[go: up one dir, main page]

JP3355857B2 - Voltage reactive power control device - Google Patents

Voltage reactive power control device

Info

Publication number
JP3355857B2
JP3355857B2 JP07858795A JP7858795A JP3355857B2 JP 3355857 B2 JP3355857 B2 JP 3355857B2 JP 07858795 A JP07858795 A JP 07858795A JP 7858795 A JP7858795 A JP 7858795A JP 3355857 B2 JP3355857 B2 JP 3355857B2
Authority
JP
Japan
Prior art keywords
power
reactive power
power system
sub
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07858795A
Other languages
Japanese (ja)
Other versions
JPH08280135A (en
Inventor
隆張 石田
千尋 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP07858795A priority Critical patent/JP3355857B2/en
Publication of JPH08280135A publication Critical patent/JPH08280135A/en
Application granted granted Critical
Publication of JP3355857B2 publication Critical patent/JP3355857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は任意の時間断面の潮流状
態に対する最適な電圧無効電力の配置を計算する方法お
よび装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for calculating an optimum voltage reactive power allocation for a power flow state at an arbitrary time section.

【0002】[0002]

【従来の技術】[Prior art]

(1)電気学会編,電力系統の電圧安定維持対策,電気
学会技術報告II−73号,43−45(1979) 電圧無効電力制御方法の公知例として上記の文献があ
る。この中には(a)判定関数を用いる方法、(b)等
余裕率で配分する方法、(c)送電損失最小で配分する
方法がある。(a)の判定関数を用いて配分する方法
は、対象系統内の全調整機器について判定関数の変化量
を計算し、最大の判定関数減少を与える調整機器を選定
し、その調整上下限内で操作を行う。この過程を監視点
の制約条件が満足されるまで繰り返す。また、(b)の
方法は電力系統中の電圧監視機器の基準電圧の逸脱に対
して、これを調整する発電機のグループを、系統特性定
数によってあらかじめ対応づけておき、そのグループ内
では各ユニットが定められた無効電力調整範囲内で同じ
余裕率になるように調整量を求める。また、(c)の送
電損失最小で配分する方法は、系統各所の電圧の基準値
からの偏差の平均値を少なくし、かつ、連系点の無効電
力潮流が基準値に近づくように火力の無効電力の合計値
を制御する。
(1) The Institute of Electrical Engineers of Japan, Measures to Maintain Voltage Stability in Power Systems, Technical Report of the Institute of Electrical Engineers of Japan No. II-73, 43-45 (1979) The above-mentioned documents are known examples of voltage reactive power control methods. Among them, there are (a) a method using a judgment function, (b) a method of allocating at an equal margin, and (c) a method of allocating with a minimum transmission loss. The method of allocating using the judgment function of (a) is to calculate the amount of change in the judgment function for all the adjustment devices in the target system, select the adjustment device that gives the largest decrease in the judgment function, and adjust the adjustment device within the upper and lower limits of the adjustment. Perform the operation. This process is repeated until the monitoring point constraint is satisfied. Further, in the method (b), a group of generators for adjusting the deviation of the reference voltage of the voltage monitoring device in the power system is previously associated with a system characteristic constant, and each unit in the group is included in the group. Is determined so that the same margin ratio is obtained within the defined reactive power adjustment range. In the method (c) of distributing with the minimum transmission loss, the average value of the deviation from the reference value of the voltage at various points in the system is reduced, and the thermal power of the interconnecting point approaches the reference value. Controls the total value of reactive power.

【0003】(2)特開平5−108177号 公知例(2)の方法の特徴は、各電圧無効電力制御機器
には動作回数の制約があることに着目し、動作回数の制
約を持つ制御対象機器について、制約値を加味した制御
を行うよう構成することにより、各制御機器の平均的な
使用頻度が確保できるとともに、需要の急変時について
は、制御追随性を確保する方式となっている。
(2) Japanese Patent Application Laid-Open No. 5-108177 A feature of the method of the known example (2) is that each voltage reactive power control device has a restriction on the number of operations, and a control object having a restriction on the number of operations. By configuring the device to perform control in consideration of the constraint value, an average frequency of use of each control device can be secured, and at the time of a sudden change in demand, the control followability is secured.

【0004】[0004]

【発明が解決しようとする課題】前記従来技術中、
(1)(a)の方法では、電圧、ならびに無効電力量の大
幅な変化時に、電圧,無効電力調整のための計算繰り返
し回数が増える欠点がある。また、(1)(b)の等余裕
率で配分する方法は、対象とする電力系統の系統構成の
大幅な変更時に基準電圧の変更が必要となり、この操作
で大幅な作業の増大となる。また、(1)(c)の送電損
失最小で配分する方式では、発電機の無効電力出力の調
整だけが制御変数であるので、現実の電力系統の運用を
考えると、調相設備投入量,変圧器タップの調整を制御
変数に入れる必要がある。
SUMMARY OF THE INVENTION In the above prior art,
(1) The method (a) has a drawback that the number of repetitions of calculation for adjusting the voltage and the reactive power increases when the voltage and the reactive power amount change significantly. Further, in the method of (1) and (b) of distributing at equal margin rates, the reference voltage needs to be changed when the system configuration of the target power system is significantly changed, and this operation greatly increases the work. In addition, in the method of (1) and (c), in which distribution is performed with the minimum transmission loss, only the adjustment of the reactive power output of the generator is a control variable. The adjustment of the transformer taps needs to be included in the control variables.

【0005】さらに公知例(2)では調相設備の操作回
数制約を考慮し、同一調相機器に対する動作回数の集中
化を防いでいる点で前記の公知例を改善している。この
公知例での改善策は、調相機器の評価関数の重み係数を
変化させているため、系統状態の変化、あるいは、制御
対象機器が変化するごとに評価関数に対する重み係数を
変化させる必要がある。そのため、計算効率が上がらな
く、オンラインでの制御として使用するためには問題が
ある。
Further, the known example (2) is an improvement over the above-mentioned known example in that the restriction on the number of operations of the phase adjustment equipment is taken into account and the number of operations for the same phase adjustment equipment is not concentrated. Since the improvement measure in this known example changes the weight coefficient of the evaluation function of the phase adjustment device, it is necessary to change the weight coefficient for the evaluation function every time the system state changes or the control target device changes. is there. For this reason, the calculation efficiency does not increase, and there is a problem in using it as online control.

【0006】これまでの公知例にある電圧無効電力制御
装置は、対象とする電力系統すべての中の電圧無効電力
制御機器を制御対象と考える、いわゆる全系一括に制御
を行う概念を用いて電圧無効電力制御を行っている。こ
の全系一括の方法では、計算によって得られる解が現実
の電力系統の運用の指針にそぐわないことがある。たと
えば電圧に対する操作感度の低い、電圧制御母線周辺の
調相機器よりも、電圧に対する操作感度の高い電圧制御
母線から遠い発電機無効電力出力の操作を最適と選ぶ場
合である。同様に、公知例(1)では電圧無効電力制御
機器個々の電圧感度係数を全系一括で求めているため
に、前記の様な機器の選択の現象が起きる。そのため、
一貫した電圧制御が行われずに、現実的な運用とは異な
った制御結果になることが多い。
[0006] The voltage reactive power control device in the prior art is based on the concept that voltage reactive power control devices in all the target power systems are considered to be controlled, that is, the concept of performing so-called collective control of the entire system. Reactive power control is being performed. In this method of collective operation of the entire system, the solution obtained by the calculation may not meet the guidelines for the actual operation of the power system. For example, it is a case where the operation of the generator reactive power output farther from the voltage control bus having a higher operation sensitivity to the voltage than that of the phase adjusting device around the voltage control bus having the lower operation sensitivity to the voltage is selected as optimal. Similarly, in the known example (1), since the voltage sensitivity coefficients of the individual voltage reactive power control devices are obtained collectively for the entire system, the phenomenon of device selection as described above occurs. for that reason,
Without consistent voltage control, control results often differ from realistic operations.

【0007】本発明では動的に対象系統を部分系統に分
割し、各部分系統ごとに無効電力バランスを考慮しなが
ら無効電力配分を行い、系統全体での逆制御現象を防ぐ
こと、また、本発明は潮流計算以外は簡単な加減乗除計
算だけで行い、全体計算を高速に実行し、オンラインで
の電圧無効電力制御を実現すること、さらに、無効電力
制御装置選択の過程が電力系統の運用者にもわかりやす
い電圧無効電力制御装置を提供することを目的とする。
According to the present invention, the target system is dynamically divided into sub-systems, and the reactive power is distributed in consideration of the reactive power balance for each sub-system to prevent the reverse control phenomenon in the entire system. The present invention performs only the simple addition, subtraction, multiplication, and division calculations other than the power flow calculation, performs the entire calculation at high speed, realizes online voltage reactive power control, and furthermore, the process of selecting the reactive power control device is performed by a power system operator. It is another object of the present invention to provide a voltage reactive power control device which is easy to understand.

【0008】[0008]

【課題を解決するための手段】本発明では対象とする電
力系統に対し、この電力系統を分割して、この分割され
た電力系統内で無効電力発生源と無効電力消費源との整
合状態を計算することにより、電力系統の無効電力発生
装置を制御するようにしたものである。
According to the present invention, this power system is divided into a target power system, and a matching state between a reactive power generation source and a reactive power consumption source is determined in the divided power system. The calculation controls the reactive power generation device of the power system.

【0009】すなわち、本発明では対象とする電力系統
に対し、これまで全系一括で求めている電圧無効電力調
整機器を、いくつかの部分系統に分割する。これまでの
公知例では特定の種類の電圧感度の高い電気無効電力調
整機器に限って部分系統に分割する公知例はあったが
(公知例(1)(b))、本発明では、この部分系統の分
割を基幹系統の変電所とその下位系統、あるいは電源供
給が同一の系統を一単位として行う。この分割方法で
は、無効電力の需要と供給のバランスがとれない場合
は、隣接した部分系統との融合,分割を繰り返し最適な
部分系統分割を行う。このように分割した部分系統ごと
に無効電力バランスを求め、各部分系統ごとに最適な電
圧無効電力調整機器を求める。
That is, in the present invention, the voltage / reactive power adjusting device, which has been obtained as a whole for the target power system, is divided into several sub-systems. In the known examples so far, there is a known example in which a specific kind of electric reactive power adjusting device having high voltage sensitivity is divided into partial systems only (known examples (1) and (b)). The system is divided into substations of the main system and its subordinate systems, or a system with the same power supply as one unit. In this division method, when the demand and the supply of the reactive power cannot be balanced, the optimal sub-system division is performed by repeating fusion and division with the adjacent sub-system. The reactive power balance is obtained for each of the divided sub-systems, and an optimum voltage reactive power adjusting device is obtained for each of the sub-systems.

【0010】各部分系統ごとの最適な制御すべき電圧無
効電力調整機器の算出には、従来用いられていたアルゴ
リズムに加え、過去の履歴データより類似の系統状況の
場合を検索し、その過去の結果を元に最適な電圧無効電
力制御装置を選択する方法を用いる。また、この考えを
数時間先将来時点の潮流状態予測支援システムと結合す
ることにより、時々刻々と変化する系統状態に対処でき
るようにした。また、各時点での無効電力操作機器の結
果と潮流状態を学習し、次時点での最適な無効電力制御
装置の計算に用いるようにした。
In order to calculate the optimum voltage / reactive power adjusting device to be controlled for each sub-system, in addition to the conventionally used algorithm, a case of similar system status is searched from past history data, and the past A method of selecting an optimal voltage reactive power control device based on the result is used. Also, by combining this idea with the tidal current state prediction support system several hours ahead in the future, it is possible to deal with the ever-changing system state. In addition, the result of the reactive power operation device and the power flow state at each time point are learned, and used for calculation of the optimum reactive power control device at the next time point.

【0011】[0011]

【作用】将来時点での潮流状態を予測した後に、各潮流
状態に適した形で対象系統全系を複数の部分系統に分割
する。対象系統を無効電力の発生量と消費量を考慮しな
がら融合,分割を繰り返し最適な部分系統に分割して無
効電力配分計算を行うことにより、系統全体で逆制御現
象が起きない一貫した制御が可能となる。さらに、計算
実行時点での潮流状態と、過去の履歴データ中の類似の
潮流状態との比較を行い、該時間断面での差分量を類似
日の制御状態に反映して無効電力配分を行う。ここでは
電圧無効電力調整機器の余裕量を考慮しながら無効電力
の最適な分布を求める。この方法により、潮流計算を実
行する以外は簡潔な計算を行うだけですむので、高速な
処理が可能となる。
After predicting the power flow state at a future time point, the entire target system is divided into a plurality of sub-systems in a form suitable for each power flow state. By integrating and dividing the target system into optimal sub-systems by repeating fusion and division while taking into account the amount of generation and consumption of reactive power, and performing reactive power distribution calculation, consistent control without reverse control phenomena in the entire system can be achieved. It becomes possible. Further, the power flow state at the time of execution of the calculation is compared with a similar power flow state in the past history data, and the amount of difference in the time section is reflected in the control state on the similar day to perform the reactive power distribution. Here, the optimum distribution of the reactive power is determined in consideration of the margin of the voltage reactive power adjusting device. With this method, only simple calculations are required except for executing the tidal flow calculation, so that high-speed processing can be performed.

【0012】[0012]

【実施例】次に本発明の実施例を図1を用いて説明す
る。図1は本発明の電力系統電圧無効電力制御装置の1
構成図である。本発明は対象とする電力系統101,電
力系統101より必要なデータを読み込むデータ読み込
み装置102,読み込みだデータより、該時点の尤もら
しい系統状態を推定する状態推定装置103,電圧無効
電力制御の実施を行う前処理としての電力系統部分系統
分割計算装置104,前記状態推定装置より、数時間先
将来の電力系統を予測する将来系統潮流状態予測装置1
05,前記装置より求めた予測潮流状態より、最適な無
効電力の配分のための操作すべき電圧無効電力制御装置
を選択する、無効電力最適配分計算装置106,装置1
06の結果を元に操作機器に指令を出す、無効電力配分
指令装置107,操作結果を出力する、出力装置108
からなる。
Next, an embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a power system voltage reactive power control device 1 according to the present invention.
It is a block diagram. The present invention relates to a target power system 101, a data reading device 102 for reading necessary data from the power system 101, a state estimating device 103 for estimating a likely system state at the time from the read data, and implementation of voltage reactive power control. System power flow state prediction device 1 for predicting the power system several hours ahead from the power system partial system division calculation device 104 as the pre-process for performing
05, a reactive power optimum distribution calculation device 106, device 1 for selecting a voltage reactive power control device to be operated for optimal reactive power distribution from the predicted power flow state obtained from the device.
06, a reactive power distribution command device 107 that issues a command to the operating device based on the result of 06, and an output device 108 that outputs the operation result
Consists of

【0013】次の各装置の詳細について説明する。デー
タ読み込み装置102では各設備から通信線251を通
じて情報を得、さらに対象系統を縮約し、たとえば図2
のようなフォーマットで系統情報を記憶するための処理
を行う。装置102での処理結果は通信線252を通じ
て状態推定装置103に送られる。状態推定装置103で
は該時点での電力系統における尤もらしい状態を、以下
の公知例に代表される方法を用いて推定する手段であ
る。
The details of each of the following devices will be described. The data reading device 102 obtains information from each facility through the communication line 251 and further reduces the target system.
A process for storing the system information in the format as described above is performed. The processing result of the device 102 is sent to the state estimating device 103 via the communication line 252. The state estimating device 103 is means for estimating a likely state in the power system at that time using a method represented by the following known example.

【0014】Lars Holten, Anders Gjelsvik, Sverre A
dam, F. F. Wu and Wen-Hsiung E.Liu, Comparison of
Diffeent Methods for State Estimation. IEEE Trans.
Power Syst.,3(1988),1798−1806. 装置103での推定結果は通信線253を通じて将来系
統潮流状態予測装置に送られる。ここでは、過去の総電
力需要量,発電機に関するデータ,各変電所の負荷デー
タと、前記装置103での結果を元に将来時点での電力
系統の潮流状態を予測する機能である。この詳細につい
ては以下の公知例に詳しく記述されている。
Lars Holten, Anders Gjelsvik, Sverre A
dam, FF Wu and Wen-Hsiung E. Liu, Comparison of
Diffeent Methods for State Estimation. IEEE Trans.
Power Syst., 3 (1988), 1798-1806. The estimation result in the device 103 is sent to the future system power flow state prediction device through the communication line 253. Here, the function is to predict the power flow state of the power system at a future time based on the past total power demand, data on the generator, load data of each substation, and the result of the device 103. The details are described in detail in the following known examples.

【0015】中島,大久保,松本,石田,田村,次期中
央給電指令所向け数時間先潮流状態予測システム(DP
F)システムの開発,平成7年電気学会全国大会,13
96(1995)。
A few hours ahead tidal current state prediction system (DP) for Nakajima, Okubo, Matsumoto, Ishida, Tamura, next Central Power Distribution Center
F) System development, 1995 IEEJ National Convention, 13
96 (1995).

【0016】電力系統部分系統分割計算装置104は本
発明の特徴的な装置である。装置104ではデータ読み
込み装置102より通信線258を通じて電力系統デー
タを、さらに装置103で求めた状態推定結果、あるい
は装置105にて求めた潮流状態予測結果を得る。以上
のデータを元に本装置では電圧無効電力制御を行うため
の電力系統を最適な部分系統に分割する。本装置で行う
系統分割方法の詳細を図3を用いて説明する。まず、手
段301にて対象系統を基幹系変電所とその下位系統を
単位とする系統に分割する。この分割の実際例を図4を
用いて説明する。図4の例題の系統は基幹系変電所がA
s/s〜Cs/sである。その他の変電所は下位系統変
電所である。手段301により、図4の対象電力系統は
401,402,403の部分系統に分割される。
The power system sub-system division calculation device 104 is a characteristic device of the present invention. The device 104 obtains power system data from the data reading device 102 through the communication line 258, and further obtains a state estimation result obtained by the device 103 or a power flow state prediction result obtained by the device 105. Based on the above data, the present device divides the power system for performing the voltage reactive power control into optimal sub-systems. The details of the system division method performed by this apparatus will be described with reference to FIG. First, the target system is divided by the means 301 into a system having a main system substation and its lower system as a unit. An actual example of this division will be described with reference to FIG. In the example system shown in FIG. 4, the main substation is A
s / s to Cs / s. The other substations are lower system substations. The target power system of FIG. 4 is divided into 401, 402, and 403 sub-systems by means 301.

【0017】次に分割した部分系統ごとの無効電力の消
費量と無効電力発生量、あるいは無効電力発生可能量を
もとに、無効電力バランスを手段302にて求める。手
段302で無効電力バランスを求めた後に、それが適正
かどうかの判定を手段303で行う。手段303では以下
の式に基づいて無効電力バランスの適否を判定する。
Next, a reactive power balance is obtained by means 302 based on the reactive power consumption and the reactive power generation amount or the reactive power generation possible amount for each of the divided subsystems. After the reactive power balance is obtained by the means 302, the means 303 determines whether or not the reactive power balance is appropriate. The means 303 determines whether the reactive power balance is appropriate based on the following equation.

【0018】[0018]

【数1】 (無効電力消費量)≦(無効電力発生量、あるいは発生可能量)…(式1) 式1が満足されれば、電力系統部分系統分割計算装置の
処理を終了する。そうでない場合は、式1を満足しない
部分系統を選び、手段304にて隣接する部分系統の一
つを融合し、手段305にて融合後の部分系統に対する
無効電力バランスを計算する。たとえば図4の電力系統
を例にすると、部分系統402の無効電力バランスが適
正でない場合は、部分系統401と部分系統402を融
合させて、両部分系統を併せた無効電力バランスを計算
する。次に手段306にて融合後の無効電力バランスの
チェックを行う。ここで、前記式1を満足する場合は部
分系統分割計算処理を終了する。式1を満足しない場合
は、手段307にて、手段304にて融合した部分系統
に融合検討済みのフラグを設定し、手段308にて手段
304にて融合した部分系統を分割する。次に手段30
9にて、隣接する部分系統すべてに融合検討済みのフラ
グが設定されているかどうかを確かめる。すべて隣接す
る部分系統に前記フラグが設定されている場合は、手段
310にて系統構成を変化させる必要がある旨を表示し
て、系統分割処理を終了する。まだ前記フラグが設定さ
れていない場合は、手段304に戻り処理を続行する。
(Reactive power consumption amount) ≦ (reactive power generation amount or possible generation amount) (Equation 1) When Expression 1 is satisfied, the processing of the power system partial system division calculation device ends. Otherwise, a sub-system that does not satisfy Equation 1 is selected, one of the adjacent sub-systems is merged by means 304, and a reactive power balance for the merged sub-system is calculated by means 305. For example, taking the power system of FIG. 4 as an example, if the reactive power balance of the partial system 402 is not appropriate, the partial system 401 and the partial system 402 are merged, and the reactive power balance of both the partial systems is calculated. Next, the means 306 checks the reactive power balance after the fusion. Here, when Equation 1 is satisfied, the sub-system division calculation processing ends. If Expression 1 is not satisfied, the unit 307 sets a flag for which the integration has been considered for the sub-system merged by the unit 304, and the unit 308 divides the sub-system merged by the unit 304. Next, means 30
At 9, it is confirmed whether or not the flag for which the fusion has been considered is set in all the adjacent sub-systems. If the flag is set for all adjacent sub-systems, the means 310 indicates that the system configuration needs to be changed, and the system division processing ends. If the flag has not been set yet, the process returns to the means 304 to continue the processing.

【0019】系統状態予測装置105、さらに電力系統
部分系統分割計算手段104での結果はそれぞれ通信線
254,255を通じて無効電力最適配分計算装置に送
られる。無効電力最適配分計算装置の詳細を図5を用い
て説明する。
The results of the system status prediction device 105 and the power system partial system division calculation means 104 are sent to the reactive power optimum allocation calculation device via communication lines 254 and 255, respectively. Details of the reactive power optimum distribution calculation device will be described with reference to FIG.

【0020】まず、手段501にて図1の将来系統状態
予測装置105で得た結果を取り込む。次に手段502
にて、最適電圧無効電力配分を行うための目的関数を設
定する。目的関数の一例として、本実施例では式2,式
3に示す送電線の有効電力損失,無効電力損失のいずれ
かを用いる。
First, the result obtained by the future system state prediction device 105 of FIG. Next, means 502
Sets an objective function for performing optimal voltage reactive power distribution. In this embodiment, as an example of the objective function, any one of the active power loss and the reactive power loss of the transmission line shown in Expressions 2 and 3 is used.

【0021】[0021]

【数2】 (Equation 2)

【0022】[0022]

【数3】 (Equation 3)

【0023】次に、手段503にて図1装置104にて
分割した各部分系統毎の無効電力バランスに関する制約
を設定する。ここでの制約とは、調相設備に関しては、
発生・消費無効電力の上下限、発電機に関しては無効電
力の出力上下限制約曲線、変圧器タップは運用の上下限
値を設定する。ここでの設定値を用い、手段504での
各部分系統毎の無効電力の配分計算を行う。
Next, means 503 sets restrictions on the reactive power balance for each sub-system divided by the device 104 in FIG. The restrictions here are as follows:
The upper and lower limits of the generated and consumed reactive power, the output power upper and lower limit constraint curves for the generator, and the transformer tap set the upper and lower limits of operation. Using the set value here, the distribution of the reactive power for each sub-system in the means 504 is calculated.

【0024】無効電力配分計算の実施例として、本発明
の特徴の一つである事例ベース方式を用いた最適無効電
力配分方法を図6,図7を用いて説明する。図6は事例
ベース方式を用いた最適無効電力配分方法を示すフロー
チャートである。まず、手段601で計算を実行するに
当たっての初期設定を行う。ここでの処理は、後に述べ
る各電圧無効電力調整機器に対する評価関数値と、操作
機器を実際に制御するかの判断を行う閾値の初期設定、
さらに、後に計算する送電損失量の初期化を行う。この
処理の終了後、手段602にて各無効電力制御設備の送
電損失係数を計算する。この係数は、離散変数として操
作を行う調相設備,発電機の無効電力出力,変圧器タッ
プが一単位変化した際に送電損失が減少あるいは増大す
る変化量を意味する。送電損失係数の実施例は以下の文
献が詳しい。
As an embodiment of the reactive power distribution calculation, an optimal reactive power distribution method using a case-based method, which is one of the features of the present invention, will be described with reference to FIGS. FIG. 6 is a flowchart showing an optimum reactive power distribution method using the case-based method. First, an initial setting for executing the calculation by the means 601 is performed. The processing here is the initial setting of an evaluation function value for each voltage reactive power adjusting device described later and a threshold value for determining whether to actually control the operating device,
Further, the transmission loss amount to be calculated later is initialized. After the end of this process, the means 602 calculates the transmission loss coefficient of each reactive power control facility. This coefficient means the amount by which the power transmission loss decreases or increases when the phase adjustment equipment operating as a discrete variable, the reactive power output of the generator, and the transformer tap change by one unit. Examples of the transmission loss coefficient are detailed in the following documents.

【0025】電気学会編,電力系統の電圧安定維持対策,
電気学会技術報告II−73号,43−45(197
9)。
The Institute of Electrical Engineers of Japan, Measures for maintaining stable voltage of power system,
IEEJ Technical Report II-73, 43-45 (197
9).

【0026】次に、手段603にて無効電力最適配分計
算を実行する。この詳細を図7を用いて説明する。本発
明での無効電力最適配分計算は、過去の履歴データより
該時間断面の潮流状態に最も類似しているデータを、あ
る類似度評価関数を用いて検索し、その検索結果と該時
間断面の電圧無効電力制御機器の制御変数の状態量を用
いて、対象とする無効電力制御機器の設定を行う。この
詳細を図7を用いて説明する。図7のグラフ701は任
意の時間断面の潮流状態を代表する物理量の一例であ
る。各グラフは縦軸は各物理量の時間変化予想、横軸は
時間経過を表わす。グラフ721〜724は系統計算該
当時間断面までの数時間過去の物理量の変化、グラフ7
11〜714は類似度検索指標が最小とする過去の履歴
データ中、最も類似した場合の例である。
Next, means 603 executes an optimum distribution calculation of reactive power. This will be described in detail with reference to FIG. In the reactive power optimal distribution calculation according to the present invention, data that is most similar to the power flow state of the time section is searched from past history data using a certain similarity evaluation function, and the search result and the time section are searched. The target reactive power control device is set using the state quantity of the control variable of the voltage reactive power control device. This will be described in detail with reference to FIG. A graph 701 in FIG. 7 is an example of a physical quantity representing a power flow state at an arbitrary time section. In each of the graphs, the vertical axis represents the predicted change with time of each physical quantity, and the horizontal axis represents the time elapsed. Graphs 721 to 724 show changes in physical quantities in the past several hours up to the system calculation corresponding time section, graph 7
11 to 714 are examples of the case where the similarity is the most similar in the past history data in which the similarity search index is the minimum.

【0027】ここでの類似度検索指標は以下の式を用い
て行う。
The similarity search index is calculated using the following equation.

【0028】[0028]

【数4】 (Equation 4)

【0029】ただし t:対象とする時間断面数 n:各部分系統ごとの電圧無効電力制御の目安とする物
理量(たとえば送電線有効電力潮流,無効電力潮流,変
電所負荷など) 前記した類似度検索指標を元に履歴データを検索した結
果、電圧無効電力制御量に関して702に示すグラフの
結果が検索された場合の、無効電力調整機器の選択とそ
の操作量の決定方法について以下に示す。ここでは前記
した各電圧無効電力調整機器ごとに求めた送電損失係数
と、該時点での実績データと、検索結果のデータの差分
量を用いる。ここでの差分量とは、計算実行時点での検
索結果と、実績値の差を各設備ごとに求めたものであ
る。図7のグラフ702の例ではグラフ731〜734
の実践が実績値を示し、グラフ741〜744の点線が
検索結果を示す。この場合に、再上段のグラフでは、グ
ラフ731とグラフ741の差分量のことを意味する。
この量をもとに、以下の式により各電圧無効電力制御設
備に対する評価関数を手段604にて求める。
Where t: number of time sections to be processed n: physical quantity (eg, transmission line active power flow, reactive power flow, substation load, etc.) used as a measure of voltage reactive power control for each sub-system The following describes how to select a reactive power adjusting device and how to determine the amount of operation when the result of the graph 702 is searched for the voltage reactive power control amount as a result of searching the history data based on the index. Here, the power transmission loss coefficient obtained for each of the above-mentioned voltage reactive power adjusting devices, the actual data at that time, and the difference amount of the data of the search result are used. Here, the difference amount is a difference between a search result at the time of execution of the calculation and a result value obtained for each facility. In the example of the graph 702 of FIG.
Shows the actual values, and the dotted lines in the graphs 741 to 744 show the search results. In this case, in the upper graph, the difference amount between the graph 731 and the graph 741 is meant.
Based on this amount, an evaluation function for each voltage reactive power control equipment is obtained by means 604 according to the following equation.

【0030】[0030]

【数5】 (設備iの評価関数)=(送電損失係数)i ×(履歴データと実績データとの差分量)i ×(設備余裕量) …(式5) 電圧無効電力制御を行う場合には、制御対象機器とし
て、制御効果が最も大きい機器を選択することが望まし
い。したがって本発明では、式5にて求めた各電圧無効
電力制御設備の評価関数中、最大の評価関数を持つ電圧
無効電力調整設備を制御対象機器として選択する(手段
605)。
(Evaluation function of equipment i) = (transmission loss coefficient) i × (difference between history data and actual data) i × (equipment margin) (Equation 5) When performing voltage reactive power control It is desirable to select a device having the greatest control effect as a device to be controlled. Therefore, in the present invention, the voltage reactive power adjusting equipment having the largest evaluation function among the evaluation functions of the voltage reactive power control equipment obtained by the equation 5 is selected as the control target device (means 605).

【0031】対象とする電力系統によっては電圧無効電
力制御機器を操作しても目標関数の減少に効果を与えな
い場合がある。その場合の処理を省略するために、評価
関数値がある一定の値以下の場合は操作指令を出さない
ようにする必要がある。この処理を手段606で行う。
手段606での判定条件が満たされれば手段607にて
潮流計算を実施し、手段608に送電損失量を求め、操
作後の潮流状態を決定する。この処理を手段609,手
段610を通じてこの状態を満足する調整対象設備があ
り、かつ送電損失が減少する限り実行する。
Depending on the target power system, operating the voltage reactive power control device may not have an effect on the reduction of the target function. In order to omit the processing in that case, it is necessary not to issue an operation command when the evaluation function value is less than a certain value. This processing is performed by means 606.
If the determination condition in the means 606 is satisfied, the power flow is calculated in the means 607, the amount of power transmission loss is obtained in the means 608, and the power flow state after the operation is determined. This processing is executed as long as there is a facility to be adjusted that satisfies this condition through the means 609 and 610 and the power transmission loss is reduced.

【0032】無効電力配分計算が各部分系統ごとに終了
した時点で、潮流制約違反の有無を図5の手段505に
て確認する。制約違反があると手段505にて判定され
た場合は手段507,508にて前記(式2),(式
3)を利用し、送電損失が最大の送電線を求める。送電
損失が大きい場合は、送電線の両端ノードの電圧が基準
値を逸脱している場合が多い。そのために、該送電線の
両端ノードの電圧をチェックする。ノード電圧が基準値
を超過している場合は手段513にてノード電圧を基準
値に設定して手段504の無効電力配分計算を実行す
る。この処理を手段510,511を通じて検討対象と
なる送電線がなくなるまで続行する。電圧無効電力に関
する設備制約違反があり、かつ、該部分系統中のノード
の電圧値に異常がない場合には、運転者にアラーム提示
し、電力系統中で発生している不具合を調査するよう警
告する。
When the calculation of the reactive power distribution is completed for each sub-system, the presence or absence of a power flow constraint violation is confirmed by means 505 in FIG. If the means 505 determines that there is a constraint violation, the means 507 and 508 use (Equation 2) and (Equation 3) to find the transmission line with the largest transmission loss. When the transmission loss is large, the voltage at both ends of the transmission line often deviates from the reference value. For this purpose, the voltage at both ends of the transmission line is checked. If the node voltage exceeds the reference value, the means 513 sets the node voltage to the reference value and executes the reactive power distribution calculation of the means 504. This process is continued through means 510 and 511 until there is no more transmission line to be considered. If there is a violation of the equipment constraint related to the voltage reactive power and there is no abnormality in the voltage value of the node in the sub-system, an alarm is presented to the driver and a warning is issued to investigate the trouble occurring in the power system. I do.

【0033】以上にて、無効電力最適配分計算装置10
7の説明を終了する。この結果を図1通信線256を通
じて装置107にて実際の機器に操作指令をだし、その
結果を通信線257を通じて出力装置に出力する。
As described above, the reactive power optimum distribution calculating device 10
The description of 7 ends. The result is sent to the actual device by the device 107 through the communication line 256 in FIG. 1 and the result is output to the output device through the communication line 257.

【0034】本方法は以上示したように、動的に対象系
統を部分系統に分割し、各部分系統ごとに無効電力バラ
ンスを考慮しながら無効電力配分を行うため、系統全体
での逆制御現象を防ぐことが可能となる。また、本発明
は潮流計算以外は簡単な加減乗除計算だけで成り立ち、
全体計算を高速に実行することが可能なため、オンライ
ンでの電圧無効電力制御の実現が可能となる。また、無
効電力制御装置選択の過程が電力系統の運用者にもわか
りやすい利点がある。
As described above, the present method dynamically divides the target system into sub-systems and distributes the reactive power while considering the reactive power balance for each sub-system. Can be prevented. Also, the present invention consists of simple addition / subtraction multiplication / division calculations other than power flow calculations,
Since the whole calculation can be executed at high speed, online voltage reactive power control can be realized. Further, there is an advantage that the process of selecting the reactive power control device can be easily understood by the operator of the power system.

【0035】また、上述した本発明の実施例において
は、オラインでの電圧無効電力制御の方法を示したが、
本発明はこれに限らずオフライン状態においても使用す
ることが可能である。例えば図2にて示したデータ読み
込み装置で入力される電力系統のデータをリアルタイム
でなく、予め制御システム中の記憶装置に入れておくこ
とにより電力系統全体の無効電力のシュミレータ等に利
用可能であることは明白である。
Further, in the above-described embodiment of the present invention, the method of voltage reactive power control in the offline mode has been described.
The present invention is not limited to this, and can be used in an offline state. For example, the data of the power system input by the data reading device shown in FIG. 2 is not stored in real time but is stored in a storage device in the control system in advance, so that it can be used as a simulator of the reactive power of the entire power system. That is clear.

【0036】[0036]

【発明の効果】以上に説明したように、本発明によれば
以下の効果がある。
As described above, the present invention has the following effects.

【0037】対象とする電力系統を動的に対象系統を部
分系統に分割し、各部分系統ごとに無効電力バランスを
考慮しながら無効電力配分を行うため、系統全体での逆
制御現象を防ぐことが可能となる。また、本発明は潮流
計算以外は簡単な加減乗除計算だけで成り立ち、全体計
算を高速に実行することが可能なため、オンラインでの
電圧無効電力制御の実現が可能となる。また、無効電力
制御装置選択の過程が電力系統の運用者にもわかりやす
い利点がある。
Since the target power system is dynamically divided into sub-systems and the reactive power is distributed in consideration of the reactive power balance for each sub-system, the reverse control phenomenon in the entire system is prevented. Becomes possible. Further, the present invention can be realized only by simple addition, subtraction, multiplication, and division calculations except for the power flow calculation, and the entire calculation can be executed at a high speed. Therefore, online voltage reactive power control can be realized. Further, there is an advantage that the process of selecting the reactive power control device can be easily understood by the operator of the power system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の特徴を表わす図。FIG. 1 is a diagram showing features of the present invention.

【図2】データ読み込み装置で読み込むデータ種類の一
例。
FIG. 2 shows an example of data types read by a data reading device.

【図3】対象全体系統を部分系統に分割する処理を表わ
すフローチャート。
FIG. 3 is a flowchart illustrating a process of dividing an entire target system into sub-systems.

【図4】対象全体系統を部分系統に分割する処理の一例
を表わす図。
FIG. 4 is a diagram illustrating an example of a process of dividing an entire target system into partial systems.

【図5】電圧無効電力最適配分方法全体の処理の流れを
表わすフローチャート。
FIG. 5 is a flowchart showing the flow of processing of the entire voltage reactive power optimal distribution method.

【図6】電圧無効電力最適配分方法の詳細処理を表わす
フローチャート。
FIG. 6 is a flowchart illustrating a detailed process of a voltage reactive power optimal distribution method.

【図7】類似ケース選択による電圧無効電力最適配分方
法の一例を表わす図。
FIG. 7 is a diagram illustrating an example of a voltage reactive power optimal distribution method based on similar case selection.

【符号の説明】[Explanation of symbols]

101…対象とする電力系統、102…データ読み込み
装置、103…状態推定装置、104…電力系統部分系
統分割計算装置、105…将来系統潮流状態予測装置、
106…無効電力最適配分計算装置、107…無効電力
配分指令装置、108…出力装置、201…系統定数産
み込みの例、202…発電機出力、母線負荷データベー
ス読み込みの例、251…電力系統より、系統中の状態
量をデータ読み込み装置に供給する通信線、252…デ
ータ読み込み装置と状態推定装置とを連結する通信線、
253…状態推定装置と、将来系統潮流状態予測装置を
連結する通信線、254…電力系統部分系統分割装置と
無効電力最適配分計算装置を連結する通信線、255…
将来系統潮流状態予測装置は無効電力配分計算装置を連
結する通信線、256…無効電力最適配分装置と無効電
力配分指令装置を連結する通信線、257…無効電力配
分指令装置と出力装置を連結する通信線、258…デー
タ読み込み装置と電力系統部分系統分割計算装置を連結
する通信線、301…系統分割の初期状態、302,3
05…無効電力バランス計算装置、303,306…無
効電力バランス判断装置、304…部分系統融合手段、
307,309…検討済み部分系統判定処理、308…部分
系統分割手段、310…メッセージ出力装置、401,
402,403…部分系統の実例、501…データ取り
込み装置、502…目標関数設定手段、503…無効電
力バランス設定装置、504…無効電力配分計算装置、
505…制約違反検出装置、506…計算続行判定装
置、507…送電損失計算装置、508…最大損失発生
送電線検出装置、509…送電線両端ノード制約違反検
出装置、510,511…計算続行判断装置、512…
アラーム出力装置、513…基準電圧設定装置、601
…初期設定装置、602…送電損失係数計算装置、60
3…無効電力最適配分計算装置、604…評価関数計算
装置、605…無効電力操作機器設定装置、606…計
算続行判断装置、607,611…潮流計算装置、60
8…送電損失計算装置、609,610…計算続行判断
装置、612…送電損失計算装置、701…無効電力配
分計算入力変数の時間推移を示したグラフ、702…無
効電力配分計算制御変数の時間推移を示したグラフ、7
11…過去の履歴データ中の変電所有効電力負荷の時間
推移を表わすグラフ、712…過去の履歴データ中の変
電所無効電力負荷の時間推移を表わすグラフ、713…
過去の履歴データ中の連系線有効潮流の時間推移を表わ
すグラフ、714…過去の履歴データ中の連系線無効潮
流の時間推移を表わすグラフ、721…実績データ中の
変電所有効電力負荷の時間推移を表わすグラフ、722
…実績データ中の変電所無効電力負荷の時間推移を表わ
すグラフ、723…実績データ中の連系線有効電力潮流
の時間推移を表わすグラフ、724…実績データ中の連
系線無効電力潮流の時間推移を表わすグラフ、731…
実績データ中の調相設備使用量の時間推移を表わすグラ
フ、732…実績データ中のタップ比の時間推移を表わ
すグラフ、733…実績データ中の発電機無効電力出力
の時間推移を表わすグラフ、734…実績データ中の母
線電圧の時間推移を表わすグラフ、741…過去の履歴
データ中の調相設備使用量の時間推移を表わすグラフ、
742…過去の履歴データ中のタップ比の時間推移を表
わすグラフ、743…過去の履歴データ中の発電機無効
電力出力の時間推移を表わすグラフ、744…過去の履
歴データ中の母線電圧の時間推移を表わすグラフ。
101: target power system, 102: data reading device, 103: state estimation device, 104: power system partial system division calculation device, 105: future system power flow state prediction device,
106: reactive power optimal distribution calculation device, 107: reactive power distribution command device, 108: output device, 201: example of system constant production, 202: generator output, bus load database reading example, 251: from power system A communication line for supplying the state quantity in the system to the data reading device; 252 a communication line connecting the data reading device and the state estimating device;
253: Communication line connecting the state estimation device and the future system power flow state prediction device, 254 ... Communication line connecting the power system sub-system division device and the reactive power optimum allocation calculation device, 255 ...
The future system power flow state prediction device is a communication line connecting the reactive power distribution calculation device, 256 ... a communication line connecting the reactive power optimal distribution device and the reactive power distribution command device, and 257 ... A communication line connecting the reactive power distribution command device and the output device. Communication line 258: Communication line connecting the data reading device and the power system partial system division calculation device; 301: Initial state of system division, 302, 3
05: reactive power balance calculating device, 303, 306: reactive power balance determining device, 304: partial system fusion means,
307, 309: considered sub-system determination processing, 308: sub-system division means, 310: message output device, 401,
402, 403: an example of a partial system, 501: a data acquisition device, 502: a target function setting means, 503: a reactive power balance setting device, 504: a reactive power distribution calculating device,
505: Constraint violation detecting device, 506: Calculation continuation determining device, 507: Transmission loss calculating device, 508: Maximum loss generating transmission line detecting device, 509: Transmission line end node constraint violation detecting device, 510, 511: Calculation continuation determining device , 512 ...
Alarm output device, 513: Reference voltage setting device, 601
... Initial setting device, 602 ... Transmission loss coefficient calculation device, 60
3 ... Reactive power optimal distribution calculation device, 604 ... Evaluation function calculation device, 605 ... Reactive power operation device setting device, 606 ... Calculation continuation judgment device, 607, 611 ... Power flow calculation device, 60
8: Transmission loss calculation device, 609, 610: Calculation continuation determination device, 612: Transmission loss calculation device, 701: Graph showing time transition of reactive power distribution calculation input variable, 702: Time transition of reactive power distribution calculation control variable Graph showing 7
11: a graph showing the time transition of the substation active power load in the past history data, 712: a graph showing the time transition of the substation reactive power load in the past history data, 713 ...
A graph showing a time transition of the interconnection line effective power flow in the past history data; 714 a graph showing a time transition of the interconnection line invalid power flow in the past history data; 721 a substation active power load in the actual data; Graph 722 showing time transition
... Graph showing the time transition of the substation reactive power load in the actual data, 723... Graph showing the time transition of the interconnected line active power flow in the actual data, 724… Time of the interconnected line reactive power flow in the actual data Graph showing transition, 731 ...
A graph representing a time transition of the phase adjustment equipment usage amount in the actual data, 732 a graph representing a temporal transition of the tap ratio in the actual data, 733 a graph representing a temporal transition of the generator reactive power output in the actual data, 734 … A graph showing the time transition of the bus voltage in the actual data, 741… a graph showing the time transition of the phase adjustment equipment usage in the past history data,
742: a graph showing the time change of the tap ratio in the past history data, 743 ... a graph showing the time change of the generator reactive power output in the past history data, 744 ... the time change of the bus voltage in the past history data A graph representing.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02J 3/00 - 5/00 G05F 1/70 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02J 3/00-5/00 G05F 1/70

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】制御対象の電力系統の系統状態を取り込む
電力系統データ取り込み手段と、 該電力系統データを用いて電力系統の潮流状態を判断す
る電力系統潮流状態判断手段と、 対象とする電力系統を分割して、該分割された電力系統
内で無効電力発生源と無効電力消費源との整合状態を計
算する電力系統部分系統分割計算手段と、 該電力系統部分系統分割計算手段からの出力を用いて、
前記電力系統の無効電力発生装置に制御信号を送る無効
電力配分指令出力手段とを備え 前記電力系統部分系統分割計算手段は、各部分系統の無
効電力需要量と供給量を用いて、部分系統の分割,融合
を行いながら対象電力系統を複数の部分系統に分割する
ことを特徴とする電圧無効電力制御装置。
1. A power system data capturing means for capturing a system state of a power system to be controlled, a power system power flow state determining means for determining a power system flow state using the power system data, and a power system to be controlled. And a power system sub-system division calculating means for calculating a matching state between the reactive power generation source and the reactive power consumption source in the divided power system, and an output from the power system sub-system division calculating means. make use of,
And a reactive power distribution command output means for sending a control signal to disable the power generating device of the electric power system, the power system portion grid dividing calculating means, free of the partial systems
Split and merge sub-systems using active power demand and supply
A voltage reactive power control device characterized in that a target power system is divided into a plurality of sub-systems while performing the power control.
【請求項2】制御対象の電力系統の系統状態を取り込む
電力系統データ取り込み手段と、 該電力系統データを用いて電力系統の潮流状態を判断す
る電力系統潮流状態判断手段と、 対象とする電力系統を分割して、該分割された電力系統
内で無効電力発生源と無効電力消費源との整合状態を計
算する電力系統部分系統分割計算手段と、 該電力系統部分系統分割計算手段からの出力を用いて、
前記電力系統の無効電力発生装置に制御信号を送る無効
電力配分指令出力手段とを備え、 前記電力系統部分系統分割計算手段は、電力系統の基幹
系変電所を単位として分割し、各部分系統の無効電力需
要量と供給量を用いて、部分系統の分割,融合を行いな
がら対象電力系統を複数の部分系統に分割する ことを特
徴とする電圧無効電力制御装置。
2. A system state of a power system to be controlled is taken in.
Power system data capturing means, and determining a power flow state of the power system using the power system data;
Power system power flow state determination means, and a target power system.
Within the device to measure the match between the reactive power source and the reactive power source.
Using the power system partial system division calculation means to calculate, and the output from the power system partial system division calculation means,
Invalidating a control signal to the reactive power generator of the power system
Power distribution command output means, and the power system partial system division calculating means comprises a power system
System substation as a unit, and the reactive power demand
Do not divide or merge sub-systems using the required and supplied quantities.
A voltage reactive power control device, wherein the target power system is divided into a plurality of partial systems .
【請求項3】制御対象の電力系統の系統状態を取り込む
電力系統データ取り込み手段と、 該電力系統データを用いて電力系統の潮流状態を判断す
る電力系統潮流状態判断手段と、 対象とする電力系統を分割して、該分割された電力系統
内で無効電力発生源と 無効電力消費源との整合状態を計
算する電力系統部分系統分割計算手段と、 該電力系統部分系統分割計算手段からの出力を用いて、
前記電力系統の無効電力発生装置に制御信号を送る無効
電力配分指令出力手段とを備え、 前記電力系統部分系統分割計算手段は、各部分系統の無
効電力需要量と供給量を用いて、過去の履歴データより
類似の系統状態を検索し、その類似の系統状態から配分
状態を計算し、部分系統の分割,融合を行いながら対象
電力系統を複数の部分系統に分割する ことを特徴とする
電圧無効電力制御装置。
3. A system state of a power system to be controlled is taken in.
Power system data capturing means, and determining a power flow state of the power system using the power system data;
Power system power flow state determination means, and a target power system.
Within the device to measure the match between the reactive power source and the reactive power source.
Using the power system partial system division calculation means to calculate, and the output from the power system partial system division calculation means,
Invalidating a control signal to the reactive power generator of the power system
Power distribution command output means, and the power system partial system division calculating means includes
Using historical power demand and supply,
Search for similar system status and allocate from similar system status
Calculate the state, split and merge the sub-systems
A voltage reactive power control device, wherein a power system is divided into a plurality of partial systems .
【請求項4】任意の時間断面における電力系統の負荷量
ならびに発電量に対する有効電力,無効電力,該時間断
面での系統定数,該時間断面における調相設備の使用量
とその運転カーブ,該時間断面における変電所における
母線電圧の大きさ,変圧器のタップ値,前記必要データ
を読み込むデータ読み込み装置,電力系統の内部状態を
推定するための状態推定装置,前記状態推定装置より得
た現在潮流状態より将来時点での潮流状態を推定する将
来系統状態予測装置,無効電力発生源と無効電力消費源
とのバランスがとれるように、対象とする電力系統を分
割する電力系統部分系統分割計算装置、前記将来系統潮
流状態予測装置より、電力系統への無効電力発生量を最
適に配分する無効電力最適配分計算装置、前記無効電力
最適配分計算装置の結果を元に、無効電力発生装置に制
御信号を送る無効電力配分指令装置を有し、前記電力系
統部分系統分割計算装置は、各部分系統の無効電力需要
量と供給量をもとに、該部分系統の分割,融合を行いな
がら対象全体系統を複数の部分系統に分割することを特
徴とする電圧無効電力制御装置。
4. An active power and a reactive power with respect to a load amount and a power generation amount of an electric power system at an arbitrary time section, a system constant at the time section, a use amount of a phase adjustment facility at the time section, an operation curve thereof, and a time. The magnitude of the bus voltage at the substation in the cross section, the tap value of the transformer, a data reading device for reading the required data, a state estimating device for estimating the internal state of the power system, and the current power flow state obtained from the state estimating device A future system state prediction device for estimating a power flow state at a future time, a power system partial system division calculation device for dividing a target power system so that a reactive power generation source and a reactive power consumption source are balanced, A reactive power optimum allocation calculating device that optimally allocates the amount of reactive power generated to a power system from a future system power flow state predicting device, and the reactive power optimum allocation calculating device Results based on having a reactive power distribution command device for sending a control signal to disable the power generator, the power system
The sub-system division calculator calculates the reactive power demand of each sub-system.
Do not split or merge the sub-systems based on the
In particular, it is important to divide the entire target system into multiple sub-systems.
Voltage reactive power control device according to symptoms.
【請求項5】請求項の電圧無効電力制御装置におい
て、前記電力部分系統分割計算装置にて対象系統を分割
することを特徴とする電圧無効電力制御装置。
5. The voltage reactive power control device according to claim 4 , wherein said power sub-system division calculation device divides a target system.
【請求項6】請求項の電圧無効電力制御装置におい
て、前記電力系統部分系統分割計算装置は、電力系統の
分割を基幹系変電所を単位として分割することを特徴と
する電圧無効電力制御装置
6. A voltage reactive power controller according to claim 4, wherein the power system the subsystem division computing device, the voltage reactive power control apparatus characterized by dividing the division of power system mission-critical substation units .
【請求項7】請求項1,請求項2又は請求項3の電圧無
効電力制御装置において、前記電力系統部分系統分割計
算装置にて分割した、電力系統の部分系統ごとに独立に
無効電力制御量を算出することを特徴とする電圧無効電
力制御装置
7. The voltage reactive power control device according to claim 1, 2 or 3 , wherein the reactive power control amount independently divided for each power system sub-system divided by the power system sub-system division calculation device. And a voltage reactive power control device .
【請求項8】請求項の電圧無効電力制御装置におい
て、前記無効電力最適配分計算装置は、無効電力最適配
分計算を、過去の履歴データより類似の系統状況を探索
し、その類似の系統状況を用いて最適配分結果を計算す
ることを特徴とする電圧無効電力制御装置
8. The voltage reactive power control device according to claim 4 , wherein said reactive power optimum allocation calculating device searches for a similar system status from past history data and calculates a reactive power optimum allocation calculation. A voltage reactive power control device, wherein an optimum distribution result is calculated by using the following.
【請求項9】請求項の電圧無効電力制御装置におい
て、前記無効電力最適配分計算装置は、最適な無効電力
配分を決定する際に、調整する電圧無効電力制御機器の
選択基準に、前記機器の各設備余裕量,送電線損失係
数,計算実行時点での実績値と、類似日検索結果の該当
時点での差分量を用いて無効電力制御量を算出すること
を特徴とする電圧無効電力制御装置
9. The voltage reactive power control device according to claim 4 , wherein the reactive power optimum distribution calculating device determines the optimum reactive power distribution by using the device as a criterion for selecting a voltage reactive power control device to be adjusted. Voltage reactive power control, characterized in that the reactive power control amount is calculated by using each of the equipment margin, transmission line loss coefficient, actual value at the time of execution of the calculation, and the difference amount of the similar date search result at the corresponding time Equipment .
JP07858795A 1995-04-04 1995-04-04 Voltage reactive power control device Expired - Fee Related JP3355857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07858795A JP3355857B2 (en) 1995-04-04 1995-04-04 Voltage reactive power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07858795A JP3355857B2 (en) 1995-04-04 1995-04-04 Voltage reactive power control device

Publications (2)

Publication Number Publication Date
JPH08280135A JPH08280135A (en) 1996-10-22
JP3355857B2 true JP3355857B2 (en) 2002-12-09

Family

ID=13666051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07858795A Expired - Fee Related JP3355857B2 (en) 1995-04-04 1995-04-04 Voltage reactive power control device

Country Status (1)

Country Link
JP (1) JP3355857B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792428B2 (en) * 1999-03-09 2006-07-05 三菱電機株式会社 Power system control apparatus and power system control method
JP5318156B2 (en) * 2011-06-17 2013-10-16 中国電力株式会社 Voltage reactive power control system
CN104821589A (en) * 2015-04-22 2015-08-05 国家电网公司 Optical selection method, based on total life cycle costs, transformer station reactive power compensation devices
CN104852386A (en) * 2015-04-23 2015-08-19 国网重庆市电力公司 Electric power system reactive partition method taking regard of voltage control and reactive power balance
JP6933450B2 (en) * 2016-06-20 2021-09-08 株式会社日立製作所 Voltage Reactive Power Monitoring and Control Device and Method
US10554044B2 (en) * 2018-01-10 2020-02-04 General Electric Company System and method for optimizing reactive power generation of a wind farm
JP7059697B2 (en) * 2018-03-06 2022-04-26 富士電機株式会社 Optimal calculation unit, optimal calculation method, and program

Also Published As

Publication number Publication date
JPH08280135A (en) 1996-10-22

Similar Documents

Publication Publication Date Title
RU2601957C2 (en) Method and apparatus for controlling energy services based on market data
US11293404B2 (en) Model predictive control in local systems
US10713674B2 (en) Reducing substation demand fluctuations using decoupled price schemes for demand response
JP2019030151A (en) Power supply / demand control apparatus, power supply / demand control system, power supply / demand control computer program, and power supply / demand control method
JP2019187099A (en) Power supply and demand control system, power supply and demand control program and power supply and demand control method
JP3355857B2 (en) Voltage reactive power control device
JP2017212843A (en) Processing device, processing method, and program
JP7242466B2 (en) Power supply and demand control device, power supply and demand control program, and power supply and demand control method
JP7285053B2 (en) Power supply and demand control device, power supply and demand control system, and power supply and demand control method
Abdelaziz et al. Fuel-saving benefit analysis of islanded microgrid central controllers
US11811409B2 (en) Load frequency control device and load frequency control method
JP2020022320A (en) Power supply and demand control device, power supply and demand control system, computer program for power supply and demand control, and power supply and demand control method
CN115136438A (en) Distributed resource management device and distributed resource management method
CN116014743A (en) Method and device for voltage partitioning of direct-current power distribution network
WO2014033893A1 (en) Method for forming electric power interchange group and electric power interchange group forming device
JP7313301B2 (en) Power system supply and demand adjustment device, power system load frequency control device, power system balancing group device, and power system supply and demand adjustment method
Sakthivel et al. Particle swarm optimization algorithm for voltage stability enhancement by optimal reactive power reserve management with multiple TCSCs
CN115330186A (en) Distributed energy storage resource multi-space-time scale aggregation method and system
González-Iakl et al. Distributed optimization in energy communities: a focus on flexibility provision
CN119538467A (en) Cloud simulation experiment system based on AC/DC hybrid power grid
JPH1021200A (en) Work capacity control device
Zhu et al. Energy Storage Capacity Optimization for Deviation Compensation in Dispatching Grid-Connected Wind Power
CN117893360A (en) Intelligent energy control method and system
CN117937430A (en) A power distribution method and system based on distributed control
CN117728400A (en) A method and terminal for determining power system reserve capacity based on operating scenarios

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees