JP3355575B2 - Single mode optical fiber and method for expanding core of single mode optical fiber - Google Patents
Single mode optical fiber and method for expanding core of single mode optical fiberInfo
- Publication number
- JP3355575B2 JP3355575B2 JP04169596A JP4169596A JP3355575B2 JP 3355575 B2 JP3355575 B2 JP 3355575B2 JP 04169596 A JP04169596 A JP 04169596A JP 4169596 A JP4169596 A JP 4169596A JP 3355575 B2 JP3355575 B2 JP 3355575B2
- Authority
- JP
- Japan
- Prior art keywords
- core
- optical fiber
- mode optical
- single mode
- cladding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013307 optical fiber Substances 0.000 title claims description 67
- 238000000034 method Methods 0.000 title claims description 15
- 238000005253 cladding Methods 0.000 claims description 38
- 238000010438 heat treatment Methods 0.000 claims description 21
- 230000003287 optical effect Effects 0.000 claims description 15
- 229910005793 GeO 2 Inorganic materials 0.000 claims description 9
- 238000009792 diffusion process Methods 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- 230000004907 flux Effects 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 239000000835 fiber Substances 0.000 description 9
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000007526 fusion splicing Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Landscapes
- Mechanical Coupling Of Light Guides (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光通信、光計測、
CATVシステム等の分野において光信号の伝送に用い
られる単一モード光ファイバ、特に接続性に優れた単一
モード光ファイバに関するものである。The present invention relates to optical communication, optical measurement,
The present invention relates to a single mode optical fiber used for transmitting an optical signal in a field such as a CATV system, and more particularly to a single mode optical fiber having excellent connectivity.
【0002】[0002]
【従来の技術】従来より、単一モード光ファイバはその
コア径が約10μm以下と非常に小さいため、接続時の
コアの微小なずれにより光信号の接続損失を生じ易く、
サブμmオーダの精度での接合が必要になるという問題
があった。また、異種ファイバ間の接続には、それらの
光ファイバを伝搬する光信号のモードフィールド形状の
相違により、接続損失が発生するという欠点があった。
また、光ファイバの一部に縦に溝を形成し、フィルタや
波長板等を挿入して種々の機能を導入する場合、コア間
のギャップが大きくなるにつれて光の伝搬損失が急激に
増加するため、そのギャップ幅が大幅に制限され、機能
が限定されるという欠点があった。2. Description of the Related Art Conventionally, since a single mode optical fiber has a very small core diameter of about 10 μm or less, connection loss of an optical signal is apt to occur due to a slight displacement of a core at the time of connection.
There has been a problem that joining with an accuracy of the order of sub-μm is required. In addition, the connection between different kinds of fibers has a drawback that a connection loss occurs due to a difference in a mode field shape of an optical signal propagating through the optical fibers.
Also, when a groove is formed vertically in a part of the optical fiber and various functions are introduced by inserting a filter, a wavelength plate, etc., the propagation loss of light increases rapidly as the gap between the cores increases. However, there is a disadvantage that the gap width is greatly limited and the function is limited.
【0003】これらの欠点を補う方法として、光ファイ
バの接続部を加熱処理することにより、光ファイバ端部
のコアを拡大したコア拡大ファイバが提案されている。As a method for compensating for these drawbacks, there has been proposed a core-expanded fiber in which the core at the end of the optical fiber is enlarged by heating the connection portion of the optical fiber.
【0004】通常の単一モード光ファイバは、その低伝
送損失特性の確保等の理由により、合成石英系ガラスで
製造されており、純石英ガラスのクラッドと純石英ガラ
スにGeを添加したコアとにより構成されているのが最
も一般的で、実用に供されている単一モード光ファイバ
の大部分がこの構成からなっている。An ordinary single mode optical fiber is made of synthetic silica glass for the purpose of ensuring low transmission loss characteristics, etc., and has a cladding made of pure silica glass and a core made of pure silica glass doped with Ge. Most of the single-mode optical fibers practically used have this configuration.
【0005】他の単一モード光ファイバの構成として
は、比較的低温処理に適した、クラッドにFを添加し、
コアを純合成石英とした構成の単一モード光ファイバや
多成分ガラス系の単一モード光ファイバも存在するが、
これらは前述した標準的な単一モード光ファイバとコア
の屈折率が異なるため、接続時の光信号の反射減衰量が
充分にとれないという欠点があり、実用に供されていな
い。また、これらの単一モード光ファイバは標準的な単
一モード光ファイバと融点が異なるため、標準的な単一
モード光ファイバとの低損失融着接続が困難という欠点
もあり、融着接続時もコア拡大による低損失接続効果は
期待できなかった。[0005] Another single-mode optical fiber configuration is to add F to the cladding, which is suitable for relatively low-temperature processing.
There are single-mode optical fibers with a core made of pure synthetic quartz and single-mode optical fibers with multi-component glass.
These are different from the standard single-mode optical fiber described above in that the core has a different refractive index, so that there is a drawback that a sufficient amount of return loss of an optical signal at the time of connection cannot be obtained, and thus they are not practically used. In addition, since these single mode optical fibers have a different melting point from standard single mode optical fibers, there is a disadvantage that low loss fusion splicing with standard single mode optical fibers is difficult. However, a low-loss connection effect due to the core expansion could not be expected.
【0006】また、石英ガラス系の単一モード光ファイ
バの中にはW型と呼ばれ、コア付近のクラッドにFをド
ープしてGe添加コアとの比屈折率差を大きくした単一
モード光ファイバもあるが、高価なため、現在は殆ど市
販されておらず、また、クラッドの屈折率が径方向に一
定でないため、コア拡大処理によりカットオフ波長が大
幅に変化してしまい、コア拡大に適していなかった。[0006] Some silica glass single mode optical fibers are called W-type single mode optical fibers in which the cladding near the core is doped with F to increase the relative refractive index difference from the Ge-doped core. Although there is a fiber, it is expensive and is hardly commercially available at present.In addition, since the refractive index of the cladding is not constant in the radial direction, the cut-off wavelength is greatly changed by the core expansion processing, and the core expansion is not possible. Not suitable.
【0007】これらの理由により、実用的なコア拡大フ
ァイバの検討は、専らコア付近にGeを添加した標準的
な石英ガラス系単一モード光ファイバにより行われてき
た。従って、単一モード光ファイバのコア拡大処理に
は、純合成石英ガラスよりなるクラッドにGeを拡散さ
せるため、1200℃以上の高温での処理が必要であ
り、さらに短時間で処理するには1500℃以上での高
温処理が必要であった。For these reasons, the study of a practical core-expanded fiber has been carried out exclusively with a standard quartz glass-based single mode optical fiber doped with Ge near the core. Therefore, in order to diffuse Ge into the cladding made of pure synthetic quartz glass, processing at a high temperature of 1200 ° C. or more is necessary for the core expansion processing of the single mode optical fiber. High temperature treatment at a temperature of at least ℃ was required.
【0008】[0008]
【発明が解決しようとする課題】光ファイバの基本的な
コア拡大方法は、光ファイバの一部を軟化点付近の温度
に加熱することにより、コア添加材をクラッドヘ拡敢さ
せるものである。The basic method of expanding the core of an optical fiber is to expand the core additive material to the cladding by heating a part of the optical fiber to a temperature near the softening point.
【0009】光ファイバの加熱手段としては、電気炉、
マイクロバーナ、放電加工等があるが、いずれの手段で
も拡散を早めるためにはクラッド材料である石英ガラス
を軟化させる必要があり、そのために拡散処理中に光フ
ァイバの外形が変化し易いという欠点があった。As a heating means for the optical fiber, an electric furnace,
Although there are micro burners and electric discharge machining, in order to accelerate the diffusion by any means, it is necessary to soften the silica glass which is the cladding material, and therefore the disadvantage that the outer shape of the optical fiber tends to change during the diffusion process there were.
【0010】マイクロバーナを用いた場合、拡大コア径
を制御するのが技術的に難しく、低損失接続には歩留ま
りが悪いという欠点があった。また、拡大コア径をある
程度以上大きくするには、このマイクロバーナを光ファ
イバの長さ方向に繰り返し掃引させながら加熱しなけれ
ばならず、歩留まりがさらに低下するという欠点があっ
た。When a micro burner is used, it is technically difficult to control the diameter of the enlarged core, and there is a disadvantage that the yield is poor for low-loss connection. Further, in order to increase the diameter of the enlarged core to a certain degree or more, it is necessary to heat the micro burner while repeatedly sweeping it in the longitudinal direction of the optical fiber, and there is a disadvantage that the yield is further reduced.
【0011】電気炉を用いた場合には外形変動をある程
度抑えるため、加熱温度を抑えた処理が可能であり、拡
大コア径の制御性はマイクロバーナより優れるが、加熱
処理時間が大輻に増加するという欠点があった。また、
加熱温度を抑えてもクラッドの粘性低下は不可避である
ため、長時間の熱処理の間のμmオーダの外形変動を抑
えることはできなかった。さらにまた、電気炉による加
熱処理では一括処理が可能であるが、炉内に入れる光フ
ァイバを切断し、被覆を全部除去する必要があり、実使
用時には再被覆や短尺化した光ファイバの融着接続等が
必要となるので、実用性に乏しいという欠点があった。In the case of using an electric furnace, since the variation in the outer shape is suppressed to some extent, it is possible to carry out the treatment at a reduced heating temperature, and the controllability of the enlarged core diameter is better than that of the micro burner, but the heat treatment time is greatly increased. Had the disadvantage of doing so. Also,
Even if the heating temperature is suppressed, a decrease in the viscosity of the clad is unavoidable, so that it was not possible to suppress a change in the outer shape on the order of μm during a long-time heat treatment. Furthermore, batch processing is possible in the heating process using an electric furnace, but it is necessary to cut the optical fiber to be put into the furnace and remove the entire coating, and in actual use, recoat or fuse the shortened optical fiber. Since a connection or the like is required, there is a disadvantage that it is not practical.
【0012】また、放電加工を用いた場合、加熱処理時
間は短時間で済むが、光ファイバが局所的にかなりの高
温になるため、外形の変動が避けられず、拡大範囲が限
定される等の欠点があり、適用範囲が限定されていた
(Electronics Letters, Volume 27, Number 17, Page1
597-1599, 'Simple fusion splicing technique for re
ducing splicing loss between standard singlemode f
ibres and erbium-dopedfibre' by H.Y.TAM参照)。In addition, when electric discharge machining is used, the heat treatment time is short, but the optical fiber is locally heated to a considerably high temperature, so that variations in the outer shape cannot be avoided and the expansion range is limited. And its scope was limited (Electronics Letters, Volume 27, Number 17, Page1
597-1599, 'Simple fusion splicing technique for re
reducing splicing loss between standard singlemode f
ibres and erbium-dopedfibre 'by HYTAM).
【0013】もう1つのコア拡大方法として、S.Ishika
wa et al., OFC'93, TuB4 にあるように、光ファイバ製
造時に残留させた応力歪みを熱処理によって解放させる
方法が提案されてるが、コアに応力を残留させるために
はコアの軟化温度がクラッドの軟化温度より高い必要が
あり、純石英コア/F添加クラッドのファイバを使用す
るため、前記と同様の問題があった。また、この場合、
拡大するモードフィールド径が約2倍程度に制限される
という欠点があった。さらにまた、応力が残留している
部分ではV値が変化しているため、光ファイバとしての
伝送特性に問題を残す恐れがあり、応力歪みの残留その
ものも損失増加や偏波特性の悪化の原因になる恐れがあ
った。このような理由により、この方法は提案のみに留
まり、広く普及する技術にはなっていなかった。As another core expansion method, S. Ishika
As in wa et al., OFC'93, TuB4, a method has been proposed to release the stress strain left during the production of optical fibers by heat treatment.However, in order to leave stress in the core, the softening temperature of the core must be reduced. Since the temperature must be higher than the softening temperature of the cladding and a fiber of pure silica core / F-doped cladding is used, the same problem as described above occurs. Also, in this case,
There is a drawback that the mode field diameter to be enlarged is limited to about twice. Furthermore, since the V value changes in the portion where the stress remains, there is a possibility that a problem may occur in the transmission characteristics of the optical fiber, and the residual stress strain itself may cause an increase in loss or deterioration of the polarization characteristics. There was a risk of causing this. For this reason, this method is only a proposal and has not become a widely spread technology.
【0014】また、コア拡大技術の適用例として、SC
形光コネクタへの応用が提案されているが、従来のコア
拡大方法では電気炉等を用いて加熱温度を抑えてもクラ
ッドの粘性低下は不可避であるため、μmオーダの外形
変動を抑えることはできなかった。従って、光コネクタ
フェルールのような光ファイバ挿入穴の内径が光ファイ
バの外径と1〜2μm程度しか違わないものに安定に挿
入できるように光ファイバのコアを拡大処理することが
できなかった。そのため、このようなコア拡大光ファイ
バを用いた光コネクタは提案のみに留まっており、実用
に供される技術とはなっていなかった。As an application example of the core enlargement technology, SC
Although application to optical fiber connectors has been proposed, in the conventional method of enlarging the core, even if the heating temperature is suppressed by using an electric furnace or the like, it is inevitable that the viscosity of the clad will decrease. could not. Therefore, it has not been possible to enlarge the core of the optical fiber so that it can be stably inserted into an optical fiber insertion hole such as an optical connector ferrule in which the inner diameter of the optical fiber insertion hole differs from the outer diameter of the optical fiber by only about 1-2 μm. Therefore, an optical connector using such a core-expanded optical fiber is only a proposal, and has not been a technology used for practical use.
【0015】本発明の目的は、外形を変形させることな
く安定してコアを拡大することが可能でしかも安価な単
一モード光ファイバ及び単一モード光ファイバのコア拡
大方法を提供することにある。An object of the present invention is to provide an inexpensive single mode optical fiber and a method for expanding the core of a single mode optical fiber, which can stably expand the core without deforming the outer shape. .
【0016】[0016]
【課題を解決するための手段】前記課題を解決するた
め、本発明では、単一モード光ファイバのクラッドをコ
ア近傍の内側クラッド及び該内側クラッドを覆う外側ク
ラッドよりなる構造とし、コアにGeO 2 を添加し、内
側クラッドにはコアの半分程度の濃度のGeO 2 と、G
eO 2 による屈折率の増加を相殺する量のフッ素を添加
することによって、コアを拡大しようとする部分でのド
ーパントの拡散速度の増加を実現し、これによってコア
拡大処理に必要な温度を低下させるとともに処理時間を
短縮させ、コア拡大処理を容易にするとともに、コア拡
大処理時に生じるクラッド外形の変形をなくし、拡大し
たコアの断面形状の制御性を従来より大幅に向上させた
ことを最大の特徴とする。また、従来より低い加熱温度
でコア拡大処理が可能となるので、加熱手段の選択の幅
が広がる特徴を有する。In order to solve the above-mentioned problems, according to the present invention, a cladding of a single mode optical fiber is constituted by an inner cladding near a core and an outer cladding covering the inner cladding, and the core is made of GeO 2. And add
On the side cladding, GeO 2 with a concentration of about half of the core and G
Adds an amount of fluorine to offset the increase in refractive index due to eO 2
By doing so, it is possible to realize an increase in the diffusion rate of the dopant in the portion where the core is to be expanded, thereby reducing the temperature required for the core expansion process, shortening the processing time, and facilitating the core expansion process. The greatest feature is that the deformation of the clad outer shape that occurs during the core enlargement processing is eliminated, and the controllability of the cross-sectional shape of the enlarged core is greatly improved as compared with the related art. In addition, since the core enlargement process can be performed at a lower heating temperature than before, the present invention has a feature that the range of selection of the heating means is expanded.
【0017】[0017]
【発明の実施の形態】次に、図面を用いて本発明を具体
的に説明するが、以下に開示する実施の形態は単なる例
示に過ぎず、本発明の範囲を何ら限定するものではな
い。Next, the present invention will be described in detail with reference to the drawings. However, the embodiments disclosed below are merely exemplifications, and do not limit the scope of the present invention.
【0018】図1は本発明の単一モード光ファイバの実
施の形態の一例を示すもので、光ファイバの断面とその
屈折率分布を示す。図中、1は光を導波伝搬するコア、
2はコア1近傍の内側クラッド2a及び該内側クラッド
2aを覆う外側クラッド2bよりなるクラッドである。FIG. 1 shows an embodiment of a single mode optical fiber according to the present invention, and shows a cross section of the optical fiber and its refractive index distribution. In the figure, 1 is a core for guiding and propagating light,
Numeral 2 denotes a clad comprising an inner cladding 2a near the core 1 and an outer cladding 2b covering the inner cladding 2a.
【0019】コア1にはクラッド2に対して屈折率差を
付与するため、GeO2 をドーピングしてある。また、
コア径は約8μmとし、コア1とクラッド2との比屈折
率差は0.3%とした。遮断波長は1.12μmであっ
た。The core 1 is doped with GeO 2 in order to give a refractive index difference to the cladding 2. Also,
The core diameter was about 8 μm, and the relative refractive index difference between the core 1 and the clad 2 was 0.3%. The cutoff wavelength was 1.12 μm.
【0020】内側クラッド2aにはコア1の半分程度の
濃度のGeO2 をドーピングするとともに、その際、生
じる屈折率の増加を相殺する量のFをドーピングして屈
折率の増加を抑えた。内側クラッド2aの外径は約24
μmとした。外側クラッド2bは純石英ガラスで構成
し、外径は標準的な光ファイバと同様な125μmとし
た。The inner cladding 2a was doped with GeO 2 at a concentration about half that of the core 1, and at this time, an increase in the refractive index was suppressed by doping an amount of F that offset the increase in the refractive index. The outer diameter of the inner cladding 2a is about 24
μm. The outer cladding 2b was made of pure silica glass, and had an outer diameter of 125 μm, similar to a standard optical fiber.
【0021】前述した光ファイバを特開平5−2734
29号公報に開示されたマイクロヒータを用いて加熱
し、コア拡大処理を行った。The above-mentioned optical fiber is disclosed in Japanese Patent Application Laid-Open No. H5-2734.
Heating was performed using a micro heater disclosed in Japanese Patent Publication No. 29, and a core enlargement process was performed.
【0022】図2は1150℃で加熱した場合の加熱中
心におけるモードフィールド径の時間変化を波長1.3
μmで測定した結果である。処理前の約10μmからモ
ードフィールド径はほぼ直線的に増加し、約20分で約
31μmに達し、その後はほぼ一定で安定した。これは
Geが内側クラッド2a全体にほぼ均一に拡散し、外側
クラッド2bは純石英ガラスであるので1150℃では
Geの拡散が殆ど生じないためと考えられる。FIG. 2 shows the change over time in the mode field diameter at the center of heating when heated at 1150 ° C. with a wavelength of 1.3.
It is a result measured in μm. The mode field diameter increased almost linearly from about 10 μm before the treatment, reached about 31 μm in about 20 minutes, and was thereafter substantially constant and stable. This is presumably because Ge diffuses almost uniformly throughout the inner cladding 2a and the outer cladding 2b is made of pure silica glass, so that Ge diffusion hardly occurs at 1150 ° C.
【0023】このファイバでは31μm程度のモードフ
ィールド径を得るための加熱時間の許容範囲が充分に広
いことが分かる。It can be seen that in this fiber, the allowable range of the heating time for obtaining a mode field diameter of about 31 μm is sufficiently wide.
【0024】図3は1150℃で20分加熱処理した光
ファイバの拡大したモードフィールド径の分布を示すも
のである。この図から拡大したモードフィールド径の再
現性が非常に良いことが分かる。FIG. 3 shows an enlarged mode field diameter distribution of the optical fiber which has been heated at 1150 ° C. for 20 minutes. From this figure, it can be seen that the reproducibility of the enlarged mode field diameter is very good.
【0025】このように、1150℃でGeが内側クラ
ッド2aに拡散するのは、Fを添加したことにより、内
側クラッド2の融点が低下するとともに、Geの拡散係
数が増加したことが原因と考えられる。また、この温度
での熱処理によっても外側クラッド2bの変形は全く生
じなかった。The reason why Ge diffuses into the inner cladding 2a at 1150 ° C. is considered to be that the addition of F lowers the melting point of the inner cladding 2 and increases the Ge diffusion coefficient. Can be Also, the heat treatment at this temperature did not cause any deformation of the outer cladding 2b.
【0026】図4は1150℃で20分加熱処理し、そ
の加熱中心で切断した2本の光ファイバを互いに平行に
突き合わせ、コア同士の相対位置を横方向にオフセット
させた時の接続損失の変化をコア拡大処理前の試料と比
較した結果を示すものである。この図から過剰損失が
0.5dB以内となる範囲は3倍以上に拡大されている
ことが分かる。FIG. 4 shows a change in connection loss when a heat treatment is performed at 1150 ° C. for 20 minutes, two optical fibers cut at the center of the heat are butted in parallel to each other, and the relative positions of the cores are laterally offset. 3 shows the result of comparing the sample with the sample before the core enlargement treatment. From this figure, it can be seen that the range where the excess loss is within 0.5 dB has been expanded three times or more.
【0027】前述したコア拡大光ファイバを20個作製
し、コネクタフェルールに挿入し、SC形光コネクタを
組み立てたが、全て問題なく挿入可能であった。これら
のコネクタの接続損失は平均で0.05dBと非常に小
さく、反射減衰量は50dB以上と安定していた。従来
の一般的な光ファイバを用いた場合、実用的なコア拡大
処理をするには1400℃以上の温度が必要となり、外
形の変化が不可避であるため、フェルールに挿入可能な
光ファイバの製造歩留まりが非常に悪く、実用性に乏し
かった。[0027] Twenty core-enlarged optical fibers were manufactured and inserted into the connector ferrule to assemble the SC optical connector, but all could be inserted without any problem. The connection loss of these connectors was very small at 0.05 dB on average, and the return loss was stable at 50 dB or more. When a conventional general optical fiber is used, a temperature of 1400 ° C. or more is required to perform a practical core enlargement process, and a change in outer shape is inevitable. Therefore, the production yield of an optical fiber that can be inserted into a ferrule Was very bad and poor in practicality.
【0028】このように本光ファイバのコア拡大端を光
コネクタ等に適用した場合、接続の際のコアの位置ずれ
の許容範囲が大幅に広がり、位置精度が大幅に緩和され
るため、フェルール等の光コネクタ部品の加工精度を大
幅に低減できる。さらに安定した低損失接続が可能とな
り、接続の信頼性が大幅に向上し、低価格化にも大きく
貢献する。また、モードフィールド径の異なる光ファイ
バ同士の接続に応用すれば、それらの低損失接続も可能
となる。As described above, when the enlarged end of the core of the optical fiber is applied to an optical connector or the like, the allowable range of the displacement of the core at the time of connection is greatly expanded, and the positional accuracy is greatly relaxed. The processing accuracy of the optical connector parts can be greatly reduced. Furthermore, stable low-loss connection is possible, connection reliability is greatly improved, and cost is greatly reduced. In addition, if the present invention is applied to connection of optical fibers having different mode field diameters, low-loss connection between them is also possible.
【0029】図5は1150℃で20分加熱処理し、そ
の加熱中心で切断した2本の光ファイバを互いに平行に
突き合わせ、コアの軸を一致させたままコア(ファイ
バ)間距離を変化させた時の接続損失の変化を測定した
結果を示すものである。この図から損失が0.5dB以
内となる範囲が5倍以上に拡大されていることが分か
る。これはコア拡大に伴って、NAが急激に減少するた
めである。これにより、光ファイバの一部に溝を形成
し、光素子を挿入する場合、光素子の厚さの制限が大幅
に緩和され、低損失で挿入が可能となる。FIG. 5 shows a heat treatment at 1150 ° C. for 20 minutes, two optical fibers cut at the center of the heat were butted in parallel to each other, and the distance between the cores (fibers) was changed while keeping the axes of the cores aligned. 6 shows the result of measuring the change in connection loss at the time. From this figure, it can be seen that the range where the loss is within 0.5 dB has been expanded five times or more. This is because the NA sharply decreases as the core expands. Thus, when a groove is formed in a part of an optical fiber and an optical element is inserted, the limitation on the thickness of the optical element is greatly relaxed, and insertion can be performed with low loss.
【0030】[0030]
【発明の効果】以上説明したように、本発明によれば、
単一モード光ファイバのクラッドをコア近傍の内側クラ
ッド及び該内側クラッドを覆う外側クラッドよりなる構
造とし、コアにGeO 2 を添加し、内側クラッドにはコ
アの半分程度の濃度のGeO 2 と、GeO 2 による屈折率
の増加を相殺する量のフッ素を添加することで、内側ク
ラッドでの屈折率調整剤の拡散係数を外側クラッドでの
屈折率調整剤の拡散係数より小さくしたことにより、コ
ア拡大処理に必要な温度を低下させるとともに処理時間
を短縮させることができるため、特性及びその再現性に
優れ、加熱手段に大きく依存しないコア拡大ファイバを
安価に提供できる。As described above, according to the present invention,
The cladding of the single-mode optical fiber has a structure including an inner cladding near the core and an outer cladding covering the inner cladding , GeO 2 is added to the core, and the inner cladding has a core.
GeO 2 with a concentration of about half that of a and the refractive index due to GeO 2
By adding an amount of fluorine to offset the increase of the required diffusion coefficient of the refractive index control agent in the inner cladding by was low comb than the diffusion coefficient of the refractive index control agent in the outer cladding, the core enlargement process Since it is possible to reduce the temperature and the processing time, it is possible to provide an inexpensive core-expanded fiber that has excellent characteristics and reproducibility and does not largely depend on the heating means.
【0031】また、コア拡大処理時に生じる外形の変形
がないため、コネクタフェルールへの挿入が安定して可
能となり、光コネクタへの応用が実用的になる。また、
モードフィールド径の異なる光ファイバ同士を接続する
場合にも、予め光ファイバの構造により定められたモー
ドフィールド径が安定して得られるため、再現性良く低
損失な接続が可能となる。さらにまた、外形の変形がな
く、拡大コア径が安定している点を利用すれば、その応
用範囲は従来技術に比して格段に拡がる。Also, since there is no deformation of the outer shape that occurs at the time of the core enlargement processing, the insertion into the connector ferrule can be stably performed, and the application to the optical connector becomes practical. Also,
Even when optical fibers having different mode field diameters are connected to each other, a mode field diameter determined in advance by the structure of the optical fiber can be stably obtained, so that connection with good reproducibility and low loss can be performed. Furthermore, if the advantage that there is no deformation of the outer shape and the diameter of the enlarged core is stable is used, the application range is greatly expanded as compared with the prior art.
【図1】本発明の単一モード光ファイバの実施の形態の
一例を示す図FIG. 1 is a diagram showing an example of an embodiment of a single mode optical fiber of the present invention.
【図2】1150℃で加熱した場合の加熱中心における
モードフィールド径の時間変化を波長1.3μmで測定
した結果を示す図FIG. 2 is a diagram showing a result of measuring a time change of a mode field diameter at a heating center when heated at 1150 ° C. at a wavelength of 1.3 μm.
【図3】1150℃で20分加熱処理した光ファイバの
拡大したモードフィールド径の分布を示す図FIG. 3 is a diagram showing an enlarged mode field diameter distribution of an optical fiber heated at 1150 ° C. for 20 minutes.
【図4】本発明による光ファイバ同士を平行に突き合わ
せ、コアの相対位置を横方向にオフセットさせた時の接
続損失の変化を示す図FIG. 4 is a diagram showing a change in connection loss when optical fibers according to the present invention are butted in parallel to each other and the relative position of the core is laterally offset.
【図5】本発明による光ファイバ同士を平行に突き合わ
せ、ファイバ間距離を変化させた時の接続損失の変化を
示す図FIG. 5 is a diagram showing a change in connection loss when the optical fibers according to the present invention are butted against each other and the distance between the fibers is changed.
1…コア、2…クラッド、2a…内側クラッド、2b…
外側クラッド。DESCRIPTION OF SYMBOLS 1 ... Core, 2 ... Clad, 2a ... Inner clad, 2b ...
Outer cladding.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−224060(JP,A) 特開 平8−190030(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 6/00 G02B 6/10 G02B 6/16 - 6/255 G02B 6/36 - 6/40 G02B 6/44 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-224060 (JP, A) JP-A-8-190030 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 6/00 G02B 6/10 G02B 6/16-6/255 G02B 6/36-6/40 G02B 6/44
Claims (3)
かつ該コアよりも屈折率がわずかに低いクラッドよりな
る単一モード光ファイバにおいて、前記 クラッドを前記コア近傍の内側クラッド及び該内側
クラッドを覆う外側クラッドよりなる構造とし、前記コアにGeO 2 を添加し、 前記内側クラッドには、前記コアの半分程度の濃度のG
eO 2 と、GeO 2 による屈折率の増加を相殺する量のフ
ッ素を添加する ことを特徴とする単一モード光ファイ
バ。1. A single-mode optical fiber covering the core and the core is guided through the optical and refractive index than the core is made of slightly lower cladding, the inner cladding and the inner side of the core near the clad GeO 2 is added to the core, and the inner cladding has a G concentration of about half that of the core.
The amount of eO 2 and the amount of flux that offset the increase in the refractive index due to GeO 2
A single mode optical fiber characterized by adding nitrogen .
端部を局所加熱し、前記コア部に添加されたGeを前記
内側クラッドに拡散させ、該光ファイバの端部のみコア
径を拡大することを特徴とする単一モード光ファイバの
コア拡大方法。 2. The single mode optical fiber according to claim 1,
The edge was locally heated, and the Ge added to the core was
Diffusion into the inner cladding, core only at the end of the optical fiber
Of single mode optical fiber characterized by increasing diameter
Core expansion method.
ことを特徴とする請求項2に記載の単一モード光ファイ
バのコア拡大方法。 3. The local heating is performed by a micro heater.
The single-mode optical fiber according to claim 2, wherein
How to enlarge the core of the ba.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04169596A JP3355575B2 (en) | 1996-02-28 | 1996-02-28 | Single mode optical fiber and method for expanding core of single mode optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04169596A JP3355575B2 (en) | 1996-02-28 | 1996-02-28 | Single mode optical fiber and method for expanding core of single mode optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09236721A JPH09236721A (en) | 1997-09-09 |
JP3355575B2 true JP3355575B2 (en) | 2002-12-09 |
Family
ID=12615571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04169596A Expired - Fee Related JP3355575B2 (en) | 1996-02-28 | 1996-02-28 | Single mode optical fiber and method for expanding core of single mode optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3355575B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9645322B2 (en) | 2013-11-18 | 2017-05-09 | Sumitomo Electric Industries, Ltd. | Optical probe for optical coherence tomography and manufacturing method therefor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7346258B2 (en) | 2002-07-09 | 2008-03-18 | Fujikura Ltd. | Optical fiber and optical fiber coupler, erbium-doped optical fiber amplifier, and optical waveguide using the same |
AU2003252476A1 (en) * | 2002-07-09 | 2004-01-23 | Fujikura Ltd. | Optical fiber, optical fiber coupler including the same, erbium loaded optical fiber amplifier and light guide |
CA2533192A1 (en) * | 2003-08-29 | 2005-03-10 | Sumitomo Electric Industries, Ltd. | Optical part, optical part producing method and optical system |
-
1996
- 1996-02-28 JP JP04169596A patent/JP3355575B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9645322B2 (en) | 2013-11-18 | 2017-05-09 | Sumitomo Electric Industries, Ltd. | Optical probe for optical coherence tomography and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JPH09236721A (en) | 1997-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6321006B2 (en) | Optical fiber having an expanded mode field diameter and method of expanding the mode field diameter of an optical fiber | |
EP1488261B1 (en) | Low bend loss optical fiber and components made therefrom | |
EP0299603A1 (en) | Fibre-optic connector employing mode field modification | |
WO2000057220A1 (en) | Thermally expanded multiple core fiber | |
JPH04253003A (en) | Optical communication system | |
JP3049697B2 (en) | Mode field diameter conversion fiber | |
EP0749025B1 (en) | Process for producing an optical fiber coupler | |
JP2004528598A (en) | Optical fiber fusion splicing with controlled mode field diameter expansion matching | |
EP0610973B1 (en) | Optical fiber coupler | |
US20030180016A1 (en) | Method of splicing optical fibers and multi-fiber component | |
US5035477A (en) | Method of changing the spot diameter of single-mode step-index fibers, and single-mode fiber coupling unit made by said method | |
JP2951562B2 (en) | Connection structure and connection method of dispersion compensating optical fiber | |
Peterka et al. | Twin-core fiber design and preparation for easy splicing | |
JP3355575B2 (en) | Single mode optical fiber and method for expanding core of single mode optical fiber | |
CN1510445A (en) | Optical fiber component for spot size conversion and manufacturing method thereof | |
US7200304B2 (en) | Multimode optical fiber coupler and fabrication method | |
JP2619130B2 (en) | Single Mode Optical Fiber Interconnection Method | |
JPH0693048B2 (en) | Optical fiber fusion splicing method | |
US7248767B2 (en) | Multimode optical fiber coupler and fabrication method | |
JP2805533B2 (en) | Fiber fusion type optical branch coupler | |
JPH08220361A (en) | Mode field diameter conversion fiber | |
JP2879367B2 (en) | Optical branching coupler and method of manufacturing the same | |
JP2850510B2 (en) | Beam expanding fiber | |
JP2902800B2 (en) | Optical fiber for optical coupler | |
US20050201677A1 (en) | Multimode optical fiber coupler and fabrication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081004 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091004 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101004 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111004 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |