JP3353510B2 - Chemical mechanical polishing method, chemical mechanical polishing apparatus, and semiconductor device manufacturing method using the same - Google Patents
Chemical mechanical polishing method, chemical mechanical polishing apparatus, and semiconductor device manufacturing method using the sameInfo
- Publication number
- JP3353510B2 JP3353510B2 JP32071394A JP32071394A JP3353510B2 JP 3353510 B2 JP3353510 B2 JP 3353510B2 JP 32071394 A JP32071394 A JP 32071394A JP 32071394 A JP32071394 A JP 32071394A JP 3353510 B2 JP3353510 B2 JP 3353510B2
- Authority
- JP
- Japan
- Prior art keywords
- chemical mechanical
- mechanical polishing
- substrate
- ultrasonic waves
- flattening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Weting (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体装置等の製造工程
における化学的機械研磨方法および化学的機械研磨装置
に関し、更に詳しくは例えば製造工程中で発生する被処
理基板上の層間絶縁膜や電極配線の段差を平坦に加工す
る、グローバル平坦化に適した化学的機械研磨方法およ
び化学的機械研磨装置と半導体装置の製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for manufacturing semiconductor devices and the like.
Relates chemical mechanical polishing method and a chemical mechanical polishing apparatus in, more particularly to flat processing step of the example manufacturing process interlayer insulating film and the electrode wiring on the substrate to be processed that occurs in, suitable for global planarization The present invention relates to a chemical mechanical polishing method, a chemical mechanical polishing apparatus, and a method for manufacturing a semiconductor device .
【0002】[0002]
【従来の技術】LSI等の半導体装置の集積度が進み、
そのデザインルールがサブハーフミクロンからクォータ
ミクロンのレベルへと微細化されるに伴い、内部配線の
パターン幅も縮小されつつある。一方配線抵抗を低いレ
ベルに保ち、信号伝播の遅延や各種マイグレーションを
防止するには配線の断面積を確保する必要がある。すな
わち配線の高さはあまり縮小できないことから、配線の
アスペクト比は増加の傾向にある。2. Description of the Related Art The degree of integration of semiconductor devices such as LSIs has increased.
As the design rules are refined from sub-half micron to quarter micron, the pattern width of the internal wiring is also being reduced. On the other hand, in order to keep the wiring resistance at a low level and prevent delay in signal propagation and various migrations, it is necessary to secure a cross-sectional area of the wiring. That is, since the height of the wiring cannot be reduced so much, the aspect ratio of the wiring tends to increase.
【0003】かかる微細配線を下層とした多層配線構造
を形成する場合には、下層配線により形成された段差や
凹部を埋めるように平坦化層間絶縁膜を形成してフラッ
トな表面を確保し、この上に上層配線を形成するプロセ
スを繰り返すことが必要になる。これは、上層配線の段
切れの防止もさることながら、レジストパターニングの
ためのリソグラフィにおける露光光の短波長化やレンズ
の高NA化にともなう焦点深度の低下を補償する観点か
らも重要である。一例として、波長248nmのKrF
エキシマレーザステッパ露光により0.3μmルールの
ラインアンドスペースを制御性よくパターニングするに
は、露光面の表面段差は0.3〜0.4μm以下が要求
されている。In order to form a multilayer wiring structure having such fine wiring as a lower layer, a flattening interlayer insulating film is formed so as to fill a step or a recess formed by the lower wiring to secure a flat surface. It is necessary to repeat the process of forming the upper layer wiring thereon. This is important not only to prevent disconnection of the upper wiring, but also from the viewpoint of compensating for a decrease in the depth of focus due to a shorter wavelength of exposure light in lithography for resist patterning and a higher NA of the lens. As an example, KrF having a wavelength of 248 nm
In order to pattern a 0.3 μm rule line and space with good controllability by excimer laser stepper exposure, the surface step of the exposed surface is required to be 0.3 to 0.4 μm or less.
【0004】従来より各種の平坦化層間絶縁膜の形成方
法が開発されており、例えば月刊セミコンダクターワー
ルド誌(プレスジャーナル社刊)1989年11月号7
4〜95ページにわたりこれら形成方法の総説が掲載さ
れている。これらの形成方法は、成膜条件の最適化によ
りセルフフロー特性を向上するか、あるいは成膜後の熱
処理によりリフロー形状を向上するものかのいずれかで
ある。いずれの方法も、配線間隔の広い段差凹部での層
間絶縁膜の平坦形状や、配線間隔の狭い部分での層間絶
縁膜のボイド(鬆)の防止に関して改善の余地が残され
ている。Conventionally, various methods for forming a planarized interlayer insulating film have been developed. For example, monthly Semiconductor World Magazine (published by Press Journal), November 1989, 7th edition.
A review of these formation methods is provided on pages 4-95. These forming methods either improve the self-flow characteristics by optimizing the film forming conditions, or improve the reflow shape by heat treatment after film forming. In any of the methods, there is room for improvement with respect to the flat shape of the interlayer insulating film in a stepped recess having a large wiring interval and prevention of voids in the interlayer insulating film in a portion having a small wiring interval.
【0005】これに対し、近年シリコンウェハのミラー
ポリッシュ法を応用した化学的機械研磨(CMP)によ
るグローバル平坦化法が提案されている。この化学的機
械研磨方法は、一旦形成された被処理基板上の各種段差
を確実に平坦化できる方法として有望視されている。On the other hand, in recent years, a global flattening method by chemical mechanical polishing (CMP) applying a mirror polishing method of a silicon wafer has been proposed. The chemical mechanical Migaku Ken method is a promising method for reliably planarize various steps of the target substrate once formed.
【0006】図4は従来の化学的機械研磨装置を示す概
略断面図である。同図において、回転するキャリア12
に研磨面を下向きにして貼着した被処理基板11は、こ
れも回転する研磨プレートであるプラテン13と対向す
るようにセッティングする。スラリ供給系15からノズ
ル16を経由し、プラテン上のパッド14と称する研磨
布にスラリ17を供給し、被処理基板11を所定圧力で
パッド14に圧着して研磨をおこなう。このときキャリ
ア12およびプラテン13の回転数と回転軸の調整を最
適化するとともに、被処理基板に適した研磨粒子とpH
等を有するスラリの選択が1つのポイントとなる。一例
として、酸化シリコン系の層間絶縁膜を研磨する場合に
は、シリカ微粒子を懸濁したKOH水溶液等を用いて化
学反応と機械的研磨とを併用した、いわゆるCMP(C
hemical−Mechanical Polish
ing)を施すのである。FIG. 4 is a schematic sectional view showing a conventional chemical mechanical polishing apparatus. In the figure, the rotating carrier 12
The substrate 11 to be processed, which is attached with the polished surface facing downward, is set so as to face a platen 13 which is also a rotating polishing plate. A slurry 17 is supplied from a slurry supply system 15 to a polishing cloth called a pad 14 on a platen via a nozzle 16, and the substrate 11 to be processed is pressed against the pad 14 at a predetermined pressure to perform polishing. At this time, the adjustment of the rotation speed and rotation axis of the carrier 12 and the platen 13 is optimized, and the polishing particles and pH suitable for the substrate to be processed are adjusted.
One of the points is the selection of slurries having the same. As an example, in the case of polishing a silicon oxide-based interlayer insulating film, a so-called CMP (CMP) in which a chemical reaction and mechanical polishing are used in combination using a KOH aqueous solution or the like in which fine silica particles are suspended is used.
chemical-Mechanical Polish
ing).
【0007】[0007]
【発明が解決しようとする課題】しかしながら化学的機
械研磨方法による平坦化法には、実用化に向けて解決す
べき課題が残されている。その一つは平坦化の研磨速度
が小さいことであり、一枚の被処理基板の研磨に10分
以上を要するのが普通である。層間絶縁膜の平坦化にお
いては、下地の配線層等の段差を吸収して厚く堆積した
酸化シリコン系絶縁膜等を研磨することとなるので、研
磨速度の増大によるスループットの向上は重要課題であ
る。However, the flattening method by the chemical mechanical polishing method has problems to be solved for practical use. One of the reasons is that the polishing rate for flattening is low, and polishing of one substrate to be processed usually requires 10 minutes or more. In the planarization of an interlayer insulating film, a silicon oxide-based insulating film or the like that is thickly deposited by absorbing a step of an underlying wiring layer or the like is polished, so that an improvement in throughput by increasing the polishing rate is an important issue. .
【0008】また他の課題として、研磨速度のパターン
依存性が挙げられる。すなわち小面積の段差凸部の研磨
速度と、広い面積におよぶ段差凸部の研磨速度とに差が
生じることがある。層間絶縁膜の平坦化の場合には、広
い面積の段差凸部の研磨速度が小さくなり、この部分で
の平坦化の制御性が悪化する。Another problem is that the polishing rate depends on the pattern. That is, a difference may occur between the polishing rate of the step protrusion having a small area and the polishing rate of the step protrusion having a large area. In the case of flattening the interlayer insulating film, the polishing rate of the stepped portion having a large area is reduced, and the controllability of flattening in this portion is deteriorated.
【0009】これらの問題を解決するため、段差凸部の
層間絶縁膜の厚さ方向の一部を、予めレジストパターン
をマスクにして等方性エッチングにより除去しておき、
この後化学的機械研磨を施す方法が米国特許第4,95
4,459号明細書に開示されている。この方法を図3
を参照して説明する。In order to solve these problems, a part of the step protrusion in the thickness direction of the interlayer insulating film is removed in advance by isotropic etching using a resist pattern as a mask.
Thereafter, a method of performing chemical mechanical polishing is disclosed in U.S. Pat.
No. 4,459. This method is illustrated in FIG.
This will be described with reference to FIG.
【0010】図示しない半導体基板上の第1の層間絶縁
膜1上に線幅の異なる複数の配線層2をパターニング
し、さらに第2の層間絶縁膜3を厚く形成する。第2の
層間絶縁膜3は面積の広い段差凸部と面積の狭い段差凸
部とが混在しており、この状態のまま研磨すると、特に
面積の広い段差凸部の研磨速度が小さくなり、満足なグ
ローバル平坦化が達成できない。そこで図3(a)に示
すように段差凹部にレジストパターン4を形成し、これ
をマスク図3(b)に示すように段差凸部の層間絶縁膜
の厚さ方向の1部を除去する。レジストパターン4を除
去すると、図3(c)に示すように第2の層間絶縁膜3
は微少突起を残すのみとなる。この微少突起はその体積
はほぼ均一であるので、この図3(c)に示す状態から
研磨を行えば研磨時間の短縮が可能となるとともに、図
3(d)に示すように極めて表面形状にすぐれた平坦化
が達成できるのである。A plurality of wiring layers 2 having different line widths are patterned on a first interlayer insulating film 1 on a semiconductor substrate (not shown), and a second interlayer insulating film 3 is formed thick. The second interlayer insulating film 3 has a mixture of step protrusions having a large area and step protrusions having a small area. If the polishing is carried out in this state, the polishing rate of the step protrusion having a large area is particularly reduced, which is satisfactory. Global flattening cannot be achieved. Therefore, a resist pattern 4 is formed in the step recess as shown in FIG. 3A, and a part of the step pattern in the thickness direction of the interlayer insulating film is removed as shown in FIG. When the resist pattern 4 is removed, the second interlayer insulating film 3 is removed as shown in FIG.
Only leave microprojections. Since the microprojections have a substantially uniform volume, the polishing time can be reduced by polishing from the state shown in FIG. 3 (c), and as shown in FIG. Excellent flattening can be achieved.
【0011】この従来技術によれば下地の配線パターン
依存性のない平坦化が可能となるが、レジストパターン
の形成、エッチングおよびレジストパターンの除去のプ
ロセスの追加が必要であり、平坦化プロセス全体のスル
ープットが低下する問題があらたに発生する。According to this prior art, flattening independent of the underlying wiring pattern can be achieved, but it is necessary to add a process of forming a resist pattern, etching and removing the resist pattern. A new problem that the throughput is reduced occurs.
【0012】そこで本発明の課題は、従来よりも研磨速
度が大きく、しかもパターン依存性のない平坦化形状に
すぐれた化学的機械研磨方法および化学的機械研磨装置
を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to provide a chemical mechanical polishing method and a chemical mechanical polishing apparatus which have a higher polishing rate than conventional ones and are excellent in a flattened shape independent of a pattern.
【0013】[0013]
【課題を解決するための手段】本発明の化学的機械研磨
方法は上記の課題を解決するために提案するものであ
り、段差を有する被処理基板表面を平坦化する工程を有
する化学的機械研磨方法において、被処理基板に超音波
を印加しつつ化学的機械研磨を施すことを特徴とするも
のである。さらには、化学的機械研磨工程中に超音波の
振幅を連続的または段階的に変化させるか、化学的機械
研磨工程中に超音波周波数を連続的または段階的に変化
させるか、複数の周波数の超音波を同時に印加するか、
あるいは超音波を間欠的に印加することを特徴とするも
のである。 SUMMARY OF THE INVENTION The chemical mechanical polishing method of the present invention is proposed to solve the above-mentioned problem, and comprises a step of flattening a surface of a substrate having a step. In the method, chemical mechanical polishing is performed while applying ultrasonic waves to the substrate to be processed. Further, chemical mechanical during polishing Luke continuously or stepwise changing the amplitude of the ultrasonic wave, in the chemical mechanical polishing step Ru continuously or stepwise changing <br/> ultrasonic frequency Or applying ultrasonic waves of multiple frequencies simultaneously ,
Or even characterized by intermittently applying ultrasonic waves
It is.
【0014】また本発明の化学的機械研磨装置は、段差
を有する被処理基板を平坦化するための化学的機械研磨
装置において、被処理基板への超音波振動印加手段およ
びその制御手段を備えていることを特徴とするものであ
る。超音波振動印加手段は、化学的機械研磨装置のプラ
テンまたはキャリアのいずれかを励振するものであれば
よい。かかる超音波振動印加手段としては、公知の圧電
型や電磁型の電気/音響トランスデューサを用いること
が可能である。超音波振動印加手段の制御手段は、電気
/音響トランスデューサへの入力を制御するものであ
り、予め制御プログラムを入力したコンピュータ等を用
いることができる。さらに本発明の半導体装置の製造方
法では、化学的機械研磨により段差を有する被処理基板
表面を平坦化する工程を含む製造方法において、被処理
基板に超音波を印加しつつ化学的機械研磨を施すととも
に、化学的機械研磨工程中に、印加する超音波の振幅ま
たは周波数の連続的または段階的な変化、複数の周波数
の超音波の同時印加、超音波の間欠的印加のうちの一つ
を行うことを特徴とするものである。Further, the chemical mechanical polishing apparatus of the present invention is a chemical mechanical polishing apparatus for flattening a substrate having a step, which comprises means for applying ultrasonic vibration to the substrate to be processed and control means therefor. It is characterized by having. The ultrasonic vibration applying means only needs to excite either the platen or the carrier of the chemical mechanical polishing apparatus. As the ultrasonic vibration applying means, a known piezoelectric or electromagnetic type electric / acoustic transducer can be used. The control means of the ultrasonic vibration applying means controls the input to the electric / acoustic transducer, and a computer or the like in which a control program is input in advance can be used. Further, in the method of manufacturing a semiconductor device according to the present invention, in the manufacturing method including a step of flattening a surface of the substrate to be processed having a step by chemical mechanical polishing, the chemical mechanical polishing is performed while applying ultrasonic waves to the substrate to be processed. one of the time, during the chemical mechanical polishing step, continuous or stepwise variation of the ultrasonic wave amplitude or frequency applied ultrasonic simultaneous application of a plurality of frequencies, intermittent application of ultrasound
It is characterized in that to perform.
【0015】[0015]
【作用】本発明のポイントは、化学的機械研磨の工程中
に被処理基板に超音波を印加する点にある。従来の化学
的機械研磨における研磨に関与するエネルギは、化学反
応を除外すれば、相互に回転するキャリアとプラテンと
の相対的な移動速度、および被処理基板とパッドとの接
触圧である。本発明ではこれら従来の研磨機構に加え
て、超音波振動を新たな研磨エネルギ源として印加す
る。これにより、相対速度や接触圧を無理に高めること
なく研磨速度を上昇することができる。The point of the present invention is that ultrasonic waves are applied to the substrate to be processed during the chemical mechanical polishing process. The energies involved in polishing in conventional chemical mechanical polishing, excluding the chemical reaction, are the relative movement speed of the mutually rotating carrier and platen, and the contact pressure between the substrate to be processed and the pad. In the present invention, in addition to these conventional polishing mechanisms, ultrasonic vibration is applied as a new polishing energy source. Thereby, the polishing rate can be increased without forcibly increasing the relative speed or the contact pressure.
【0016】また研磨工程中に超音波振動を印加するこ
とにより、被処理基板とパッドの微少間隙にスラリを効
率よく行き渡らせることが可能となる。しかもこの効果
は、段差凸部の面積や疎密の影響が少ないので、パター
ン依存性のない均一で良好な平坦面が得られる。By applying ultrasonic vibration during the polishing step, the slurry can be efficiently spread over the minute gap between the substrate to be processed and the pad. In addition, since this effect is less affected by the area of the step protrusions and the density, a uniform and good flat surface independent of the pattern can be obtained.
【0017】さらに、研磨工程中に超音波振動の振幅や
振動数を段階的または連続的に変化することにより、被
処理基板に与える振動モードを変化させ、定在波の影響
を回避する構成を採用すれば、均一な研磨効果を徹底す
ることができる。また、研磨初期あるいは中期における
研磨速度の大きいバルク研磨工程と、研磨終期の研磨表
面形状を優先するミクロ研磨工程とで印加超音波振幅を
変化する使い分けも可能である。Further, a configuration is provided in which the amplitude and frequency of the ultrasonic vibration are changed stepwise or continuously during the polishing step, thereby changing the vibration mode applied to the substrate to be processed and avoiding the influence of the standing wave. If employed, a uniform polishing effect can be ensured. Further, it is also possible to selectively use the amplitude of the applied ultrasonic wave in the bulk polishing step in which the polishing rate is high in the initial or middle stage of the polishing and in the micro polishing step in which the polishing surface shape is prioritized in the final stage of polishing.
【0018】研磨工程中に超音波を間欠的に印加する場
合には、超音波印加中に使用された研磨済みスラリが、
超音波を印加しない間に被処理基板とパッドの微少間隙
から排出され、新しいスラリと置換される。このため常
に新鮮なスラリによる研磨が可能となり、パターン依存
性や研磨のマイクロローディング効果が抑制でき、より
精密な化学的機械研磨が可能となる。When the ultrasonic waves are applied intermittently during the polishing step, the polished slurry used during the application of the ultrasonic waves is
It is discharged from the minute gap between the substrate to be processed and the pad while no ultrasonic wave is applied, and is replaced with a new slurry. Therefore, polishing with fresh slurry is always possible, and pattern dependency and the microloading effect of polishing can be suppressed, and more precise chemical mechanical polishing can be performed.
【0019】本発明のもう1つのポイントは、化学的機
械研磨装置に超音波振動印加手段とこの超音波振動印加
手段の制御手段を装着した点にある。超音波振動印加手
段は、被処理基板に対して最も効率よく超音波振動を印
加できるように、被処理基板のキャリア、またはパッド
を載置するプラテンに装着することにより、研磨速度の
向上および研磨の均一性を達成することが可能となる。
また超音波振動印加手段の制御手段には、被処理基板の
種類に応じた最適の超音波印加プログラムを入力してお
けば、常に最適の超音波振動印加条件により均一な化学
的機械研磨が可能となる。Another point of the present invention resides in that an ultrasonic vibration applying means and a control means of the ultrasonic vibration applying means are mounted on a chemical mechanical polishing apparatus. The ultrasonic vibration applying means is mounted on a carrier of the substrate to be processed or a platen on which a pad is mounted so that the ultrasonic vibration can be applied to the substrate to be processed most efficiently. Can be achieved.
In addition, if the optimal ultrasonic application program corresponding to the type of the substrate to be processed is input to the control unit of the ultrasonic vibration applying unit, uniform chemical mechanical polishing can always be performed under the optimal ultrasonic vibration application conditions. Becomes
【0020】[0020]
【実施例】以下、本発明の具体的実施例につき添付図面
を参照しながら説明する。まず実際の研磨プロセスの説
明に入る前に本発明の化学的機械研磨装置について説明
しよう。Embodiments of the present invention will be described below with reference to the accompanying drawings. First, before describing the actual polishing process, the chemical mechanical polishing apparatus of the present invention will be described.
【0021】図2は本発明の化学的機械研磨装置の一構
成例を示す概略断面図である。基本的な構成は図4に示
した従来の化学的機械研磨装置と同じであるので、重複
する部分の説明は省略する。本発明の化学的機械研磨装
置の特徴部分は、被処理基板を貼着するキャリア12を
励振する第1の超音波振動印加手段18およびこれを駆
動する第1の超音波発振器20、および研磨プレートで
あるプラテン13を励振する第2の超音波振動印加手段
19およびこれを駆動する第2の超音波発振器21を付
加した点にある。また、第1の超音波発振器20と第2
の超音波発振器21の前段に、超音波振動印加手段の制
御手段22を付加した点も、本発明の化学的機械研磨装
置の特徴部分である。超音波振動印加手段の制御手段2
2は、第1の超音波発振器20と第2の超音波発振器2
1を個別に、あるいは同時に制御することが可能であ
る。FIG. 2 is a schematic sectional view showing an example of the configuration of the chemical mechanical polishing apparatus of the present invention. Since the basic configuration is the same as that of the conventional chemical mechanical polishing apparatus shown in FIG. 4, the description of the overlapping parts will be omitted. Characteristic parts of the chemical mechanical polishing apparatus of the present invention include a first ultrasonic vibration applying means 18 for exciting the carrier 12 to which a substrate to be processed is attached, a first ultrasonic oscillator 20 for driving the same, and a polishing plate. In that a second ultrasonic vibration applying means 19 for exciting the platen 13 and a second ultrasonic oscillator 21 for driving the same are added. Also, the first ultrasonic oscillator 20 and the second
A feature of the chemical mechanical polishing apparatus of the present invention is that a control means 22 of an ultrasonic vibration applying means is added at the preceding stage of the ultrasonic oscillator 21. Control means 2 for ultrasonic vibration applying means
2 is a first ultrasonic oscillator 20 and a second ultrasonic oscillator 2
1 can be controlled individually or simultaneously.
【0022】超音波振動印加手段の制御手段22は、第
1の超音波発振器20と第2の超音波発振器21の出力
レベルと出力周波数および出力波形を任意に制御できる
ものである。出力波形としては一般的には正弦波である
が、この他に矩形波、鋸歯状波等を目的に応じて選択す
る。出力レベル、出力周波数および出力波形等のプロセ
スファクタは、予め最適条件を各被処理基板ごとに実験
により求め、このデータを超音波振動印加手段の制御手
段22に入力しておき、入力データに基づき実プロセス
を制御することが望ましい。制御装置には他のファク
タ、例えばキャリア12およびプラテン13の回転数、
被処理基板11とパッド14との接触圧、スラリ17の
pH、濃度や温度条件等の最適値をインプットしておけ
ばプロセス全体の自動化を達成することができる。The control means 22 of the ultrasonic vibration applying means can arbitrarily control the output level, output frequency and output waveform of the first ultrasonic oscillator 20 and the second ultrasonic oscillator 21. Although the output waveform is generally a sine wave, a rectangular wave, a sawtooth wave, or the like may be selected according to the purpose. Process factors such as an output level, an output frequency, and an output waveform are determined in advance by carrying out experiments on optimum conditions for each substrate to be processed, and this data is input to the control means 22 of the ultrasonic vibration applying means, and based on the input data. It is desirable to control the actual process. The control device has other factors, such as the number of revolutions of the carrier 12 and the platen 13,
By inputting optimum values such as the contact pressure between the substrate 11 and the pad 14, the pH of the slurry 17, the concentration, and the temperature conditions, automation of the entire process can be achieved.
【0023】実施例1 本実施例は、Al系金属配線上に形成する層間絶縁膜の
平坦化に本発明を用いた例であり、これを図1(a)〜
(b)を参照して説明する。なお、従来の化学的機械研
磨方法の説明に供した図3(a)〜(d)と同様の機能
を有する部分には同一の参照符号を付すものとする。Embodiment 1 This embodiment is an example in which the present invention is used for flattening an interlayer insulating film formed on an Al-based metal wiring, which is shown in FIGS.
This will be described with reference to FIG. Incidentally, portions having the same functions as those in FIG 3 that were subjected to the description of the conventional chemical mechanical polishing method (a) ~ (d) shall be denoted by the same reference numerals.
【0024】まず図1(a)に示すように、Si等の半
導体基板(図示せず)上にSiO2等の第1の層間絶縁
膜1およびAl系金属等からなる配線層2を形成する。
配線層2はパターン密度や配線幅に分布が見られる。配
線層2の密な部分のラインアンドスペースは一例として
0.35μm、疎な部分のそれは2.0μmである。配
線層の高さはいずれも0.5μmである。つぎにプラズ
マCVDや減圧CVD等により、第2の層間絶縁膜3を
厚く、例えば平坦部分で0.8μmの厚さに形成する。
ここまで形成したサンプルを被処理基板とする。First, as shown in FIG. 1A, a first interlayer insulating film 1 such as SiO 2 and a wiring layer 2 made of an Al-based metal or the like are formed on a semiconductor substrate (not shown) such as Si. .
The wiring layer 2 has a distribution in pattern density and wiring width. The line and space of the dense part of the wiring layer 2 is 0.35 μm as an example, and that of the sparse part is 2.0 μm. Each of the wiring layers has a height of 0.5 μm. Next, the second interlayer insulating film 3 is formed thick by plasma CVD, low pressure CVD, or the like, for example, to a thickness of 0.8 μm in a flat portion.
The sample formed so far is used as a substrate to be processed.
【0025】つぎに図2に示す化学的機械研磨装置を用
い、上述の被処理基板11をキャリア12にワックス等
を用いて下向きに貼着し、プラテン13を励振しつつ一
例として下記条件で第2の層間絶縁膜3の化学的機械研
磨を行った。なおスラリとしてはシリカ微粒子をKOH
/アルコール/水系の溶媒に懸濁した一般的なものを用
いた。 プラテン回転数 50 rpm キャリア回転数 17 rpm 研磨圧力 8 psi パッド温度 30〜40 ℃ スラリ流量 225 ml/分 超音波出力 300 W (第2の超音波発振
器出力) 超音波周波数 40 kHz(第2の超音波発振
器周波数)Next, using the chemical mechanical polishing apparatus shown in FIG. 2, the above-mentioned substrate 11 to be processed is stuck downward on the carrier 12 using wax or the like, and the platen 13 is excited while being excited under the following conditions as an example. The chemical mechanical polishing of the second interlayer insulating film 3 was performed. As a slurry, silica fine particles were converted to KOH.
A general suspension suspended in a / alcohol / water-based solvent was used. Platen rotation speed 50 rpm Carrier rotation speed 17 rpm Polishing pressure 8 psi Pad temperature 30-40 ° C. Slurry flow rate 225 ml / min Ultrasonic output 300 W (output of second ultrasonic oscillator) Ultrasonic frequency 40 kHz (second ultrasonic wave) Sound wave frequency)
【0026】この結果、図1(b)に示すように第2の
層間絶縁膜3は平坦に化学的機械研磨された。研磨速度
は超音波を印加しない従来法と比較して約2倍であり、
下地配線層2のパターン密度依存性はほとんど測定され
ず、均一な平坦面が得られた。第2の層間絶縁膜の研磨
は配線層上で一例として0.2μmの厚さを残して終了
し、必要に応じてさらにプラズマCVDや減圧CVD等
で絶縁膜を積み増しし、上層配線を形成する。本実施例
によれば、従来の化学的機械研磨方法に加え、プラテン
に内蔵した第2の超音波振動印加手段を励振することに
より、研磨速度および研磨面の平坦度ともに好結果を収
めることができた。As a result, as shown in FIG. 1B, the second interlayer insulating film 3 was flatly chemically and mechanically polished. The polishing rate is about twice as high as that of the conventional method without applying ultrasonic waves.
The pattern density dependence of the underlying wiring layer 2 was hardly measured, and a uniform flat surface was obtained. Polishing of the second interlayer insulating film is completed on the wiring layer, leaving a thickness of, for example, 0.2 μm. If necessary, an insulating film is further added by plasma CVD, low pressure CVD, or the like to form an upper wiring. . According to this embodiment, in addition to the conventional chemical mechanical polishing method, by exciting the second ultrasonic vibration applying means built in the platen, good results can be obtained in both the polishing rate and the flatness of the polished surface. did it.
【0027】実施例2 実施例1は超音波振動を連続的にプラテン13に印加し
たが、本実施例では被処理基板や他の研磨条件は実施例
1と同一にしておき、超音波振動を間欠的に印加する方
法を採用した。一例としてプラテン13への超音波振動
印加を10秒間ON、10秒間OFFのサイクルで施し
たところ、研磨速度は超音波を印加しない従来法と比較
して約1.5倍であったが、下地配線層2のパターン密
度依存性はほとんど測定されず、極めて均一な平坦面が
得られた。Embodiment 2 In Embodiment 1, the ultrasonic vibration was continuously applied to the platen 13. In this embodiment, the substrate to be processed and other polishing conditions were the same as in Embodiment 1, and the ultrasonic vibration was applied. A method of intermittent application was adopted. As an example, when the application of ultrasonic vibration to the platen 13 was performed in a cycle of ON for 10 seconds and OFF for 10 seconds, the polishing speed was about 1.5 times as compared with the conventional method in which no ultrasonic wave was applied. The pattern density dependence of the wiring layer 2 was hardly measured, and an extremely uniform flat surface was obtained.
【0028】実施例3 本実施例は、前実施例と同じ被処理基板および化学的機
械研磨装置を用い、キャリア12に超音波振動を印加し
た例である。前記実施例と重複する説明は省略し、研磨
条件の一例のみを次に記す。 プラテン回転数 50 rpm キャリア回転数 17 rpm 研磨圧力 8 psi パッド温度 30〜40 ℃ スラリ流量 225 ml/分 超音波出力 300 W (第1の超音波発振
器出力) 超音波周波数 50 kHz(第1の超音波発振
器周波数)Embodiment 3 This embodiment is an example in which ultrasonic vibration is applied to the carrier 12 using the same substrate to be processed and the chemical mechanical polishing apparatus as in the previous embodiment. The description overlapping with the above embodiment is omitted, and only an example of the polishing conditions is described below. Platen rotation speed 50 rpm Carrier rotation speed 17 rpm Polishing pressure 8 psi Pad temperature 30-40 ° C. Slurry flow rate 225 ml / min Ultrasonic power 300 W (first ultrasonic oscillator output) Ultrasonic frequency 50 kHz (first supersonic wave) Sound wave frequency)
【0029】この結果、同じく図1(b)に示すように
第2の層間絶縁膜3は平坦に化学的機械研磨された。研
磨速度は超音波を印加しない従来法と比較して約2.5
倍であり、下地配線層2のパターン密度依存性はほとん
ど測定されず、均一な平坦面が得られた。第2の層間絶
縁膜の研磨は配線層上で0.2μmの厚さを残して終了
し、必要に応じてさらに減圧CVD等で絶縁膜を積み増
しし、上層配線を形成する。本実施例によれば、従来の
化学的機械研磨方法に加え、キャリア13に内蔵した第
1の超音波振動印加手段を励振することにより、研磨速
度および研磨面の平坦度ともに好結果を収めることがで
きた。また本実施例では、被処理基板に極く近い位置に
ある第1の超音波振動印加手段により被処理基板を励振
したので、超音波振動印加の効果は一層向上することが
できる。As a result, as shown in FIG. 1B, the second interlayer insulating film 3 was flatly chemically and mechanically polished. Polishing rate is about 2.5 times compared to the conventional method without applying ultrasonic waves.
The pattern density dependence of the underlying wiring layer 2 was hardly measured, and a uniform flat surface was obtained. Polishing of the second interlayer insulating film is completed while leaving a thickness of 0.2 μm on the wiring layer. If necessary, an insulating film is further added by low-pressure CVD or the like to form an upper wiring. According to this embodiment, in addition to the conventional chemical mechanical polishing method, the first ultrasonic vibration applying means built in the carrier 13 is excited to obtain good results in both the polishing rate and the flatness of the polished surface. Was completed. In the present embodiment, the substrate to be processed is excited by the first ultrasonic vibration applying means located very close to the substrate to be processed, so that the effect of applying ultrasonic vibration can be further improved.
【0030】実施例4 実施例3は超音波振動を連続的にキャリア12に印加し
たが、本実施例では被処理基板や他の研磨条件は実施例
3と同一にしておき、超音波振動を間欠的にキャリア1
2に印加する方法を採用した。一例としてキャリア12
への超音波振動印加を10秒間ON、10秒間OFFの
サイクルで施したところ、研磨速度は超音波を印加しな
い従来法と比較して約2.0倍であったが、下地配線層
2のパターン密度依存性はほとんど測定されず、極めて
均一な平坦面が得られた。Embodiment 4 In Embodiment 3, the ultrasonic vibration was continuously applied to the carrier 12, but in this embodiment, the substrate to be processed and other polishing conditions were not applied.
3 and the ultrasonic vibration intermittently
2 was applied. Carrier 12 as an example
When the application of ultrasonic vibration to the substrate was performed in a cycle of ON for 10 seconds and OFF for 10 seconds, the polishing rate was about 2.0 times as compared with the conventional method in which ultrasonic waves were not applied. The pattern density dependence was hardly measured, and a very uniform flat surface was obtained.
【0031】実施例5 本実施例は、前実施例と同じ被処理基板および化学的機
械研磨装置を用い、キャリア12およびプラテン13の
両方に超音波振動を印加した例である。前記実施例と重
複する説明は省略し、研磨条件の一例のみを次に記す。 プラテン回転数 50 rpm キャリア回転数 17 rpm 研磨圧力 8 psi パッド温度 30〜40 ℃ スラリ流量 225 ml/分 超音波出力 150 W (第1の超音波発振
器出力) 超音波周波数 50 kHz(第1の超音波発振
器周波数) 超音波出力 200 W (第2の超音波発振
器出力) 超音波周波数 40 kHz(第2の超音波発振
器周波数)Embodiment 5 This embodiment is an example in which ultrasonic vibration is applied to both the carrier 12 and the platen 13 using the same substrate to be processed and the chemical mechanical polishing apparatus as in the previous embodiment. The description overlapping with the above embodiment is omitted, and only an example of the polishing conditions is described below. Platen rotation speed 50 rpm Carrier rotation speed 17 rpm Polishing pressure 8 psi Pad temperature 30-40 ° C. Slurry flow rate 225 ml / min Ultrasonic output 150 W (first ultrasonic oscillator output) Ultrasonic frequency 50 kHz (first ultrasonic Ultrasonic oscillator frequency) Ultrasonic output 200 W (Second ultrasonic oscillator output) Ultrasonic frequency 40 kHz (Second ultrasonic oscillator frequency)
【0032】この結果、同じく図1(b)に示すように
第2の層間絶縁膜3は平坦に化学的機械研磨された。研
磨速度は超音波を印加しない従来法と比較して約3.0
倍であり、下地配線層2のパターン密度依存性はほとん
ど測定されず、均一な平坦面が得られた。第2の層間絶
縁膜の研磨は配線層上で0.2μmの厚さを残して終了
し、必要に応じてさらに減圧CVD等で絶縁膜を積み増
しし、上層配線を形成する。本実施例によれば、従来の
化学的機械研磨方法に加え、キャリア13に内蔵した第
1の超音波振動印加手段を励振することにより、研磨速
度および研磨面の平坦度ともに好結果を収めることがで
きた。本実施例によれば、キャリア12およびプラテン
13を共に励振することにより、前実施例に比してより
一層効率的な研磨を施すことができる。As a result, as shown in FIG. 1B, the second interlayer insulating film 3 was flatly chemically and mechanically polished. Polishing rate is about 3.0 compared to the conventional method without applying ultrasonic waves.
The pattern density dependence of the underlying wiring layer 2 was hardly measured, and a uniform flat surface was obtained. Polishing of the second interlayer insulating film is completed while leaving a thickness of 0.2 μm on the wiring layer. If necessary, an insulating film is further added by low-pressure CVD or the like to form an upper wiring. According to the present embodiment, in addition to the conventional chemical mechanical polishing method, by exciting the first ultrasonic vibration applying means built in the carrier 13, good results can be obtained in both the polishing rate and the flatness of the polished surface. Was completed. According to this embodiment, by exciting both the carrier 12 and the platen 13, more efficient polishing can be performed as compared with the previous embodiment.
【0033】以上、本発明を5例の実施例をもって説明
したが、本発明はこれら実施例に何ら限定されるもので
はない。Although the present invention has been described with reference to the five embodiments, the present invention is not limited to these embodiments.
【0034】超音波は正弦波のほか、矩形波、鋸歯状波
あるいはこれらの複合波を用いても良い。印加周波数は
基本的には数十kHz〜数百kHzの超音波を採用する
が、目的に応じて20kHz以下の可聴帯域や、MHz
オーダのメガソニック帯域であってもよい。また複数の
周波数を重畳してもよく、ホワイトノイズやピンクノイ
ズによる励振も可能である。The ultrasonic wave may be a sine wave , a rectangular wave, a sawtooth wave, or a composite wave thereof. The applied frequency basically employs an ultrasonic wave of several tens of kHz to several hundreds of kHz.
A megasonic band on the order may be used. A plurality of frequencies may be superimposed, and excitation by white noise or pink noise is also possible.
【0035】超音波振動印加手段はキャリアあるいはプ
ラテンのいずれか、あるいは同時に励振する構成を採用
したが、キャリアの回転軸またはプラテンの回転軸を励
振する構成としてもよい。基本的には被処理基板近傍に
超音波振動印加手段を接近させて、振動の減衰を低減す
る構成とすれば研磨速度の向上が図れる。Although the ultrasonic vibration applying means employs a configuration in which either the carrier or the platen is excited, or simultaneously, the ultrasonic vibration applying means may be configured to excite the rotation axis of the carrier or the rotation axis of the platen. Basically, the polishing speed can be improved by reducing the vibration attenuation by bringing the ultrasonic vibration applying means close to the substrate to be processed.
【0036】被処理基板として半導体装置のSiO2 か
らなる層間絶縁膜の平坦化を例示したが、PSG、BS
G、BPSG、AsSG等のシリケートガラスやSiO
N、Si3 N4 等の絶縁膜の平坦化であってもよい。ま
た素子間分離やDRAMのキャパシタセルを構成するト
レンチへの絶縁材料や誘電材料の埋め込み平坦化に応用
してもよい。さらにW等の高融点金属層CVD形成後
や、Al系金属層形成後の平坦化に用いてもよい。本発
明の化学的機械研磨装置は、化学反応を伴わない半導体
基板等のミラーポリッシュに用いることも可能である。The planarization of an interlayer insulating film made of SiO 2 of a semiconductor device as a substrate to be processed has been exemplified.
Silicate glass such as G, BPSG, AsSG or SiO
The insulating film such as N, Si 3 N 4 may be flattened. Further, the present invention may be applied to isolation between elements or flattening of a trench forming a capacitor cell of a DRAM with an insulating material or a dielectric material. Further, it may be used for flattening after forming a high melting point metal layer such as W or CVD or after forming an Al-based metal layer. The chemical mechanical polishing apparatus of the present invention can be used for mirror polishing of a semiconductor substrate or the like that does not involve a chemical reaction.
【0037】スラリとしてシリカ微粒子とKOH/エタ
ノール/水系溶媒の組み合わせを例示したが、A12O3
等他の研磨微粒子や、他の系統の溶媒を被処理基板に合
わせて選択してよい。例えば、W層の平坦化にはH2O2
/KOH系の溶媒が好適であるし、Al系金属層の平坦
化にはH3PO4/H2O2系の溶媒を用いればよい。The illustrated combination of the silica fine particles and KOH / ethanol / aqueous solvent as a slurry but, A1 2 O 3
Other abrasive fine particles or another type of solvent may be selected according to the substrate to be processed. For example, H 2 O 2 is used for flattening the W layer.
/ Solvent KOH system to be suitable, the flattening of the Al-based metal layer may be used H 3 PO 4 / H 2 O 2 based solvents.
【0038】[0038]
【発明の効果】以上の説明から明らかなように、本発明
によれば化学的機械研磨時に被処理基板に超音波振動を
印加することにより、従来の化学的機械研磨方法に比較
して約1.5倍以上の研磨速度の向上が可能となる。こ
の効果は、キャリアおよびプラテンの回転速度や研磨圧
力を無理に高めることなく達成できるので、被処理基板
に与えるダメージも少ない。As is apparent from the above description, according to the present invention, the ultrasonic vibration is applied to the substrate to be processed at the time of chemical mechanical polishing, which is about one time smaller than the conventional chemical mechanical polishing method. The polishing rate can be improved by a factor of at least 0.5. Since this effect can be achieved without forcibly increasing the rotation speed of the carrier and the platen and the polishing pressure, damage to the substrate to be processed is small.
【0039】また被処理基板表面の平坦化すべきパター
ンの疎密や面積の大小による研磨速度の不均一が解消さ
れ、良好な均一平坦面を得ることが可能となる。Further, unevenness of the polishing rate due to the density of the pattern to be flattened and the size of the area to be flattened on the surface of the substrate to be processed is eliminated, and a good uniform flat surface can be obtained.
【0040】上記均一でスループットの高い化学的機械
研磨方法は、被処理基板の支持部材であるキャリアおよ
び研磨プレートであるプラテンに超音波印加手段を付加
した化学的機械研磨装置を採用することにより達成で
き、スラリ等の組成は従来のままでもよいので、比較的
簡単に効果を享受することが可能である。The above-described uniform and high-throughput chemical mechanical polishing method is achieved by employing a chemical mechanical polishing apparatus in which an ultrasonic wave applying means is added to a carrier as a support member of a substrate to be processed and a platen as a polishing plate. Since the composition of the slurry and the like may be the same as before, the effect can be enjoyed relatively easily.
【0041】以上の効果により、多層配線構造の採用に
より高段差が発生した半導体装置の表面平坦化プロセス
のスループット向上と均一化の向上が同時に達成される
こととなり、本発明が高集積化された半導体装置等の製
造プロセスに寄与する効果は極めて大きい。With the above effects, the improvement of the throughput and the uniformity of the process of flattening the surface of a semiconductor device having a high step due to the adoption of the multilayer wiring structure are simultaneously achieved, and the present invention is highly integrated. The effect of contributing to the manufacturing process of semiconductor devices and the like is extremely large.
【図1】本発明の化学的機械研磨方法を説明する概略断
面図であり、(a)は複数の配線層上に形成した層間絶
縁膜に段差が発生した状態、(b)は層間絶縁膜を平坦
化した状態である。FIGS. 1A and 1B are schematic cross-sectional views illustrating a chemical mechanical polishing method of the present invention, wherein FIG. 1A shows a state in which a step occurs in an interlayer insulating film formed on a plurality of wiring layers, and FIG. Is a flattened state.
【図2】本発明の化学的機械研磨装置を示す概略断面図
である。FIG. 2 is a schematic sectional view showing a chemical mechanical polishing apparatus of the present invention.
【図3】従来の化学的機械研磨方法を説明する概略断面
図であり、(a)は複数の配線層上に形成した層間絶縁
膜に段差が発生した状態、(b)は層間絶縁膜の段差凹
部上にレジストパターンを形成した状態、(c)はレジ
ストパターンをマスクに層間絶縁膜の段差凸部をエッチ
ング除去した状態、(d)は層間絶縁膜を化学的機械研
磨により平坦化した状態である。3A and 3B are schematic cross-sectional views illustrating a conventional chemical mechanical polishing method, in which FIG. 3A shows a state in which a step occurs in an interlayer insulating film formed on a plurality of wiring layers, and FIG. A state in which a resist pattern is formed on the stepped recess, (c) a state in which the stepped part of the interlayer insulating film is removed by etching using the resist pattern as a mask, and (d) a state in which the interlayer insulating film is flattened by chemical mechanical polishing. It is.
【図4】従来の化学的機械研磨装置を示す概略断面図で
ある。FIG. 4 is a schematic sectional view showing a conventional chemical mechanical polishing apparatus.
1 第1の層間絶縁膜 2 配線層 3 第2の層間絶縁膜 4 レジストパターン 11 被処理基板 12 キャリア 13 プラテン 14 パッド 15 スラリ供給系 16 ノズル 17 スラリ 18 第1の超音波振動印加手段 19 第2の超音波振動印加手段 20 第1の超音波発振器 21 第2の超音波発振器 22 超音波振動印加手段の制御手段 REFERENCE SIGNS LIST 1 first interlayer insulating film 2 wiring layer 3 second interlayer insulating film 4 resist pattern 11 substrate to be processed 12 carrier 13 platen 14 pad 15 slurry supply system 16 nozzle 17 slurry 18 first ultrasonic vibration applying means 19 second Ultrasonic vibration applying means 20 first ultrasonic oscillator 21 second ultrasonic oscillator 22 control means for ultrasonic vibration applying means
Claims (8)
理基板表面を平坦化する工程を有する化学的機械研磨方
法において、 該被処理基板に超音波を印加しつつ化学的機械研磨を施
すとともに、 化学的機械研磨工程中に、超音波の振幅を段階的に変化
させることを特徴とする化学的機械研磨方法。1. A chemical mechanical polishing method comprising a step of flattening a surface of a substrate having a step by chemical mechanical polishing, wherein the substrate is subjected to chemical mechanical polishing while applying ultrasonic waves to the substrate. A chemical mechanical polishing method characterized in that the amplitude of ultrasonic waves is changed stepwise during the chemical mechanical polishing step.
理基板表面を平坦化する工程を有する化学的機械研磨方
法において、 該被処理基板に超音波を印加しつつ化学的機械研磨を施
すとともに、 化学的機械研磨工程中に、超音波の振幅を連続的に変化
させることを特徴とする化学的機械研磨方法。2. A chemical mechanical polishing method having a step of flattening a surface of a substrate having a step by chemical mechanical polishing, wherein the substrate is subjected to chemical mechanical polishing while applying ultrasonic waves. A chemical mechanical polishing method characterized by continuously changing the amplitude of an ultrasonic wave during a chemical mechanical polishing step.
理基板表面を平坦化する工程を有する化学的機械研磨方
法において、 該被処理基板に超音波を印加しつつ化学的機械研磨を施
すとともに、 化学的機械研磨工程中に、超音波周波数を段階的に変化
させることを特徴とする化学的機械研磨方法。3. A chemical mechanical polishing method comprising a step of flattening a surface of a substrate having a step by chemical mechanical polishing, wherein the substrate is subjected to chemical mechanical polishing while applying ultrasonic waves to the substrate. A chemical mechanical polishing method characterized by gradually changing an ultrasonic frequency during a chemical mechanical polishing step.
理基板表面を平坦化する工程を有する化学的機械研磨方
法において、 該被処理基板に超音波を印加しつつ化学的機械研磨を施
すとともに、 化学的機械研磨工程中に、超音波周波数を連続的に変化
させることを特徴とする化学的機械研磨方法。4. A chemical mechanical polishing method comprising a step of flattening a surface of a substrate having a step by chemical mechanical polishing, wherein the chemical mechanical polishing is performed while applying ultrasonic waves to the substrate to be processed. A chemical mechanical polishing method characterized by continuously changing an ultrasonic frequency during a chemical mechanical polishing step.
理基板表面を平坦化する工程を有する化学的機械研磨方
法において、 該被処理基板に超音波を印加しつつ化学的機械研磨を施
すとともに、 化学的機械研磨工程中に、複数の周波数の超音波を同時
に印加することを特徴とする化学的機械研磨方法。5. A chemical mechanical polishing method comprising a step of flattening a surface of a substrate having a step by chemical mechanical polishing, wherein the substrate is subjected to chemical mechanical polishing while applying ultrasonic waves to the substrate. A chemical mechanical polishing method characterized by simultaneously applying ultrasonic waves of a plurality of frequencies during the chemical mechanical polishing step.
理基板表面を平坦化する工程を有する化学的機械研磨方
法において、 該被処理基板に超音波を印加しつつ化学的機械研磨を施
すとともに、 化学的機械研磨工程中に、超音波を間欠的に印加するこ
とを特徴とする化学的機械研磨方法。6. A chemical mechanical polishing method having a step of flattening a surface of a substrate having a step by chemical mechanical polishing, wherein the chemical mechanical polishing is performed while applying ultrasonic waves to the substrate to be processed. A chemical mechanical polishing method characterized by intermittently applying ultrasonic waves during the chemical mechanical polishing step.
理基板表面を平坦化するための化学的機械研磨装置にお
いて、 該被処理基板への超音波振動印加手段を具備し、 前記超音波振動印加手段の制御手段をさらに有し、 前記制御手段は、前記超音波振動印加手段が印加する超
音波の振幅または周波数の連続的または段階的な変化、
複数の周波数の超音波の同時印加、超音波の間欠的印加
のうちの一つを、前記超音波振動印加手段に行わせるも
のであることを特徴とする化学的機械研磨装置。7. A chemical mechanical polishing apparatus for flattening a surface of a substrate having a step by chemical mechanical polishing, comprising: means for applying ultrasonic vibration to the substrate to be processed; The apparatus further includes control means, wherein the control means continuously or stepwise changes in the amplitude or frequency of the ultrasonic wave applied by the ultrasonic vibration applying means,
A chemical mechanical polishing apparatus characterized in that the ultrasonic vibration applying means performs one of simultaneous application of ultrasonic waves of a plurality of frequencies and intermittent application of ultrasonic waves.
理基板表面を平坦化する工程を含む半導体装置の製造方
法において、 該被処理基板に超音波を印加しつつ化学的機械研磨を施
すとともに、 化学的機械研磨工程中に、印加する超音波の振幅または
周波数の連続的または段階的な変化、複数の周波数の超
音波の同時印加、超音波の間欠的印加のうちの一つを行
うことを特徴とする半導体装置の製造方法。8. A method of manufacturing a semiconductor device including a step of flattening a surface of a substrate having a step by chemical mechanical polishing, wherein the substrate is subjected to chemical mechanical polishing while applying ultrasonic waves to the substrate. during chemical mechanical polishing step, continuous or stepwise variation of the ultrasonic wave amplitude or frequency applied, simultaneous application of ultrasound of a plurality of frequencies, to carry out one of the intermittent application of ultrasound A method for manufacturing a semiconductor device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32071394A JP3353510B2 (en) | 1994-04-21 | 1994-12-22 | Chemical mechanical polishing method, chemical mechanical polishing apparatus, and semiconductor device manufacturing method using the same |
US08/575,139 US5688364A (en) | 1994-12-22 | 1995-12-19 | Chemical-mechanical polishing method and apparatus using ultrasound applied to the carrier and platen |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-82936 | 1994-04-21 | ||
JP8293694 | 1994-04-21 | ||
JP32071394A JP3353510B2 (en) | 1994-04-21 | 1994-12-22 | Chemical mechanical polishing method, chemical mechanical polishing apparatus, and semiconductor device manufacturing method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH088216A JPH088216A (en) | 1996-01-12 |
JP3353510B2 true JP3353510B2 (en) | 2002-12-03 |
Family
ID=26423962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32071394A Expired - Lifetime JP3353510B2 (en) | 1994-04-21 | 1994-12-22 | Chemical mechanical polishing method, chemical mechanical polishing apparatus, and semiconductor device manufacturing method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3353510B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW404876B (en) * | 1997-09-26 | 2000-09-11 | Siemens Ag | Process for chemical-mechanical planarization and equipment for performing said process |
TW498440B (en) | 1998-03-30 | 2002-08-11 | Hitachi Ltd | Manufacture method of semiconductor device |
AU2003221126A1 (en) * | 2002-03-25 | 2003-10-08 | Kazumasa Ohnishi | Lapping device and lapping method |
AU2003235919A1 (en) * | 2002-05-09 | 2003-11-11 | Kazumasa Ohnishi | Lapping device and lapping work method |
JP2005286068A (en) | 2004-03-29 | 2005-10-13 | Canon Inc | Exposure device and method therefor |
JP5082621B2 (en) * | 2007-06-28 | 2012-11-28 | 株式会社ジェイテクト | Workpiece grinding method and processing apparatus |
-
1994
- 1994-12-22 JP JP32071394A patent/JP3353510B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH088216A (en) | 1996-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5688364A (en) | Chemical-mechanical polishing method and apparatus using ultrasound applied to the carrier and platen | |
JP2000301454A (en) | Chemical-mechanical polishing process and constituting element thereof | |
KR100552435B1 (en) | Method of planarizing dielectric layer on semiconductor wafer | |
JPH0621029A (en) | Apparatus and method for chemical- mechanical polishing of semiconductor wafer | |
KR19980016034A (en) | Method of forming wiring of semiconductor element | |
JP3438388B2 (en) | Chemical mechanical polishing method and chemical mechanical polishing apparatus | |
JP3353510B2 (en) | Chemical mechanical polishing method, chemical mechanical polishing apparatus, and semiconductor device manufacturing method using the same | |
JP2001121403A (en) | Chemical mechanical polishing equipment with pressure control circuit | |
JPH0758090A (en) | Method for manufacturing semiconductor layer structure having flat surface | |
JPH0845882A (en) | Manufacture of semiconductor device | |
JPH09139368A (en) | Chemically and mechanically polishing method | |
JPH0722362A (en) | Grinding of semiconductor substrate | |
JPH0911117A (en) | Flattening method and apparatus | |
JPH01302837A (en) | Manufacture of semiconductor substrate | |
JPH1034535A (en) | Method and device for polishing | |
JP3374506B2 (en) | Substrate flattening method | |
JPH08162431A (en) | Flattening method of semiconductor device | |
JP3297787B2 (en) | Method for forming planarizing insulating film | |
JP2801651B2 (en) | Insulating film surface flattening method | |
JPH0555358A (en) | Method for manufacturing semiconductor device | |
JPH08195393A (en) | Formation of metal wiring | |
JP3371392B2 (en) | Manufacturing method of bonded SOI substrate | |
JPH11297694A (en) | Manufacturing semiconductor device | |
TW413859B (en) | Planarization method of DRAM memory cell | |
JP3569411B2 (en) | Apparatus and method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080927 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090927 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090927 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100927 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100927 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110927 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110927 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120927 Year of fee payment: 10 |