltage of the same magnitude as that of the power supply 16a having the opposite polarity is applied between these electrodes by the power supply 16b. Normally, the electron beam 9 emitted from the electron gun 1 is accelerated at a high acceleration by the electrostatic triple quadrupole electrode 10 in order to reduce the lens aberration.

【0004】また、試料台17には電源18によって負
の減速電圧が印加されており、静電型多極子レンズ15
と試料との間に減圧電界が発生しており、この減速電界
によって静電型多極子レンズ15の出口19を出た電子
ビームが減速される。静電型三重四極子電極10によっ
て高加速度した後、出口19を出た電子ビームを減速す
るのは次の理由からである。電子ビームが高加速度で試
料台17の試料に照射されると、試料が導体でないとき
は特に電荷が蓄積されて、いわゆるチャージアップが生
じ、この結果デバイス等の試料が破壊されることがあ
る。このようなチャージアップを防止する必要があるか
らである。
A negative deceleration voltage is applied to the sample stage 17 by a power supply 18 so that the electrostatic multipole lens 15
A decompression electric field is generated between the sample and the sample, and the electron beam that has exited the exit 19 of the electrostatic multipole lens 15 is decelerated by the deceleration electric field. The reason why the electron beam that has exited the exit 19 after being accelerated by the electrostatic triple quadrupole electrode 10 is decelerated is as follows. When the sample on the sample stage 17 is irradiated with the electron beam at high acceleration, electric charges are accumulated especially when the sample is not a conductor, so-called charge-up occurs, and as a result, the sample such as a device may be destroyed. This is because it is necessary to prevent such charge-up.

【0005】[0005]

【発明が解決しようとする課題】図4は、静電型多極子
レンズ15の出口19近傍から試料台17との間の光軸
上の電界分布を示す。横軸はz軸、縦軸は電位を任意単
位で示す。
FIG. 4 shows an electric field distribution on the optical axis between the vicinity of the exit 19 of the electrostatic multipole lens 15 and the sample table 17. The horizontal axis represents the z-axis, and the vertical axis represents the potential in arbitrary units.

【0006】D(z)は、四極子レンズである静電型多
極子レンズ15の位置に対応して四極子レンズ成分D
(z)が発生し、また静電型多極子レンズ15の端部2
0と試料台17との間に減速電界ФR (z)が発生して
いる。これらの二つの成分D(z)、ФR (z)の他
に、高次成分である八極子レンズ成分D1 (z)が静電
型多極子レンズ15の端部20の近傍に発生しフリンジ
電界を形成している。通常、試料台17へ印加される電
圧は−1kV以上であるため、八極子レンズ成分D
1 (z)の値は非常に大きい。
D (z) is a quadrupole lens component D corresponding to the position of the electrostatic multipole lens 15 which is a quadrupole lens.
(Z) occurs, and the end 2 of the electrostatic multipole lens 15
A decelerating electric field Ф R (z) is generated between 0 and the sample stage 17. In addition to these two components D (z) and Ф R (z), an octupole lens component D 1 (z), which is a higher order component, is generated near the end 20 of the electrostatic multipole lens 15. A fringe electric field is formed. Usually, since the voltage applied to the sample stage 17 is -1 kV or more, the octupole lens component D
The value of 1 (z) is very large.

【0007】この八極子レンズ成分D1 (z)によるフ
リンジ電界は、四極子レンズである静電型多極子レンズ
15の収差特性に影響を与える。また八極子レンズ成分
1(z)の値は試料台17の印加電圧である減速電位
Vs の値によって変動する。
The fringe electric field caused by the octopole lens component D 1 (z) affects the aberration characteristics of the electrostatic multipole lens 15 which is a quadrupole lens. The value of the octupole lens component D 1 (z) varies depending on the value of the deceleration potential Vs, which is the voltage applied to the sample stage 17.

【0008】このように試料台17に印加される減速電
界ФR (z)と静電型多極子レンズ15等の四極子レン
ズ成分D(z)とを組み合わされた電子光学系において
は、八極子レンズ成分D1 (z)によるフリンジ電界の
存在は、静電型多極子レンズ15等にレンズ収差が生
じ、電子ビームを微小に集光できないという問題点があ
った。
In the electron optical system in which the deceleration electric field Ф R (z) applied to the sample stage 17 and the quadrupole lens component D (z) such as the electrostatic multipole lens 15 are combined, The presence of the fringe electric field due to the polar lens component D 1 (z) causes a problem that lens aberration occurs in the electrostatic multipole lens 15 and the like, and the electron beam cannot be minutely focused.

【0009】なお、フリンジ電界がレンズ収差を生じさ
せることについて四極子レンズの場合について述べた
が、静電型多極子レンズが四極子レンズではなく一般の
多極子レンズである場合にも同様に、フリンジ電界がレ
ンズ収差を生じ電子ビームを微小に集光できないという
問題点があった。
Although the case where the fringe electric field causes lens aberration has been described in the case of a quadrupole lens, the same applies to the case where the electrostatic multipole lens is not a quadrupole lens but a general multipole lens. There is a problem that the fringe electric field causes a lens aberration and the electron beam cannot be minutely focused.

【0010】そこで、本発明の目的は、上記従来技術の
有する問題を解消し、フリンジ電界によるレンズ収差を
縮減した多極子レンズ電子光学装置を提供することであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a multipole lens electro-optical device which solves the above-mentioned problems of the prior art and reduces lens aberrations due to fringe electric fields.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明による多極子レンズ電子光学装置は、荷電粒
子銃から放出された荷電粒子ビームを複数の静電型多極
子レンズによって集光するとともに、前記静電型多極子
レンズの出口を出た荷電粒子ビームを試料台に印加する
減速電界によって減速させて試料台上の試料へ照射する
多極子レンズ電子光学装置において、前記静電型多極子
レンズの出口と前記試料台との間に、前記減速電圧を試
料台に印加することによって前記静電型多極子レンズの
出口と試料台との間で生じるフリンジ電界を調整するた
めに、荷電粒子ビームが通過する開口が形成され所定の
調整電圧が印加される電位分布調整電極を設けたことを
特徴とする。
In order to achieve the above object, a multipole lens electro-optical device according to the present invention focuses a charged particle beam emitted from a charged particle gun by a plurality of electrostatic multipole lenses. And a multipole lens electro-optical device for irradiating a sample on a sample stage with a charged particle beam exiting the exit of the electrostatic type multipole lens being decelerated by a deceleration electric field applied to the sample stage. To adjust the fringe electric field generated between the exit of the electrostatic multipole lens and the sample stage by applying the deceleration voltage to the sample stage between the exit of the multipole lens and the sample stage, An opening through which the charged particle beam passes is formed, and a potential distribution adjusting electrode to which a predetermined adjusting voltage is applied is provided.

【0012】また、前記電位分布調整電極は、回転対称
の形状を有し前記静電型多極子レンズの光軸に対して回
転対称に配設されていることを特徴とする。
Further, the potential distribution adjusting electrode has a rotationally symmetric shape, and is arranged to be rotationally symmetric with respect to the optical axis of the electrostatic multipole lens.

【0013】また、前記電位分布調整電極は、前記開口
が中心部に形成されたドウーナツ状の円板形状を有し、
前記静電型多極子レンズを構成する構成電極を前記光軸
に沿って前記電位分布調整電極へ射影した断面射影部
が、前記円板形状の内円および外円の円周に接すること
を特徴とする。
The potential distribution adjusting electrode has a doughnut-shaped disk shape with the opening formed at the center thereof,
A cross-section projecting portion that projects a constituent electrode constituting the electrostatic multipole lens along the optical axis onto the potential distribution adjusting electrode is in contact with the circumference of the inner and outer circles of the disc shape. And

【0014】[0014]

【作用】静電型多極子レンズの出口と試料台との間に電
位分布調整電極を設けたので、電位分布調整電極に所定
の電圧を印加することによって、試料台に印加される減
速電界ФR (z)と静電型多極子レンズの四極子レンズ
成分D(z)等の多極子レンズ成分とを組み合わされた
電子光学系において、静電型多極子レンズの出口近傍に
発生する八極子レンズ成分等によるフリンジ電界を縮減
してこのフリンジ電界によるレンズ収差を縮小させる。
The potential distribution adjusting electrode is provided between the exit of the electrostatic multipole lens and the sample stage. By applying a predetermined voltage to the potential distribution adjusting electrode, the deceleration electric field applied to the sample stage is reduced. An octupole generated near the exit of an electrostatic multipole lens in an electron optical system in which R (z) and a multipole lens component such as a quadrupole lens component D (z) of an electrostatic multipole lens are combined. The fringe electric field due to the lens component and the like is reduced, and the lens aberration due to the fringe electric field is reduced.

【0015】[0015]

【実施例】本発明による静電型多極子レンズの実施例を
図面参照をして説明する。図1に本実施例の多極子レン
ズ電子光学装置の概略構成を示す。電子銃1は、偏平な
直方体形状であり先端の電子放出面が4個の矩形面に分
割されたLaB6 からなる陰極2と、ウェーネルト電極
3と、接地された陽極4とから構成されている。陰極2
は電源5を介して加熱され、ウェーネルト電極3は電源
6によって負電圧が印加され電子ビームの発散を抑制す
るようにしている。陰極2およびウェーネルト電極3は
電源7によって印加される負電圧によって電子ビームの
加速電圧を制御している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an electrostatic multipole lens according to the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of a multipole lens electron optical device of the present embodiment. The electron gun 1 has a flat rectangular parallelepiped shape, and comprises a cathode 2 made of LaB6 having an electron emission surface at its tip divided into four rectangular surfaces, a Wehnelt electrode 3, and an anode 4 grounded. Cathode 2
Is heated via a power supply 5, and a negative voltage is applied to the Wehnelt electrode 3 by a power supply 6 so as to suppress the divergence of the electron beam. The cathode 2 and Wehnelt electrode 3 control the acceleration voltage of the electron beam by the negative voltage applied by the power supply 7.

【0016】電子銃1から放出された電子ビーム9は3
個の静電型多極子レンズ11、13、15から構成され
る静電型三重四極子電極10によって集光され、試料台
17上の試料へ照射される。静電型多極子レンズ11、
13、15は、それぞれ電源12、14、16によって
電圧が印加される。
The electron beam 9 emitted from the electron gun 1 is 3
The sample is condensed by the electrostatic triple quadrupole electrode 10 composed of the electrostatic multipole lenses 11, 13, and 15, and is irradiated on the sample on the sample stage 17. Electrostatic multipole lens 11,
Voltages are applied to the power supplies 13 and 15 by power supplies 12, 14 and 16, respectively.

【0017】静電型多極子レンズ11、13、15は略
同一の構成を有し、各静電型多極子レンズは互いに90
度の角度をおいて配設された4個の円柱状の構成電極を
有し、四極子レンズを構成している。
The electrostatic multipole lenses 11, 13, and 15 have substantially the same configuration.
It has four cylindrical component electrodes arranged at an angle of degrees, and constitutes a quadrupole lens.

【0018】試料台17に最も近い静電型多極子レンズ
15の出口19と試料台17との間に、ドウーナツ状の
円板形状の電位分布調整電極30が配設されている。電
位分布調整電極30の中央部には電子ビームが通過する
円形の開口30aが形成されている。電位分布調整電極
30は静電型多極子レンズ11、13、15の光軸に対
して回転対称に配設されている。また、図1(b)に示
すように、静電型多極子レンズ15を構成する構成電極
15a,15b,15c,15dを光軸に沿って電位分
布調整電極30の面上へ射影した場合の断面射影部は、
電位分布調整電極30の内円30bおよび外円30cの
円周に接するような位置にあり、四極子レンズである静
電型多極子レンズ15等のボア径は内円30bの径に等
しいようになっている。
Between the outlet 19 of the electrostatic multipole lens 15 closest to the sample stage 17 and the sample stage 17, a donut-shaped disk-shaped potential distribution adjusting electrode 30 is provided. A circular opening 30a through which an electron beam passes is formed at the center of the potential distribution adjusting electrode 30. The potential distribution adjusting electrode 30 is arranged rotationally symmetrically with respect to the optical axes of the electrostatic multipole lenses 11, 13, and 15. 1B, the constituent electrodes 15a, 15b, 15c, and 15d of the electrostatic multipole lens 15 are projected onto the surface of the potential distribution adjusting electrode 30 along the optical axis. The cross-section projection unit
The bore diameter of the electrostatic multipole lens 15 or the like, which is a quadrupole lens, is positioned so as to be in contact with the circumferences of the inner circle 30b and the outer circle 30c of the potential distribution adjusting electrode 30 so that it is equal to the diameter of the inner circle 30b. Has become.

【0019】電位分布調整電極30には電源31によっ
て電圧VA が印加されるようになっており、電源31は
電圧VA を減速電圧Vs や静電型多極子レンズ15に印
加される電圧とは独立に制御できる。電圧VA の制御
は、以下に述べるように、静電型多極子レンズ15の端
部20近傍の八極子レンズ成分D1 (z)によるフリン
ジ電界を減少させ、このフリンジ電界によるレンズ収差
をできるだけ小さくなるように制御される。
[0019] The potential distribution adjusting electrode 30 being adapted to the voltage V A is applied by a power supply 31, power supply 31 is a voltage applied to the voltage V A to the deceleration voltage V s and electrostatic multipole lens 15 And can be controlled independently. As described below, the control of the voltage V A reduces the fringe electric field due to the octopole lens component D 1 (z) near the end 20 of the electrostatic multipole lens 15 and minimizes the lens aberration due to this fringe electric field. It is controlled to be smaller.

【0020】図2は、静電型多極子レンズ15の出口1
9近傍と試料台17との間の光軸上の電界分布を示す。
横軸はz軸、縦軸は電位を任意単位で示す。
FIG. 2 shows the exit 1 of the electrostatic multipole lens 15.
9 shows an electric field distribution on the optical axis between the vicinity of Sample No. 9 and the sample table 17.
The horizontal axis represents the z-axis, and the vertical axis represents the potential in arbitrary units.

【0021】四極子レンズである静電型多極子レンズ1
5等のボア内には四極子レンズ成分D(z)が発生して
おり、静電型多極子レンズ15の端部20と試料台17
との間には減速電界ФR (z)が発生している。また、
静電型多極子レンズ15の端部20の近傍には高次成分
である八極子レンズ成分D1 (z)が発生しフリンジ電
界を形成している。
An electrostatic multipole lens 1 which is a quadrupole lens
5 and the like, a quadrupole lens component D (z) is generated, and the end 20 of the electrostatic multipole lens 15 and the sample stage 17 are formed.
And a deceleration electric field Ф R (z) is generated between them. Also,
An octupole lens component D 1 (z), which is a high-order component, is generated near the end 20 of the electrostatic multipole lens 15 to form a fringe electric field.

【0022】さらに、端部20と試料台17との間には
電位分布調整電極30に印加された調整電圧によって、
回転対称な強度分布を有する調整電界ФA (z)が発生
している。
Further, an adjustment voltage applied to the potential distribution adjusting electrode 30 is applied between the end portion 20 and the sample stage 17,
An adjustment electric field Ф A (z) having a rotationally symmetric intensity distribution is generated.

【0023】図2において、図4と比較するとわかるよ
うに電位分布調整電極30が配設されていない場合に比
べて減速電界ФR (z)は試料台17側へシフトしてい
る。また、調整電界ФA (z)の存在によって、静電型
多極子レンズ15の端部20近傍の八極子レンズ成分D
1 (z)によるフリンジ電界は大幅に減少していること
がわかる。
In FIG. 2, the deceleration electric field Ф R (z) is shifted toward the sample stage 17 as compared with the case where the potential distribution adjusting electrode 30 is not provided, as can be seen from comparison with FIG. Further, due to the presence of the adjustment electric field Ф A (z), the octupole lens component D near the end 20 of the electrostatic multipole lens 15 is formed.
It can be seen that the fringe electric field due to 1 (z) is greatly reduced.

【0024】以上説明したように、本実施例の構成によ
れば、静電型多極子レンズ15の出口19と試料台17
との間に電位分布調整電極30を設けたので、減速電界
ФR(z)を試料台17側へシフトさせるとともに、八
極子レンズ成分D1 (z)によるフリンジ電界を大幅に
減少させることができる。この結果、試料台17に印加
される減速電界ФR (z)と静電型多極子レンズの四極
子レンズ成分D(z)とを組み合わされた電子光学系に
おいて、フリンジ電界によるレンズ収差を縮小させるこ
とができる。
As described above, according to the configuration of this embodiment, the exit 19 of the electrostatic multipole lens 15 and the sample stage 17
The potential distribution adjusting electrode 30 is provided between the first and second electrodes, so that the deceleration electric field Ф R (z) can be shifted toward the sample stage 17 and the fringe electric field due to the octopole lens component D 1 (z) can be greatly reduced. it can. As a result, in an electron optical system in which the decelerating electric field Ф R (z) applied to the sample stage 17 and the quadrupole lens component D (z) of the electrostatic multipole lens are combined, lens aberration due to the fringe electric field is reduced. Can be done.

【0025】また、電位分布調整電極30は、回転対称
の形状を有し静電型多極子レンズの光軸に対して回転対
称に配設されているので、調整電界ФA (z)を回転対
称な強度分布を有するように形成することができる。こ
の結果、レンズ収差に影響を与え易い出口19と試料台
17との間の電界分布を非回転対称的に乱すことを防止
することができる。
Further, since the potential distribution adjusting electrode 30 has a rotationally symmetric shape and is arranged to be rotationally symmetric with respect to the optical axis of the electrostatic multipole lens, the adjustment electric field Ф A (z) is rotated. It can be formed to have a symmetrical intensity distribution. As a result, non-rotationally symmetric disturbance of the electric field distribution between the exit 19 and the sample stage 17 that easily affects the lens aberration can be prevented.

【0026】また、電位分布調整電極30では静電型多
極子レンズ15等のボア径が内円30bの径に等しいよ
うに開口30aが形成されているので、八極子レンズ成
分D1 (z)によるフリンジ電界を効率的に減少させる
ことができる電位分布調整電極30をコンパクトに形成
することができる。
Since the aperture 30a is formed in the potential distribution adjusting electrode 30 so that the bore diameter of the electrostatic multipole lens 15 and the like is equal to the diameter of the inner circle 30b, the octupole lens component D 1 (z) The potential distribution adjusting electrode 30 that can effectively reduce the fringe electric field due to the above can be formed compactly.

【0027】以上の実施例の説明において、静電型多極
子レンズ11、13、15が四極子レンズとして説明し
てきたが、本発明はこれに限らず、静電型多極子レンズ
11、13、15が四極子レンズ以外の多極子レンズで
ある場合にも適用できる。
In the above description of the embodiments, the electrostatic multipole lenses 11, 13, 15 have been described as quadrupole lenses. However, the present invention is not limited to this, and the electrostatic multipole lenses 11, 13, 15 The present invention can also be applied to a case where 15 is a multipole lens other than the quadrupole lens.

【0028】また、3個の静電型多極子レンズ11、1
3、15がシリーズに配設場合について説明したが、静
電型多極子レンズの数は3個に限らない。
The three electrostatic multipole lenses 11, 1
Although the case where 3, 15 are arranged in a series has been described, the number of electrostatic multipole lenses is not limited to three.

【0029】また、荷電粒子銃として電子銃として説明
したが本発明はこれに限らず、イオン銃等の他の荷電粒
子銃であってもよい。
Although the charged particle gun has been described as an electron gun, the present invention is not limited to this, and another charged particle gun such as an ion gun may be used.

【0030】[0030]

【発明の効果】以上説明したように、本発明の構成によ
れば、静電型多極子レンズの出口と試料台との間に電位
分布調整電極を設けたので、電位分布調整電極に所定の
電圧を印加することによって、試料台に印加される減速
電界ФR (z)と静電型多極子レンズの四極子レンズ成
分D(z)等の多極子レンズ成分とを組み合わされた電
子光学系において、静電型多極子レンズの出口近傍に発
生する八極子レンズ成分等によるフリンジ電界を縮減し
てこのフリンジ電界によるレンズ収差を縮小させること
ができる。
As described above, according to the structure of the present invention, since the potential distribution adjusting electrode is provided between the exit of the electrostatic multipole lens and the sample stage, a predetermined potential distribution adjusting electrode is provided. An electron optical system in which a decelerating electric field Ф R (z) applied to a sample stage by applying a voltage and a multipole lens component such as a quadrupole lens component D (z) of an electrostatic multipole lens are combined. In the above, the fringe electric field due to the octopole lens component or the like generated near the exit of the electrostatic multipole lens can be reduced, and the lens aberration due to this fringe electric field can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による多極子レンズ電子光学装置の一実
施例の概略構成を示す断面図(a)とA−Aから見た断
面図(b)。
FIG. 1A is a cross-sectional view showing a schematic configuration of an embodiment of a multipole lens electro-optical device according to the present invention, and FIG.

【図2】本発明の多極子レンズ電子光学装置において静
電型多極子レンズの出口近傍と試料台との間の光軸上の
電界分布を示す図。
FIG. 2 is a diagram showing an electric field distribution on an optical axis between a vicinity of an exit of an electrostatic multipole lens and a sample stage in the multipole lens electron optical device of the present invention.

【図3】従来の多極子レンズ電子光学装置の概略構成を
示す断面図(a)とA−Aから見た断面図(b)。
3A is a cross-sectional view showing a schematic configuration of a conventional multipole lens electro-optical device, and FIG. 3B is a cross-sectional view seen from AA.

【図4】従来の多極子レンズ電子光学装置において静電
型多極子レンズの出口近傍と試料台との間の光軸上の電
界分布を示す図。
FIG. 4 is a diagram showing an electric field distribution on an optical axis between a vicinity of an exit of an electrostatic multipole lens and a sample stage in a conventional multipole lens electron optical device.

【符号の説明】[Explanation of symbols]

1 電子銃 9 電子ビーム 10 静電型三重四極子電極 11 静電型多極子レンズ 12 静電型多極子レンズ 15 静電型多極子レンズ 15a、15b,15c,15d 構成電極 17 試料台 19 静電型多極子レンズの出口 30 電位分布調整電極 30a 開口 30b 内円 30c 外円 DESCRIPTION OF SYMBOLS 1 Electron gun 9 Electron beam 10 Electrostatic triple quadrupole electrode 11 Electrostatic multipole lens 12 Electrostatic multipole lens 15 Electrostatic multipole lens 15a, 15b, 15c, 15d Constituting electrode 17 Sample stand 19 Electrostatic Exit of type multipole lens 30 Potential distribution adjusting electrode 30a Opening 30b Inner circle 30c Outer circle

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01J 37/00 - 37/153 H01J 37/252 - 37/295 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01J 37/00-37/153 H01J 37/252-37/295

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】荷電粒子銃から放出された荷電粒子ビーム
を複数の静電型多極子レンズによって集光するととも
に、前記静電型多極子レンズの出口を出た荷電粒子ビー
ムを試料台に印加する減速電界によって減速させて試料
台上の試料へ照射する多極子レンズ電子光学装置におい
て、 前記静電型多極子レンズの出口と前記試料台との間に、
前記減速電圧を試料台に印加することによって前記静電
型多極子レンズの出口と試料台との間で生じるフリンジ
電界を調整するために、荷電粒子ビームが通過する開口
が形成され所定の調整電圧が印加される電位分布調整電
極を設けたことを特徴とする多極子レンズ電子光学装
置。
1. A charged particle beam emitted from a charged particle gun is condensed by a plurality of electrostatic multipole lenses, and a charged particle beam exiting an exit of the electrostatic multipole lens is applied to a sample stage. A multipole lens electro-optical device for irradiating a sample on a sample stage with deceleration by a decelerating electric field, wherein between an exit of the electrostatic type multipole lens and the sample stage,
By applying the deceleration voltage to the sample stage,
Fringe generated between the exit of the multipole lens and the sample stage
A multipole lens electron optical device, characterized in that an aperture through which a charged particle beam passes is formed and a potential distribution adjusting electrode to which a predetermined adjusting voltage is applied is provided to adjust an electric field .
【請求項2】前記電位分布調整電極は、回転対称の形状
を有し前記静電型多極子レンズの光軸に対して回転対称
に配設されていることを特徴とする請求項1に記載の多
極子レンズ電子光学装置。
2. The electric potential distribution adjusting electrode according to claim 1, wherein the potential distribution adjusting electrode has a rotationally symmetric shape and is arranged rotationally symmetrically with respect to an optical axis of the electrostatic multipole lens. Multipole lens electron optical device.
【請求項3】前記電位分布調整電極は、前記開口が中心
部に形成されたドウーナツ状の円板形状を有し、前記静
電型多極子レンズを構成する構成電極を前記光軸に沿っ
て前記電位分布調整電極へ射影した断面射影部が、前記
円板形状の内円および外円の円周に接することを特徴と
する請求項2に記載の多極子レンズ電子光学装置。
3. The potential distribution adjusting electrode has a doughnut-shaped disk shape in which the opening is formed at the center, and the constituent electrodes constituting the electrostatic multipole lens are arranged along the optical axis. 3. The multi-pole lens electro-optical device according to claim 2, wherein a cross section projected onto the potential distribution adjusting electrode is in contact with the circumference of the inner and outer circles of the disc shape. 4.
JP17526694A 1994-07-27 1994-07-27 Multipole lens electron optical device Expired - Fee Related JP3356554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17526694A JP3356554B2 (en) 1994-07-27 1994-07-27 Multipole lens electron optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17526694A JP3356554B2 (en) 1994-07-27 1994-07-27 Multipole lens electron optical device

Publications (2)

Publication Number Publication Date
JPH0845461A JPH0845461A (en) 1996-02-16
JP3356554B2 true JP3356554B2 (en) 2002-12-16

Family

ID=15993151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17526694A Expired - Fee Related JP3356554B2 (en) 1994-07-27 1994-07-27 Multipole lens electron optical device

Country Status (1)

Country Link
JP (1) JP3356554B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184336A (en) * 2000-12-12 2002-06-28 Hitachi Ltd Charged particle beam microscope device, charged particle beam application device, charged particle beam microscopy method, charged particle beam inspection method, and electron microscope device

Also Published As

Publication number Publication date
JPH0845461A (en) 1996-02-16

Similar Documents

Publication Publication Date Title
US6191423B1 (en) Correction device for correcting the spherical aberration in particle-optical apparatus
JP3268583B2 (en) Particle beam device
JP3269575B2 (en) Imaging system for charged particle beam with mirror corrector
US4661712A (en) Apparatus for scanning a high current ion beam with a constant angle of incidence
US9111715B2 (en) Charged particle energy filter
JP6341680B2 (en) Low kV enhancement of focused ion beam
JPH11509972A (en) Correction device for lens aberration correction of particle optics
US20110210264A1 (en) Distributed Ion Source Acceleration Column
JP4647866B2 (en) Particle optics including a particle source switchable between high brightness and large beam current
JP2004199929A (en) Energy filter and electron microscope
JPS61101944A (en) Charged particle beam focusing system
JP3356554B2 (en) Multipole lens electron optical device
JPS62108438A (en) High current mass spectrometer employing space charge lens
JPH08274020A (en) Projective lithography device by charged particle
JP3862344B2 (en) Electrostatic lens
US5317161A (en) Ion source
EP0213664A1 (en) Beam of charged particles divided up into thin component beams
JPH0450699B2 (en)
US20030006377A1 (en) Tandem acceleration electrostatic lens
US6069363A (en) Magnetic-electrostatic symmetric doublet projection lens
JPH0864163A (en) Charged particle beam device
JPH0234426B2 (en)
JP3058657B2 (en) Charged particle beam equipment
JP3712559B2 (en) Cathode lens
WO2024180577A1 (en) Composite beam device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees