JP3351491B2 - Flame-retardant laminated net, manufacturing method and product using the same - Google Patents
Flame-retardant laminated net, manufacturing method and product using the sameInfo
- Publication number
- JP3351491B2 JP3351491B2 JP10850694A JP10850694A JP3351491B2 JP 3351491 B2 JP3351491 B2 JP 3351491B2 JP 10850694 A JP10850694 A JP 10850694A JP 10850694 A JP10850694 A JP 10850694A JP 3351491 B2 JP3351491 B2 JP 3351491B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic
- flame
- elastic resin
- resin
- ppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Laminated Bodies (AREA)
- Artificial Filaments (AREA)
- Nonwoven Fabrics (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、難燃性を有し、優れた
クッション性と耐熱耐久性及び振動吸収性とを有し、リ
サイクルが可能な難燃性積層網状体と製法および該網状
体を用いた布団、家具、ベッド、車両用クッション材等
の製品と製法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flame-retardant laminated net having excellent flame resistance, excellent cushioning properties, heat resistance and vibration absorption, and being recyclable. The present invention relates to products and manufacturing methods such as futons, furniture, beds, and cushioning materials for vehicles using a body.
【0002】[0002]
【従来の技術】現在、家具、ベッド、電車、自動車等の
クッション材に、発泡ウレタン、非弾性捲縮繊維詰綿、
及び非弾性捲縮繊維を接着した樹脂綿や硬綿などが使用
されている。2. Description of the Related Art At present, foamed urethane, inelastic crimped fiber-filled cotton,
Resin cotton and hard cotton to which inelastic crimped fibers are bonded are used.
【0003】しかしながら、発泡−架橋型ウレタンはワ
ディング層やクッション材としての耐久性は極めて良好
だが、透湿透水性に劣り蓄熱性があるため蒸れやすく、
かつ、熱可塑性では無いためリサイクルが困難となり焼
却される場合、焼却炉の損傷が大きく、かつ、有毒ガス
除去に経費が掛かる。このため埋め立てされることが多
くなったが、地盤の安定化が困難なため埋め立て場所が
限定され経費も高くなっていく問題がある。また、加工
性は優れるが製造中に使用される薬品の公害問題なども
ある。また、熱可塑性ポリエステル繊維詰綿では繊維間
が固定されていないため、使用時形態が崩れたり、繊維
が移動して、かつ、捲縮のへたりで嵩高性の低下や弾力
性の低下が問題になる。[0003] However, foamed-crosslinked urethane is extremely good in durability as a wadding layer and a cushion material, but is inferior in moisture permeability and heat storage, so that it is easily stuffed.
In addition, when the incinerator is incinerated because it is not thermoplastic and is difficult to recycle, the incinerator is greatly damaged and toxic gas removal is costly. For this reason, landfills have been increased, but there is a problem in that it is difficult to stabilize the ground, so that landfill locations are limited and costs increase. Further, although the processability is excellent, there is a problem of pollution of chemicals used during the production. In addition, in the case of the cotton filled with thermoplastic polyester fiber, since the space between the fibers is not fixed, the shape at the time of use collapses, the fiber moves, and the crimp set causes a decrease in bulkiness and a decrease in elasticity. become.
【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、架
橋性ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、且つ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。Japanese Patent Application Laid-Open Publication No. Sho 6 (1994) discloses a resin cotton in which polyester fibers are bonded with an adhesive, for example, a rubber using an adhesive as a rubber.
Nos. 0-11352, JP-A-61-141388 and JP-A-61-141391. Further, JP-A-61-1377 discloses a method using a crosslinkable urethane.
No. 32 publication. These cushioning materials are inferior in durability, are not thermoplastic, cannot be recycled because they are not a single composition, and have problems such as complicated workability and pollution of chemicals used during production. .
【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
ある程度変形しても回復するポリエステルエラストマ−
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使われる接着
成分がポリエステルエラストマ−のソフトセグメントと
してはポリアルキレングリコ−ルの含有量が30〜50
重量%、ハ−ドセグメントの酸成分にテレフタル酸を5
0〜80モル%含有し、他の酸成分組成として特公昭6
0−1404号公報に記載された繊維と同様にイソフタ
ル酸を含有して非晶性が増すことになり、融点も180
℃以下となり低溶融粘度として熱接着部分の形成を良く
してアメーバー状の接着部を形成しているが塑性変形し
やいため、及び芯成分が非弾性ポリエステルのため、特
に加熱下での塑性変形が著しくなり、耐熱抗圧縮性が低
下する問題点がある。これらの改良法として、特開平5
−163654号公報にシ−ス成分にイソフタル酸を含
有するポリエステルエラストマ−、コア成分に非弾性ポ
リエステルを用いた熱接着複合繊維のみからなる構造体
が提案されているが上述の理由で加熱下での塑性変形が
著しくなり、耐熱抗圧縮性が低下し、ワディング層やク
ッション材に使用するには問題がある。他方、硬綿の母
材にシリコ−ン油剤を付与して繊維の摩擦係数を下げて
耐久性を向上し、風合いを良くする方法が特開昭63−
158094号公報で提案されている。が、熱接着繊維
の接着性に問題があり、耐久性が劣るのでワディング層
やクッション材に使用するには好ましくない。[0005] Polyester hard cotton, for example, JP-A-58-3
JP-A No. 1150, JP-A-2-154050, JP-A-3-220354, etc., are disclosed in Japanese Patent Application Laid-Open No. Sho 58-58, because the adhesive component of the heat-bonding fiber used is a brittle amorphous polymer. -136828, JP-A-3-
There is a problem that the adhesive portion is brittle and the durability is poor such that the adhesive portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of performing confounding treatment has been proposed in Japanese Patent Application Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is greatly reduced. In addition, there is also complexity in processing. Further, there is a problem that the bonded portion is hardly deformed and it is difficult to provide soft cushioning. For this reason, the adhesive is soft and the polyester elastomer recovers even if deformed to some extent.
Japanese Patent Application Laid-Open No. 4-240219 discloses a thermal bonding fiber using an inelastic polyester as a core component, and WO-91 / 19032, Japanese Patent Application Laid-Open No. 5-156561 discloses a cushioning material using the fiber. It has been proposed in, for example, JP-A-5-163654. When the adhesive component used in this fiber structure is a soft segment of polyester elastomer, the content of polyalkylene glycol is 30 to 50.
5% by weight of terephthalic acid in the acid component of the hard segment
0-80 mol%, and as another acid component composition
In the same manner as the fiber described in JP-A No. 0-1404, isophthalic acid is contained to increase the amorphousness, and the melting point is also 180.
℃ or lower and low melt viscosity to improve the formation of the heat-bonded part to form an amoeboid bonded part, but plastic deformation is easy, and the core component is inelastic polyester, so plastic deformation especially under heating And there is a problem that heat resistance and compression resistance decrease. As these improved methods, Japanese Patent Application Laid-Open
JP-A-163654 proposes a structure composed of only a polyester elastomer containing isophthalic acid as a sheath component and a heat-adhesive conjugate fiber using an inelastic polyester as a core component. Plastic deformation is remarkable, heat resistance and compression resistance are reduced, and there is a problem in using it for wadding layers and cushion materials. On the other hand, Japanese Patent Application Laid-Open No. Sho 63-163 discloses a method in which a silicone oil agent is applied to a hard cotton base material to reduce the friction coefficient of the fiber, thereby improving durability and improving texture.
It has been proposed in US Pat. However, there is a problem in the adhesiveness of the heat-bonding fiber, and the durability is inferior.
【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、細い繊維から構成したクッションとは異なり
表面が凸凹でタッチが悪く、素材がオレフィンのため耐
熱耐久性が著しく劣りワディング層やクッション材には
使用ができないものである。また、特公平3−1766
6号公報には繊度の異なる吐出線条を互いに融着してモ
−ル状物を作る方法があるがクッション材には適さない
網状構造体である。特公平3−55583号公報には、
ごく表面のみ冷却前に回転体等の細化装置で細くする方
法が記載されている。この方法では表面をフラット化で
きず、厚みのある細い線条層を作ることできない。した
がって座り心地の良好なクッション材にはならない。特
開平1−207462号公報では、塩化ビニ−ル製のフ
ロアマットの開示があるが、室温での圧縮回復性が悪
く、耐熱性は著しく悪いので、ワディング材やクッショ
ン材としては好ましくないものである。なお、上述構造
体は難燃性に関する配慮が全くなされていない。A thermoplastic olefin network used for civil engineering is disclosed in JP-A-47-44839. However, unlike a cushion made of fine fibers, the surface is uneven and the touch is poor, and since the material is olefin, the heat resistance is remarkably inferior and cannot be used as a wading layer or a cushion material. In addition, 3-1766
Japanese Patent Application Laid-Open No. 6-204, there is a method in which discharge filaments having different fineness are fused to each other to form a molding, but this is a net-like structure that is not suitable for a cushion material. In Japanese Patent Publication No. 3-55583,
A method is described in which only the very surface is thinned by a thinning device such as a rotating body before cooling. In this method, the surface cannot be flattened, and a thick and thin linear layer cannot be formed. Therefore, the cushioning material does not provide a comfortable sitting comfort. JP-A-1-207462 discloses a floor mat made of vinyl chloride. However, since it has poor compression recovery at room temperature and extremely poor heat resistance, it is not preferable as a wading material or a cushion material. is there. In addition, the structure mentioned above does not consider the flame retardance at all.
【0007】[0007]
【発明が解決しようとする課題】上記問題点を解決し、
振動を遮断し、耐熱耐久性、形態保持性、クッション性
の優れた蒸れ難い、難燃性を有するクッション材に適し
た熱可塑性弾性樹脂と熱可塑性非弾性樹脂からなる難燃
性積層網状体と製法及び難燃性積層網状体を用いた布
団、家具、ベッド、車両用クッション等の製品と製法を
提供することを目的とする。SUMMARY OF THE INVENTION In order to solve the above problems,
A flame-retardant laminated net made of thermoplastic elastic resin and thermoplastic inelastic resin suitable for cushioning material that blocks vibration, has excellent heat resistance, shape retention, cushioning properties, and is resistant to stuffiness and flame retardancy. It is an object of the present invention to provide a product and a product such as a futon, furniture, a bed, and a vehicle cushion using the flame retardant laminated net.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
の手段、即ち本発明は、ソフトセグメント量(A重量
%)と燐含有量(Bppm)が60A+200≦B≦1
00000の関係を満足する熱可塑性弾性樹脂層と燐含
有量が1000〜2000ppmの熱可塑性非弾性樹脂
からなる、それぞれ100000デニ−ル以下の連続し
た線条を曲がりくねらせ互いに接触させて該接触部の大
部分が融着した3次元立体構造を形成したそれぞれの網
状体が積層融着して、その両面が実質的にフラット化さ
れており、見掛密度が0.01〜0.2g/cm3 である
ことを特徴とする難燃性積層網状体、複数のオリフィス
を持つ多列ノズルよりソフトセグメント量(A重量%)
と燐含有量(Bppm)が60A+200≦B≦100
000の関係を満足する熱可塑性弾性樹脂と燐含有量が
1000ppm以上20000ppm以下の熱可塑性非
弾性樹脂を各層になるように各ノズルオリフィスに分配
し、該熱可塑性樹脂の融点より10〜120℃高い溶融
温度で、該ノズルより下方に向けて吐出させ、溶融状態
で互いに接触させて融着させ3次元構造を形成しつつ、
引取り装置で挟み込み冷却槽で冷却せしめる難燃性積層
網状体の製法および戦記難燃性積層網状体を用いた製品
である。Means for solving the above-mentioned problems, ie, the present invention is directed to a method for producing a resin having a soft segment content (A weight%) and a phosphorus content (Bppm) of 60A + 200 ≦ B ≦ 1.
A continuous line of 100,000 denier or less, made of a thermoplastic elastic resin layer satisfying the relationship of 00000 and a thermoplastic inelastic resin having a phosphorus content of 1000 to 2000 ppm, is meandered and brought into contact with each other to form the contact portion. Each of the reticulated bodies forming a three-dimensional three-dimensional structure in which most of the above-mentioned fusing are laminated and fused, both surfaces thereof are substantially flattened, and the apparent density is 0.01 to 0.2 g / cm. 3 , a flame-retardant laminated net, characterized by a soft segment amount (A weight%) from a multi-row nozzle having a plurality of orifices
And the phosphorus content (Bppm) is 60A + 200 ≦ B ≦ 100
000 and a thermoplastic inelastic resin having a phosphorus content of 1000 ppm or more and 20000 ppm or less are distributed to each nozzle orifice so as to be in each layer, and 10 to 120 ° C. higher than the melting point of the thermoplastic resin. At the melting temperature, the liquid is discharged downward from the nozzle, and is brought into contact with each other in a molten state and fused to form a three-dimensional structure.
This is a product using a flame-retardant laminated net which is sandwiched by a take-off device and cooled in a cooling tank, and a product using the flame-retardant laminated net.
【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ルまたは長鎖の炭化水素末端を
カルボン酸または水酸基にしたオレフィン系化合物等を
ブロック共重合したポリエステル系エラストマ−、ポリ
アミド系エラストマ−、ポリウレタン系エラストマ−、
ポリオレフィン系エラストマ−などが挙げられる。熱可
塑性弾性樹脂とすることで、再溶融により再生が可能と
なるため、リサイクルが容易となる。例えば、ポリエス
テル系エラストマ−としては、熱可塑性ポリエステルを
ハ−ドセグメントとし、ポリアルキレンジオ−ルをソフ
トセグメントとするポリエステルエ−テルブロック共重
合体、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエ−テルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダ
イマ−酸等の脂肪族ジカルボン酸または、これらのエス
テル形成性誘導体などから選ばれたジカルボン酸の少な
くとも1種と、1・4ブタンジオ−ル、エチレングリコ
−ル、トリメチレングリコ−ル、テトレメチレングリコ
−ル、ペンタメチレングリコ−ル、ヘキサメチレングリ
コ−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメ
タノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環
族ジオ−ル、またはこれらのエステル形成性誘導体など
から選ばれたジオ−ル成分の少なくとも1種、および平
均分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体等のポリアルキレンジオ−ルのうち少なくとも1種
から構成される三元ブロック共重合体である。ポリエス
テルエステルブロック共重合体としては、上記ジカルボ
ン酸とジオ−ル及び平均分子量が約300〜5000の
ポリラクトン等のポリエステルジオ−ルのうち少なくと
も各1種から構成される三元ブロック共重合体である。
熱接着性、耐加水分解性、伸縮性、耐熱性等を考慮する
と、ジカルボン酸としてはテレフタル酸、または、及び
ナフタレン2・6ジカルボン酸、ジオ−ル成分としては
1・4ブタンジオ−ル、ポリアルキレンジオ−ルとして
はポリテトラメチレングリコ−ルの3元ブロック共重合
体または、ポリエステルジオ−ルとしてポリラクトンの
3元ブロック共重合体が特に好ましい。特殊な例では、
ポリシロキサン系のソフトセグメントを導入したものも
使うこたができる。また、上記エラストマ−に非エラス
トマ−成分をブレンドされたもの、共重合したもの、ポ
リオレフィン系成分をソフトセグメントにしたもの等も
本発明の熱可塑性弾性樹脂に包含される。ポリアミド系
エラストマ−としては、ハ−ドセグメントにナイロン
6、ナイロン66、ナイロン610、ナイロン612、
ナイロン11、ナイロン12等及びそれらの共重合ナイ
ロンを骨格とし、ソフトセグメントには、平均分子量が
約300〜5000のポリエチレングリコ−ル、ポリプ
ロピレングリコ−ル、ポリテトラメチレングリコ−ル、
エチレンオキシド−プロピレンオキシド共重合体等のポ
リアルキレンジオ−ルのうち少なくとも1種から構成さ
れるブロック共重合体を単独または2種類以上混合して
用いてもよい。更には、非エラストマ−成分をブレンド
されたもの、共重合したもの等も本発明に使用できる。
ポリウレタン系エラストマ−としては、通常の溶媒(ジ
メチルホルムアミド、ジメチルアセトアミド等)の存在
または不存在下に、(A)数平均分子量1000〜60
00の末端に水酸基を有するポリエ−テル及び又はポリ
エステルと(B)有機ジイソシアネ−トを主成分とする
ポリイソシアネ−トを反応させた両末端がイソシアネ−
ト基であるプレポリマ−に、(C)ジアミンを主成分と
するポリアミンにより鎖延長したポリウレタンエラスト
マ−を代表例として例示できる。(A)のポリエステ
ル、ポリエ−テル類としては、平均分子量が約1000
〜6000、好ましくは1300〜5000のポリブチ
レンアジペ−ト共重合ポリエステルやポリエチレングリ
コ−ル、ポリプロピレングリコ−ル、ポリテトラメチレ
ングリコ−ル、エチレンオキシド−プロピレンオキシド
共重合体からなるグリコ−ル等のポリアルキレンジオ−
ルが好ましく、(B)のポリイソシアネ−トとしては、
従来公知のポリイソシアネ−トを用いることができる
が、ジフェニルメタン4・4’ジイソシアネ−トを主体
としたイソシアネ−トを用い、必要に応じ従来公知のト
リイソシアネ−ト等を微量添加使用してもよい。(C)
のポリアミンとしては、エチレンジアミン、1・2プロ
ピレンジアミン等公知のジアミンを主体とし、必要に応
じて微量のトリアミン、テトラアミンを併用してもよ
い。これらのポリウレタン系エラストマ−は単独又は2
種類以上混合して用いてもよい。なお、本発明の熱可塑
性弾性樹脂の融点は耐熱耐久性が保持できる140℃以
上が好ましく、160℃以上のものを用いると耐熱耐久
性が向上するのでより好ましい。なお、本発明の網状体
は難燃性を付与するため燐系化合物を含有させるため、
熱安定性が難燃剤を含有しないものよりやや劣るので必
要に応じ、抗酸化剤等を添加して耐熱性や耐久性を向上
させるのが特に好ましい。抗酸化剤は、好ましくはヒン
ダ−ド系抗酸化剤としては、ヒンダ−ドフェノ−ル系と
ヒンダ−ドアミン系があり、窒素を含有しないヒンダ−
ドフェノ−ル系抗酸化剤を1%〜5%添加して熱分解を
抑制すると燃焼時の致死量が少ない有毒ガスの発生を抑
えられるので特に好ましい。本発明の目的である振動や
応力の吸収機能をもたせる成分を構成する熱可塑性弾性
樹脂のソフトセグメント含有量は好ましくは15重量%
以上、より好ましくは30重量%以上であり、耐熱耐へ
たり性からは80重量%以下が好ましく、より好ましく
は70重量%以下である。即ち、本発明の弾性網状体の
振動や応力の吸収機能をもたせる成分のソフトセグメン
ト含有量は好ましくは15重量%以上80重量%以下で
あり、より好ましくは30重量%以上70重量%以下で
ある。In the present invention, the thermoplastic elastic resin is a polyether-based glycol, polyester-based glycol, polycarbonate-based glycol or long-chain hydrocarbon having a molecular weight of 300 to 5000 as a soft segment. Polyester-based elastomer, polyamide-based elastomer, polyurethane-based elastomer, which is obtained by block-copolymerizing an olefinic compound having a carboxylic acid or a hydroxyl group at a terminal.
And polyolefin-based elastomers. By using a thermoplastic elastic resin, regeneration becomes possible by re-melting, so that recycling becomes easy. For example, as a polyester-based elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be exemplified. More specific examples of polyester ether block copolymers include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4 4 'dicarboxylic acid. Alicyclic dicarboxylic acids such as 1.4 cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and at least one dicarboxylic acid selected from ester-forming derivatives thereof; Species and aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, 1.1 cyclohexane Alicyclic diols such as dimethanol and 1,4-cyclohexane dimethanol, or these At least one diol component selected from the group consisting of ester-forming derivatives and polyethylene glycol having an average molecular weight of about 300 to 5,000.
A triblock copolymer composed of at least one of polyalkylenediols such as ethylene glycol, polypropylene glycol, polytetramethylene glycol, and ethylene oxide-propylene oxide copolymer. The polyester ester block copolymer is a ternary block copolymer composed of at least one of each of the above dicarboxylic acids, diols, and polyester diols such as polylactone having an average molecular weight of about 300 to 5,000. .
In consideration of thermal adhesion, hydrolysis resistance, stretchability, heat resistance, etc., terephthalic acid or naphthalene 2.6 dicarboxylic acid as a dicarboxylic acid, 1.4 butanediol as a diol component, poly As the alkylenediol, a triblock copolymer of polytetramethylene glycol or a terpolymer of polyester is particularly preferable. In a special case,
Those having a polysiloxane-based soft segment introduced can also be used. The thermoplastic elastomer resin of the present invention also includes those obtained by blending the above-mentioned elastomer with a non-elastomer component, copolymerized product, and polyolefin-based component made into a soft segment. As the polyamide-based elastomer, the hard segments include nylon 6, nylon 66, nylon 610, nylon 612,
Nylon 11, nylon 12, etc. and their copolymerized nylon are used as the skeleton, and the soft segment includes polyethylene glycol, polypropylene glycol, polytetramethylene glycol having an average molecular weight of about 300 to 5000,
A block copolymer composed of at least one kind of polyalkylenediol such as an ethylene oxide-propylene oxide copolymer may be used alone or as a mixture of two or more kinds. Further, those in which a non-elastomer component is blended or copolymerized can be used in the present invention.
As the polyurethane elastomer, (A) a number average molecular weight of 1000 to 60 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.)
The polyether and / or polyester having a hydroxyl group at the terminal of 00 and (B) a polyisocyanate containing an organic diisocyanate as a main component are reacted at both ends with isocyanate.
As a typical example, (C) a polyurethane elastomer obtained by chain extension with a polyamine containing a diamine as a main component can be exemplified. The polyester and polyethers of (A) have an average molecular weight of about 1000
And 6000, preferably 1300 to 5000, such as polybutylene adipate copolymerized polyester, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and glycols composed of ethylene oxide-propylene oxide copolymer. Polyalkylene dio-
And the polyisocyanate (B) is preferably
A conventionally known polyisocyanate can be used, but an isocyanate mainly composed of diphenylmethane 4.4 'diisocyanate may be used, and a small amount of a conventionally known triisocyanate may be added if necessary. (C)
As the polyamine, mainly known diamines such as ethylenediamine and 1.2 propylenediamine may be used, and trace amounts of triamine and tetraamine may be used in combination as needed. These polyurethane elastomers can be used alone or in combination.
You may mix and use more than one type. In addition, the melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher, which can maintain the heat resistance, and the use of 160 ° C. or higher is more preferable because the heat resistance is improved. The reticulated body of the present invention contains a phosphorus-based compound to impart flame retardancy,
Since the thermal stability is slightly inferior to that containing no flame retardant, it is particularly preferable to add an antioxidant or the like as necessary to improve heat resistance and durability. The antioxidant is preferably a hindered antioxidant, which includes a hindered phenol and a hindered amine, and a nitrogen-free hindered antioxidant.
It is particularly preferable to add 1% to 5% of a dofenol-based antioxidant to suppress thermal decomposition because the generation of toxic gas with a small lethal amount during combustion can be suppressed. The soft segment content of the thermoplastic elastic resin constituting the component having the function of absorbing vibration and stress, which is the object of the present invention, is preferably 15% by weight.
The content is more preferably 30% by weight or more, and is preferably 80% by weight or less, more preferably 70% by weight or less from the viewpoint of heat and sag resistance. That is, the soft segment content of the component having the function of absorbing vibration and stress of the elastic network of the present invention is preferably 15% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less. .
【0010】本発明の難燃性を有する網状体は熱可塑性
弾性樹脂中に燐含有量(Bppm)がソフトセグメント
含有量(A重量%)に対し、60A+200≦B≦10
0000の関係を満足する必要がある。満足しない場合
は難燃性が劣るので好ましくない。100000ppm
を越えると可塑化効果による塑性変形が大きくなり熱可
塑性弾性樹脂の耐熱性が劣るので好ましくない。好まし
い燐含有量(Bppm)はソフトセグメント含有量(A
重量%)に対し、30A+1800≦B≦100000
であり、より好ましい燐含有量(Bppm)はソフトセ
グメント含有量(A重量%)に対し、16A+2600
≦B≦50000である。難燃性は多量のハロゲン化物
と無機物を添加して高度の難燃性を付与する方法がある
が、燃焼時に致死量の少ない有毒なハロゲンガスを多量
に発生し、火災時の中毒の問題があり、焼却時には、焼
却炉の損傷が大きく好ましくない。本発明では、ハロゲ
ン化物の含有量は少なくとも1重量%以下、好ましく
は、ハロゲン化物の含有量は0.5重量%以下、より好
ましくはハロゲン化物を含有しないものである。本発明
の燐系難燃剤としては、例えば、ポリエステル系熱可塑
性弾性樹脂の場合、樹脂重合時に、ハ−ドセグメント部
分に難燃剤として、例えば特開昭51−82392号公
報等に記載された10〔2・3・ジ(2・ヒドロキシエ
トキシ)−カルボニルプロピル〕9・10・ジヒドロ・
9・オキサ・10ホスファフェナレンス・10オキシロ
等のカルボン酸をハ−ドセグメントの酸成分の一部とし
て共重合したポリエステル系熱可塑性弾性樹脂とする方
法や、熱可塑性弾性樹脂に後工程で、例えば、既存化学
物質番号(3)−3735等の燐系化合物を添加して難
燃性を付与することができる。その他、難燃性を付与で
きる難燃剤としては、各種燐酸エステル、亜燐酸エステ
ル、ホスホン酸エステル(必要に応じハロゲン元素を含
有する上記燐酸エステル類)、もしくはこれら燐化合物
から誘導される重合物が例示できる。本発明は、熱可塑
性弾性樹脂中に各種改質剤、添加剤、着色剤等を必要に
応じて添加できる。本発明の難燃性網状体は、難燃性を
付与するために燐を含有させており、この理由は、上記
している如く、安全性の観点から、火災時に発生するシ
アンガス、ハロゲンガス等の致死量の少ない有毒ガスを
できるだけ少なくすることにある。このため、本発明の
難燃性網状体の燃焼ガスの毒性指数は好ましくは6以
下、より好ましくは5.5以下である。また、側地やワ
ディング層にポリエステル繊維を使用される場合が多い
ので、好ましくはポリエステル系熱可塑性弾性樹脂とす
ることで分別せずに再生リサイクルができる。The flame-retardant network of the present invention has a phosphorus content (Bppm) in the thermoplastic elastic resin of 60 A + 200 ≦ B ≦ 10 with respect to the soft segment content (A weight%).
0000 must be satisfied. Unsatisfactory results in poor flame retardancy, which is not preferred. 100000ppm
Exceeding the range is not preferred because the plastic deformation due to the plasticizing effect increases and the heat resistance of the thermoplastic elastic resin deteriorates. The preferred phosphorus content (Bppm) is the soft segment content (A
30A + 1800 ≦ B ≦ 100,000
The more preferable phosphorus content (Bppm) is 16A + 2600 with respect to the soft segment content (A weight%).
≦ B ≦ 50,000. There is a method of imparting high flame retardancy by adding a large amount of halides and inorganic substances, but a large amount of toxic halogen gas with a small lethal amount is generated at the time of combustion, and the problem of poisoning in a fire is reduced. Yes, the incinerator is greatly damaged during incineration, which is not preferable. In the present invention, the content of the halide is at least 1% by weight or less, preferably the content of the halide is 0.5% by weight or less, and more preferably no halide is contained. As the phosphorus-based flame retardant of the present invention, for example, in the case of a polyester-based thermoplastic elastic resin, at the time of resin polymerization, as a flame retardant in a hard segment portion, for example, 10 described in JP-A-51-82392. [2,3-di (2-hydroxyethoxy) -carbonylpropyl] 9,10-dihydro.
A method in which a carboxylic acid such as 9, oxa, 10 phosphaphenylene, or 10 oxylo is copolymerized as a part of an acid component of a hard segment to obtain a polyester-based thermoplastic elastic resin, For example, flame retardancy can be imparted by adding a phosphorus compound such as existing chemical substance number (3) -3735. In addition, examples of the flame retardant capable of imparting flame retardancy include various phosphates, phosphites, phosphonates (the above-mentioned phosphates containing a halogen element as necessary), or polymers derived from these phosphorus compounds. Can be illustrated. In the present invention, various modifiers, additives, coloring agents and the like can be added to the thermoplastic elastic resin as needed. The flame-retardant network of the present invention contains phosphorus for imparting flame retardancy. This is because, as described above, from the viewpoint of safety, cyan gas, halogen gas, etc. generated at the time of fire. The purpose of the present invention is to minimize the amount of toxic gas with low lethality. For this reason, the toxicity index of the combustion gas of the flame-retardant network of the present invention is preferably 6 or less, more preferably 5.5 or less. In addition, since polyester fibers are often used for the side layer and the wadding layer, it is preferable to use a polyester-based thermoplastic elastic resin so that the polyester fiber can be recycled without separation.
【0011】本発明の難燃性積層網状体を構成する熱可
塑性弾性樹脂は、示差走査型熱量計にて測定した融解曲
線において、融点以下に吸熱ピ−クを有するのが好まし
い。融点以下に吸熱ピ−クを有するものは、耐熱耐へた
り性が吸熱ピ−クを有しないものより著しく向上する。
例えば、本発明の好ましいポリエステル系熱可塑性樹脂
として、ハ−ドセグメントの酸成分に剛直性のあるテレ
フタル酸やナフタレン2・6ジカルボン酸などを90モ
ル%以上含有するもの、より好ましくはテレフタル酸や
ナフタレン2・6ジカルボン酸の含有量は95モル%以
上、特に好ましくは100モル%とグリコ−ル成分をエ
ステル交換後、必要な重合度まで重合し、次いで、ポリ
アルキレンジオ−ルとして、好ましくは平均分子量が5
00以上5000以下、特に好ましくは1000以上3
000以下のポリテトラメチレングリコ−ルを15重量
%以上70重量%以下、より好ましくは30重量%以上
60重量%以下共重合量させた場合、ハ−ドセグメント
の酸成分に剛直性のあるテレフタル酸やナフタレン2・
6ジカルボン酸の含有量が多いとハ−ドセグメントの結
晶性が向上し、塑性変形しにくく、かつ、耐熱抗へたり
性が向上するが、溶融熱接着後更に融点より少なくとも
10℃以上低い温度でアニ−リング処理するとより耐熱
抗へたり性が向上する。圧縮歪みを付与してからアニ−
リングすると更に耐熱抗へたり性が向上する。このよう
な処理をした網状構造体の線条を示差走査型熱量計で測
定した融解曲線に室温以上融点以下の温度で吸熱ピーク
をより明確に発現する。なおアニ−リングしない場合は
融解曲線に室温以上融点以下に吸熱ピ−クを発現しな
い。このことから類推するに、アニ−リングにより、ハ
−ドセグメントが再配列され、疑似結晶化様の架橋点が
形成され、耐熱抗へたり性が向上しているのではないか
とも考えられる。(この処理を疑似結晶化処理と定義す
る)この疑似結晶化処理効果は、ポリアミド系弾性樹脂
やポリウレタン系弾性樹脂にも有効である。The thermoplastic elastic resin constituting the flame-retardant laminated net of the present invention preferably has an endothermic peak below the melting point in a melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have remarkably improved heat resistance and sag resistance than those having no endothermic peak.
For example, preferred polyester-based thermoplastic resins of the present invention include those containing 90 mol% or more of rigid terephthalic acid or naphthalene 2.6 dicarboxylic acid in the acid component of the hard segment, more preferably terephthalic acid or the like. The content of naphthalene 2.6 dicarboxylic acid is 95 mol% or more, particularly preferably 100 mol%, and after transesterification of the glycol component, polymerization is carried out to a required degree of polymerization, and then as polyalkylenediol, preferably Average molecular weight of 5
00 or more and 5000 or less, particularly preferably 1000 or more and 3 or less
When the amount of polytetramethylene glycol of 000 or less is copolymerized in the range of 15% by weight to 70% by weight, more preferably 30% by weight or more and 60% by weight or less, terephthalic acid having rigidity in the acid component of the hard segment is obtained. Acid and naphthalene 2.
If the content of 6-dicarboxylic acid is large, the crystallinity of the hard segment is improved, the plastic segment is hardly deformed, and the resistance to heat resistance is improved. When the annealing treatment is performed, heat resistance and sag resistance are further improved. After applying compression strain,
Ringing further improves heat resistance and sag resistance. An endothermic peak more clearly appears at a temperature between room temperature and the melting point in the melting curve of the filaments of the network structure treated by a differential scanning calorimeter. When no annealing is performed, an endothermic peak does not appear in the melting curve from room temperature to the melting point. By analogy with this, it is considered that the annealing may cause rearrangement of the hard segments, form pseudo-crystallization-like cross-linking points, and improve heat resistance and sag resistance. (This process is defined as a pseudo-crystallization process.) This pseudo-crystallization effect is also effective for polyamide-based elastic resins and polyurethane-based elastic resins.
【0012】本発明における熱可塑性非弾性樹脂とは、
ポリエステル、ポリアミド、ポリオレフィン等が例示で
きる。例えば、ポリエステルでは、ポリエチレンテレフ
タレ−ト(PET)、ポリエチレンナフタレ−ト(PE
N)、ポリシクロヘキシレンジメチレンテレフタレ−ト
(PCHDT)、ポリシクロヘキシレンジメチレンナフ
タレ−ト(PCHDN)、ポリブチレンテレフタレ−ト
(PBT)、ポリブチレンナフタレ−ト(PBN)、ポ
リアリレ−ト等、及びそれらの共重合ポリエステル等が
例示できる。ポリアミドでは、ポリカプロラクタム(N
Y6)、ポリヘキサメチレンアジパミド(NY66)、
ポリヘキサメチレンセバカミド(NY6−10)等が例
示できる。ポリオレフィンとしては、ポリプロピレン
(PP)、ポリブテン・1(PB・1)等が例示でき
る。なお、本発明ではガラス転移点温度が少なくとも4
0℃以上のものを使用するのが好ましい。本発明に用い
る熱可塑性非弾性樹脂としては、クッション材の側地に
ポリエステルを用いる場合が多いので、廃棄する場合に
分離せずにリサイクルが可能なクッション素材として、
耐熱性も良好なPET、PEN、PBN、PCHDT等
のポリエステルが特に好ましい。更には、PET、PE
N、PBN、PCHDT等と重縮合して燐含有エステル
形成性化合物を共重合または燐含有難燃剤を含有してな
る難燃性ポリエステル(以下難燃性ポリエステルと略
す)が好ましく、例えば、特開昭51−82392号公
報、特開昭55−7888号公報、特公昭55−416
10号公報等に例示されたものが挙げられる。なお、塩
化ビニ−ルは自己消火性を有するが燃焼すると有毒ガス
を多く発生するので本発明に用いるのは好ましくない。In the present invention, the thermoplastic inelastic resin is
Examples thereof include polyester, polyamide, and polyolefin. For example, in the case of polyester, polyethylene terephthalate (PET), polyethylene naphthalate (PE)
N), polycyclohexylene dimethylene terephthalate (PCHDT), polycyclohexylene dimethylene naphthalate (PCHDN), polybutylene terephthalate (PBT), polybutylene naphthalate (PBN), polyaryle And copolymerized polyesters thereof. For polyamides, polycaprolactam (N
Y6), polyhexamethylene adipamide (NY66),
Examples include polyhexamethylene sebacamide (NY6-10). Examples of the polyolefin include polypropylene (PP) and polybutene-1 (PB-1). In the present invention, the glass transition temperature is at least 4
It is preferable to use one at 0 ° C. or higher. As the thermoplastic inelastic resin used in the present invention, polyester is often used for the side material of the cushioning material, so as a cushioning material that can be recycled without being separated when discarded,
Polyesters such as PET, PEN, PBN, and PCHDT which also have good heat resistance are particularly preferred. Furthermore, PET, PE
Flame-retardant polyesters (hereinafter abbreviated as flame-retardant polyesters) which are polycondensed with N, PBN, PCHDT or the like and copolymerized with a phosphorus-containing ester-forming compound or containing a phosphorus-containing flame retardant are preferred. JP-A-51-82392, JP-A-55-7888, and JP-B-55-416.
No. 10 publication and the like. Although vinyl chloride has self-extinguishing properties, it emits a large amount of toxic gas when burnt, and is not preferred for use in the present invention.
【0013】本発明の難燃性を有する網状体は熱可塑性
非弾性樹脂中に燐含有量1000ppm以上20000
ppm以下含有する。1000ppm未満では、難燃性
が不充分であり、200000ppmを越えると可塑化
効果による塑性変形が大きくなり熱可塑性非弾性樹脂の
耐熱性が劣るので好ましくない。好ましい燐含有量は2
000ppm以上10000ppm以下、より好ましく
は3000ppm以上8000ppmである。難燃性は
多量のハロゲン化物と無機物を添加して高度の難燃性を
付与する方法があるが、燃焼時に致死量の少ない有毒な
ハロゲンガスを多量に発生し、火災時の中毒の問題があ
り、焼却時には、焼却炉の損傷が大きく好ましくない。
本発明では、ハロゲン化物の含有量は少なくとも1重量
%以下、好ましくは、ハロゲン化物の含有量は0.5重
量%以下、より好ましくはハロゲン化物を含有しないも
のである。本発明の燐系難燃剤としては、例えば、ポリ
エステル系熱可塑性非弾性樹脂の場合、樹脂重合時に、
難燃剤として、例えば特開昭51−82392号公報等
に記載された10〔2・3・ジ(2・ヒドロキシエトキ
シ)−カルボニルプロピル〕9・10・ジヒドロ・9・
オキサ・10ホスファフェナレンス・10オキシロ等の
カルボン酸を酸成分の一部として共重合したポリエステ
ル系熱可塑性非弾性樹脂とする方法や、熱可塑性非弾性
樹脂に後工程で、例えば、既存化学物質番号(3)−3
735等の燐系化合物を添加して難燃性を付与すること
ができる。その他、難燃性を付与できる難燃剤として
は、各種燐酸エステル、亜燐酸エステル、ホスホン酸エ
ステル(必要に応じハロゲン元素を含有する上記燐酸エ
ステル類)、もしくはこれら燐化合物から誘導される重
合物が例示できる。本発明は、熱可塑性弾性樹脂中に各
種改質剤、添加剤、着色剤等を必要に応じて添加でき
る。本発明の難燃性網状体は、難燃性を付与するために
燐を含有させており、この理由は、上記している如く、
安全性の観点から、火災時に発生するシアンガス、ハロ
ゲンガス等の致死量の少ない有毒ガスをできるだけ少な
くすることにある。このため、本発明の難燃性網状体の
燃焼ガスの毒性指数は好ましくは6以下、より好ましく
は5.5以下である。また、側地やワディング層にポリ
エステル繊維を使用される場合が多いので、好ましくは
ポリエステル系熱可塑性弾性樹脂とすることで分別せず
に再生リサイクルができる。The flame-retardant net according to the present invention has a phosphorus content of 1000 ppm or more and 20,000 in the thermoplastic inelastic resin.
It contains less than ppm. If it is less than 1000 ppm, the flame retardancy is insufficient, and if it exceeds 200,000 ppm, the plastic deformation due to the plasticizing effect becomes large, and the heat resistance of the thermoplastic inelastic resin is not preferable. The preferred phosphorus content is 2
000 ppm or more and 10000 ppm or less, more preferably 3000 ppm or more and 8000 ppm. There is a method of imparting high flame retardancy by adding a large amount of halides and inorganic substances, but a large amount of toxic halogen gas with a small lethal amount is generated at the time of combustion, and the problem of poisoning in a fire is reduced. Yes, the incinerator is greatly damaged during incineration, which is not preferable.
In the present invention, the content of the halide is at least 1% by weight or less, preferably the content of the halide is 0.5% by weight or less, and more preferably no halide is contained. As the phosphorus-based flame retardant of the present invention, for example, in the case of a polyester-based thermoplastic inelastic resin, at the time of resin polymerization,
As a flame retardant, for example, 10 [2.3-di (2-hydroxyethoxy) -carbonylpropyl] 9.10.dihydro-9.9 described in JP-A-51-82392 and the like.
A method of preparing a polyester-based thermoplastic inelastic resin obtained by copolymerizing a carboxylic acid such as oxa · 10 phosphaphenylene · 10-oxylo as a part of an acid component, or a method of converting a thermoplastic inelastic resin into a post-process using, for example, existing chemicals. Substance number (3) -3
Flame retardancy can be imparted by adding a phosphorus compound such as 735. In addition, examples of the flame retardant capable of imparting flame retardancy include various phosphates, phosphites, phosphonates (the above-mentioned phosphates containing a halogen element as necessary), or polymers derived from these phosphorus compounds. Can be illustrated. In the present invention, various modifiers, additives, coloring agents and the like can be added to the thermoplastic elastic resin as needed. The flame-retardant network of the present invention contains phosphorus in order to impart flame retardancy. The reason for this is as described above.
From the viewpoint of safety, it is an object to minimize the amount of toxic gas with a small lethal amount such as cyan gas and halogen gas generated in a fire. For this reason, the toxicity index of the combustion gas of the flame-retardant network of the present invention is preferably 6 or less, more preferably 5.5 or less. In addition, since polyester fibers are often used for the side layer and the wadding layer, it is preferable to use a polyester-based thermoplastic elastic resin so that the polyester fiber can be recycled without separation.
【0014】本発明は、繊度が100000デニ−ル以
下の連続した線条を曲がりくねらせ互いに接触させて該
接触部の大部分を融着した3次元立体構造体を形成した
燐含有熱可塑性弾性樹脂層と燐含有熱可塑性非弾性樹脂
層とが積層融着して、両面が実質的にフラット化した見
掛け密度が0.01g/cm3 から0.2g/cm3 の難燃
性積層網状体である。クッション材の機能は、基本の繊
度を太くして少し硬くして体型保持を受け持つ層と振動
減衰性の良い成分で密度を少し高くし振動を吸収して振
動を遮断し、適度の沈み込みにより快適な臀部のタッチ
を与えて臀部の圧力分布を均一分散化させる層が一体化
されることで、体型を保持して、応力や振動を一体で変
形し吸収させ座り心地を向上させることができる。本発
明では、クッションの機能を熱可塑性弾性樹脂からなる
融着した3次元立体構造体を形成した網状体に持たせ、
体型保持の機能を熱可塑性非弾性樹脂からなる融着した
3次元立体構造体を形成した網状体に持たせ、接合一体
化して好ましいクッション材の機能を付与できる難燃性
積層網状体である。本発明の積層網状体は、連続線条が
3次元立体構造体を形成し接触部の大部分で融着一体化
された熱可塑性弾性樹脂層と熱可塑性非弾性樹脂層が積
層されて両面が実質的にフラット化されており、外部か
ら与えられた振動を熱可塑性弾性樹脂の振動吸収機能で
大部分の振動を吸収減衰して振動遮断層として働く。
又、局部的に大きい変形応力を与えられた場合でも変形
応力を網状体の表面が実質的にフラット化され接触部の
大部分が融着した熱可塑性弾性樹脂からなる網状体の面
で変形応力を受け止め変形応力を分散させ、熱可塑性弾
性樹脂層で変形を生じて融着一体化した構造体全体が変
形してエネルギ−変換して大部分の変形応力を吸収し、
熱可塑性弾性樹脂層で吸収出来なかった変形は、熱可塑
性弾性樹脂層を介して融着一体化した3次元網状構造体
が形態を保持しつつ全体で変形して熱可塑性非弾性樹脂
で構成した層での個々の線条への応力集中を回避できる
ので熱可塑性非弾性樹脂線条の弾性限界内でも応力を吸
収し易くなり、熱可塑性非弾性樹脂が抗圧縮性を示しつ
つ弾性限界を越えない範囲で変形し、応力が解除される
と熱可塑性非弾性樹脂線条の層も弾性回復し、熱可塑性
弾性樹脂層もゴム弾性を発現し容易に元の形態に回復す
るので耐へたり性が良好であると共に圧縮時の応力に対
する変形歪みが直線的に変化し、座ったとき、低い反発
力で臀部を支えつつ適度の沈み込みを生じるので床つき
感を与えず体型保持機能を発現する。熱可塑性弾性樹脂
のみからなる網状体では柔らか過ぎて沈み込みがやや大
きくなる欠点を本発明は解決し体型保持機能を向上でき
た。公知の非弾性樹脂のみからなる線条で構成した網状
体では、大きい変形を受けるとゴム弾性を持たないので
圧縮変形により塑性変形を生じて回復しなくなり耐久性
が劣る。網状体の表面が実質的にフラット化されてない
場合、局部的な外力は、表面の線条及び接着点部分まで
に選択的に伝達され、応力集中が発生する場合があり、
このような外力に対しては応力集中による疲労が発生し
て耐へたり性が低下する場合がある。なお、外部から変
形応力を伝達される層が熱可塑性弾性樹脂からなる場合
は3次元構造部分で構造全体が変形するので応力集中は
緩和されるが、非弾性樹脂のみからなる場合では、その
まま応力が接着点に集中して構造破壊を生じ回復しなく
なる。更には、表面が実質的にフラット化されてなく凸
凹があると座った時臀部に異物感を与えるため座り心地
が悪くなり好ましくない。なお、線状が連続していない
場合は、繊度が太い網状体では接着点が応力の伝達点と
なるため接着点に著しい応力集中が起こり構造破壊を生
じ耐熱耐久性が劣り好ましくない。融着していない場合
は、形態保持が出来ず、構造体が一体で変形しないた
め、応力集中による疲労現象が起こり耐久性が劣ると同
時に、形態が変形して体型保持ができなくなるので好ま
しくない。本発明のより好ましい融着の程度は、線条が
接触している部分の大半が融着した状態であり、もっと
も好ましくは接触部分が全て融着した状態である。かく
して、連続線条の接触部が大部分融着した3次元立体構
造体を形成し融着一体化した振動吸収性と弾性回復性の
良い熱可塑性弾性樹脂の層と抗圧縮性をもつ熱可塑性非
弾性樹脂の層が積層融着し一体化され、表面が実質的に
フラット化されたクッション材機能を持つ網状体は、表
面から伝達される変形応力を面で受け止め応力の分散を
良くし、個々の線状に掛かる応力を少なくして、形態を
保持しつつ構造全体が変形して変形応力を吸収し、且つ
臀部を支えるクッション性も向上させ、応力が解除され
ると回復し、フレ−ムから伝わる振動も振動吸収性と弾
性回復性の良い熱可塑性弾性樹脂部分が吸収して人体の
共振部分の振動を遮断するため座り心地と耐久性を向上
させることができる。熱可塑性弾性樹脂層と熱可塑性非
弾性樹脂層とが融着接合していない場合は構造全体が一
体で変形しないので、ずり変形を受けると熱可塑性非弾
性層が破壊する場合があり好ましくない。この目的か
ら、本発明の網状体を形成する線条の繊度は熱可塑性弾
性樹脂層及び熱可塑性非弾性樹脂層共に100000デ
ニ−ル以下である。見掛け密度を0.2g/cm3 以下に
した場合、100000デニ−ルを越えると構成本数が
少なくなり、密度斑を生じて部分的に耐久性の悪い構造
ができ、応力集中による疲労が大きくなり耐久性が低下
するので好ましくない。本発明の網状体を構成する線条
の繊度は、繊度が細すぎると抗圧縮性が低くなり過ぎて
変形による応力吸収性が低下するので100デニ−ル以
上である。熱可塑性弾性樹脂層の好ましい範囲は抗圧縮
性の効果が出やすい300デニ−ル以上、構成本数の低
下による構造面の緻密性を損なわない50000デニ−
ル以下である。より好ましくは500デニ−ル以上、1
0000デニ−ル以下である。熱可塑性非弾性樹脂層の
好ましい範囲は抗圧縮性の効果が出やすい500デニ−
ル以上、構成本数の低下による構造面の緻密性を損なわ
ない50000デニ−ル以下である。より好ましくは1
000デニ−ル以上、10000デニ−ル以下である。
本発明の網状体の見掛け密度は、熱可塑性弾性樹脂層及
び熱可塑性非弾性樹脂層共に0.005g/cm3 では反
発力が失われ、振動吸収能力や変形応力吸収能力が不充
分となりクッション機能を発現させにくくなる場合があ
り、0.25g/cm3 以上では反発力が高すぎて座り心
地が悪くなる場合があるので、振動吸収能力や変形応力
吸収機能が生かせてクッション体としての機能が発現さ
れやすい0.01g/cm3 以上0.20g/cm3 以下が
好ましく、より好ましくは0.03g/cm3 以上0.0
8g/cm3 以下である。本発明における網状体は繊度の
異なる線状を見掛け密度との組合せで最適な構成とする
異繊度積層構造とする方法も好ましい実施形態として選
択できる。本発明の網状体の厚みは特に限定されない
が、熱可塑性弾性樹脂層の厚みは5mm未満では応力吸収
機能と応力分散機能が低下するので、好ましい厚みは力
の分散をする面機能と振動や変形応力吸収機能が発現で
きる厚みとして10mm以上であり、より好ましくは20
mm以上である。熱可塑性非弾性樹脂層の厚みは、体型保
持性が発現できる5mm以上、網状体の厚みが50mmとし
た場合、熱可塑性弾性樹脂層の機能が発現できる厚みを
残して30mm以下が好ましく、より好ましくは10mm以
上、20mm未満である。本発明の網状体が融着接合され
た多層網状体としての見掛け密度は0.01g/cm3 か
ら0.2g/cm3 である。0.01g/cm3 未満では体
型保持や振動吸収などのクッション機能が低下するので
好ましくない。0.2g/cm 3 を越えると反発弾性が大
きくなり座り心地が悪くなるので好ましくない。好まし
い見掛け密度は0.02g/cm3 〜0.1g/cm3 であ
り、より好ましくは0.03g/cm3 〜0.06g/cm
3 である。In the present invention, the fineness is less than 100,000 denier.
The lower continuous filaments meander and contact each other
Formed a three-dimensional structure with most of the contact parts fused
Phosphorus-containing thermoplastic elastic resin layer and phosphorus-containing thermoplastic inelastic resin
The layers are fused together and both sides are substantially flattened.
Hanging density is 0.01 g / cmThreeTo 0.2g / cmThreeFlame retardant
It is a flexible laminated network. The function of the cushioning material is
Layers and vibrations that are thicker and slightly harder to maintain body shape
With a component with good damping properties, increase the density a little and absorb
Comfortable buttocks touch by blocking movement and moderate sinking
Layer that gives uniform distribution of pressure on the buttocks
By maintaining body shape, stress and vibration can be changed
It can be shaped and absorbed to improve sitting comfort. Departure
Ming, the function of the cushion is made of thermoplastic elastic resin
The fused three-dimensional three-dimensional structure is formed on the reticulated body,
Made of thermoplastic inelastic resin for function of body shape fused
A three-dimensional three-dimensional structure is formed on a net-like body, which is joined together.
Flame retardant that can be added to provide the function of a preferred cushioning material
It is a laminated net. The laminated mesh of the present invention has a continuous filament.
Form a three-dimensional structure and fuse and integrate at most of the contact area
Laminated thermoplastic elastic resin layer and thermoplastic inelastic resin layer
Layered and substantially flat on both sides,
Vibration given by the thermoplastic elastic resin
Most of the vibrations are absorbed and attenuated and act as a vibration isolation layer.
Deformation even when a large deformation stress is applied locally
Stress is applied to the contact area when the surface of the mesh is substantially flattened.
The surface of a mesh consisting mostly of fused thermoplastic elastic resin
Receives the deformation stress and disperses the deformation stress.
Deformation occurs in the conductive resin layer, and the entire structure that is fused and integrated changes.
Shape and convert energy to absorb most deformation stress,
Deformation that could not be absorbed by the thermoplastic elastic resin layer
Three-dimensional network structure fused and integrated via a conductive elastic resin layer
Deforms as a whole while retaining its shape
Avoids stress concentration on individual filaments in layers composed of
Absorbs stress even within the elastic limit of thermoplastic inelastic resin filaments.
The thermoplastic inelastic resin shows anti-compression properties
Deformation within the range not exceeding the elastic limit and the stress is released
The thermoplastic inelastic resin filament layer also recovers elasticity,
The elastic resin layer also exhibits rubber elasticity and easily recovers its original shape
Therefore, it has good sag resistance and resists stress during compression.
Deformation distortion changes linearly, low rebound when sitting
With a moderate sinking while supporting the buttocks with force, it is with a floor
Develops a function to maintain body shape without giving a feeling. Thermoplastic elastic resin
A net consisting of only
The present invention solves the disadvantages that can be
Was. Net-like structure composed of filaments consisting only of known inelastic resin
Since the body does not have rubber elasticity when subjected to large deformation,
Durability due to compression deformation causes plastic deformation and no recovery
Is inferior. The surface of the mesh is not substantially flattened
In this case, the local external force is
May be selectively transmitted to the
Such external force causes fatigue due to stress concentration.
In some cases, sag resistance may decrease. Note that externally
When the layer to which the shape stress is transmitted is made of thermoplastic elastic resin
Is the stress concentration because the whole structure is deformed in the three-dimensional structure part
It is relaxed, but when it consists only of inelastic resin,
As the stress concentrates on the bonding point, structural failure occurs and it does not recover
Become. Furthermore, the surface is not substantially flattened and is convex.
Concavity gives a feeling of foreign body to the buttocks when sitting
Becomes worse, which is not preferable. In addition, the line shape is not continuous
In the case of a mesh with a large fineness, the point of adhesion is
Causes significant stress concentration at the bonding point, causing structural destruction.
The heat resistance and durability are inferior. When not fused
Cannot maintain the shape and the structure does not deform
As a result, fatigue phenomena occur due to stress concentration, resulting in poor durability.
Sometimes, the shape is deformed and it becomes impossible to maintain
Not good. The more preferred degree of fusion in the present invention is that
Most of the contacting parts are in a fused state.
Also preferably, all the contact portions are in a fused state. Scratch
The three-dimensional solid structure where the contact part of the continuous filament is mostly fused
Vibration absorption and elastic recovery by forming a structure and fusion bonding
Good thermoplastic elastic resin layer and thermoplastic non-compressive
The layer of elastic resin is laminated and fused and integrated, and the surface is substantially
The net with flattened cushioning function is
The deformation stress transmitted from the surface is received by the surface and the dispersion of the stress is
Better, reduce the stress applied to each line,
While retaining, the entire structure is deformed to absorb the deformation stress, and
Improves cushioning to support the buttocks, relieves stress
And the vibration transmitted from the frame is
The thermoplastic elastic resin part with good recovery properties absorbs
Improves sitting comfort and durability to cut off vibration at the resonance part
Can be done. Thermoplastic elastic resin layer and thermoplastic non-plastic
If the elastic resin layer is not fusion bonded, the entire structure
Since it does not deform with the body, it undergoes thermoplastic deformation when subjected to shear deformation
The conductive layer may be broken, which is not preferable. This purpose
The fineness of the filaments forming the network of the present invention is a thermoplastic elasticity.
100000 d for both the thermoplastic resin layer and the thermoplastic inelastic resin layer.
It is less than the nail. 0.2g / cm apparent densityThreeless than
In this case, the number of components exceeds 100,000 denier.
Structure that is less durable and has partially uneven durability due to density unevenness
And increased fatigue due to stress concentration, reducing durability
Is not preferred. Stria constituting the net of the present invention
If the fineness is too small, the anti-compression property will be too low
100 denier or less because stress absorption due to deformation decreases
Above. The preferred range of the thermoplastic elastic resin layer is anti-compression
300 denier or more, which is easy to produce
50,000 denier that does not impair the compactness of the structure due to the lower part
Less than More preferably, 500 denier or more, 1
It is less than 0000 denier. Thermoplastic inelastic resin layer
The preferred range is 500 denier, in which the effect of the anti-compression property is easily exerted.
Or more, the compactness of the structural surface is impaired due to the decrease in the number of components.
Not more than 50,000 denier. More preferably 1
It is not less than 000 denier and not more than 10,000 denier.
The apparent density of the reticulated body of the present invention depends on the thickness of the thermoplastic elastic resin layer.
0.005g / cm for both thermoplastic and inelastic thermoplastic layersThreeThen anti
Loss of power, insufficient vibration absorption capacity and deformation stress absorption capacity
And it may be difficult to achieve the cushion function.
0.25g / cmThreeAbove is repulsion too high and sitting
Because the ground may be bad, vibration absorption capacity and deformation stress
Utilizing the absorption function, the function as a cushion body is expressed
0.01g / cmThree0.20g / cm or moreThreeThe following
Preferably, more preferably, 0.03 g / cmThree0.0 or more
8g / cmThreeIt is as follows. The mesh in the present invention has a fineness.
Optimum configuration by combining different linear shapes with apparent density
A method of forming a laminated structure with different fineness is also selected as a preferred embodiment.
You can choose. The thickness of the mesh body of the present invention is not particularly limited.
However, if the thickness of the thermoplastic elastic resin layer is less than 5 mm, it will absorb stress.
The preferred thickness is the force
Surface function and vibration and deformation stress absorption function
The minimum thickness is 10 mm or more, more preferably 20 mm.
mm or more. The thickness of the thermoplastic inelastic resin layer is
5mm or more that can exhibit durability, and the thickness of the mesh is 50mm
If the thickness is such that the function of the thermoplastic elastic resin layer can be
It is preferably 30 mm or less, more preferably 10 mm or less.
Above, less than 20 mm. The mesh body of the present invention is fusion-bonded.
The apparent density as a multilayered reticulated body is 0.01 g / cmThreeOr
0.2g / cmThreeIt is. 0.01 g / cmThreeLess than body
Cushion functions such as mold holding and vibration absorption are reduced.
Not preferred. 0.2g / cm ThreeBeyond the point of impact resilience
It is not preferable because it becomes difficult to sit comfortably. Preferred
The apparent density is 0.02g / cmThree~ 0.1g / cmThreeIn
More preferably 0.03 g / cmThree~ 0.06g / cm
ThreeIt is.
【0015】本発明の網状体の線条の断面形状は特には
限定されないが、中空断面や異形断面にすることで好ま
しい抗圧縮性(反発力)やタッチを付与することができ
るので特に好ましい。抗圧縮性は繊度や用いる素材のモ
ジュラスにより調整して、繊度を細くしたり、柔らかい
素材では中空率や異形度を高くし初期圧縮応力の勾配を
調整できるし、繊度をやや太くしたり、ややモジュラス
の高い素材では中空率や異形度を低くして座り心地が良
好な抗圧縮性を付与する。中空断面や異形断面の他の効
果として中空率や異形度を高くすることで、同一の抗圧
縮性を付与した場合、より軽量化が可能となり、自動車
等の座席に用いると省エネルギ−化ができ、布団などの
場合は、上げ下ろし時の取扱性が向上する。好ましい抗
圧縮性(反発力)やタッチを付与することができる他の
好ましい方法として、本発明の網状体の線条を複合構造
とする方法がある。複合構造としては、シ−スコア構造
またはサイドバイサイド構造及びそれらの組合せ構造な
どが挙げられる。が、特には熱可塑性弾性樹脂層が大変
形してもエネルギ−変換できない振動や変形応力をエネ
ルギ−変換して回復できる立体3次元構造とするために
線状の表面の50%以上を柔らかい熱可塑性弾性樹脂が
占めるシ−スコア構造またはサイドバイサイド構造及び
それらの組合せ構造などが挙げられる。すなわち、シ−
スコア構造ではシ−ス成分は振動や変形応力をエネルギ
−変換が容易なソフトセグメント含有量が多い熱可塑性
弾性樹脂とし、コア成分はソフトセグメント含有量の少
ない熱可塑性弾性樹脂とし、抗圧縮性を付与することで
適度の沈み込みによる臀部への快適なタッチを与えるこ
とができる。サイドバイサイド構造では振動や変形応力
をエネルギ−変換が容易なソフトセグメント含有量が多
い熱可塑性弾性樹脂の溶融粘度を抗圧縮性を示すソフト
セグメント含有量の少ない熱可塑性弾性樹脂の溶融粘度
より低くして線状の表面を占めるソフトセグメント含有
量が多い熱可塑性弾性樹脂の割合を多くした構造(比喩
的には偏芯シ−ス・コア構造のシ−スに熱可塑性弾性樹
脂を配した様な構造)として線状の表面を占めるソフト
セグメント含有量が多い熱可塑性弾性樹脂の割合を80
%以上としたものが特に好ましく、最も好ましくは線状
の表面を占めるソフトセグメント含有量が多い熱可塑性
弾性樹脂の割合を100%としたシ−スコアである。ソ
フトセグメント含有量が多い熱可塑性弾性樹脂の線状の
表面を占める割合が多くなると、溶融して融着するとき
の流動性が高いので接着が強固になる効果があり、構造
が一体で変形する場合、接着点の応力集中に対する耐疲
労性が向上し、耐熱性や耐久性がより向上する。The cross-sectional shape of the filaments of the mesh body of the present invention is not particularly limited, but a hollow cross-section or an irregular cross-section is particularly preferable because preferable compression resistance (repulsive force) and touch can be imparted. The anti-compression property can be adjusted by fineness and the modulus of the material used to make the fineness thinner.For soft materials, the hollowness and irregularity can be increased to adjust the gradient of the initial compressive stress, and the fineness can be made slightly thicker. A material with a high modulus reduces the hollowness and the degree of irregularity, and imparts good compression resistance to comfortable sitting. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, when the same compression resistance is imparted, the weight can be further reduced, and when used for a seat of an automobile or the like, energy saving can be achieved. In the case of a futon, the handling at the time of raising and lowering is improved. As another preferable method capable of imparting a preferable anti-compression property (repulsive force) and a touch, there is a method of forming a reticular filament of the present invention into a composite structure. Examples of the composite structure include a core-score structure or a side-by-side structure, and a combination structure thereof. However, in order to form a three-dimensional three-dimensional structure in which vibration and deformation stress, which cannot convert energy even if the thermoplastic elastic resin layer undergoes large deformation, can be recovered by converting the energy into energy, 50% or more of the linear surface is soft heat. Examples thereof include a core-score structure or a side-by-side structure occupied by a plastic elastic resin, and a combination thereof. That is,
In the score structure, the sheath component is a thermoplastic elastic resin with a large soft segment content that can easily convert vibration and deformation stress into energy, and the core component is a thermoplastic elastic resin with a small soft segment content to improve anti-compression properties. By giving it, it is possible to give a comfortable touch to the buttocks by moderate sinking. In the side-by-side structure, the melt viscosity of a thermoplastic elastic resin with a large soft segment content that can easily convert vibration and deformation stress into energy is made lower than the melt viscosity of a thermoplastic elastic resin with a small soft segment content that exhibits anti-compression properties. A structure in which the proportion of thermoplastic elastic resin with a large soft segment content occupying a linear surface is increased (figuratively, a structure in which thermoplastic elastic resin is arranged on an eccentric sheet-core structure sheet) The ratio of the thermoplastic elastic resin having a large soft segment content occupying a linear surface
% Is particularly preferred, and most preferably a scoring score when the proportion of the thermoplastic elastic resin having a large soft segment content occupying a linear surface is defined as 100%. When the ratio of the linear surface of the thermoplastic elastic resin having a large soft segment content occupies a large proportion, the fluidity when melting and fusing is high, so that the adhesion becomes strong, and the structure is integrally deformed. In this case, fatigue resistance against stress concentration at the bonding point is improved, and heat resistance and durability are further improved.
【0016】熱可塑性弾性樹脂層と熱可塑性非弾性樹脂
層とが融着接合した積層網状体は両面が実質的にフラッ
ト化されているので、積層網状体と他の網状体、不織
布、編織物、硬綿、フイルム、発泡体、金属等の被熱接
着体とを接着するのに、他の熱接着成分(熱接着不織
布、熱接着繊維、熱接着フィルム、熱接着レジン等)や
接着剤等を用いて一体積層構造体化し、車両用座席、船
舶用座席、車両用、船舶用、病院用等の業務用及び家庭
用ベット、家具用椅子、事務用椅子、布団類等の製品を
得る場合、被接着体面との接触面積を広くできるので、
接着面積が広くなり強固に接着した接着耐久性も良好な
製品を得ることができる。この場合、難燃性の被熱接着
体を用いると難燃性の一体積層構造体を得ることができ
るので、本発明では特に好ましい実施形態である。な
お、積層網状体形成段階から製品化される任意の段階で
上述の疑似結晶化処理を施すことにより、構造体中の熱
可塑性弾性樹脂成分を示差走査型熱量計で測定した融解
曲線に室温以上融点以下の温度に吸熱ピークを持つよう
にすると製品の耐熱耐久性が格段に向上するのでより好
ましい。本発明の積層網状体の熱可塑性弾性樹脂層の線
条を複合構造化して、振動や変形応力をエネルギ−変換
が容易なソフトセグメント含有量が多い低融点の熱可塑
性弾性樹脂を熱接着成分、形態保持成分にソフトセグメ
ント含有量の少ない熱可塑性弾性樹脂とすることで熱接
着機能を付与できる。好ましい熱接着機能付与には、例
えば、シ−スコア構造ではシ−ス成分の振動や変形応力
をエネルギ−変換が容易なソフトセグメント含有量が多
い熱可塑性弾性樹脂を熱接着成分とし、コア成分にソフ
トセグメント含有量の少ない熱可塑性弾性樹脂を網状形
態の保持機能をもたせるための高融点成分とする構成
で、熱接着成分の融点を高融点樹脂の融点より10℃以
上低くしたものを用いることにより熱接着層の機能が付
与できる。好ましい熱接着成分の融点は高融点成分の融
点より15℃から50℃低い融点であり、より好ましく
は20℃から40℃低い融点である。好ましい実施形態
である熱接着機能を持つ本発明の積層網状体は実質的に
表面がフラット化されて、接触部の大部分が融着してい
ることで、網状体、不織布、編織物、硬綿、フイルム、
発泡体、金属等の被熱接着体面との接触面積を広くでき
るので、熱接着面積が広くなり、強固に熱接着した新た
な成形体及び車両用座席、船舶用座席、車両用、船舶
用、病院用等の業務用及び家庭用ベット、家具用椅子、
事務用椅子、布団類になった製品を得ることができる。
なお、新たな成形体及び製品が製品化されるまでの任意
の段階で疑似結晶化処理を施すことにより、構造体中の
熱可塑性弾性樹脂からなる線条を示差走査型熱量計で測
定した融解曲線に室温以上融点以下の温度に吸熱ピーク
を持つようにすると製品の耐熱耐久性が格段に向上した
ものを提供できるのでより好ましい。熱接着時に被接着
体を伸張した状態で接着すると、被接着体は接着層のゴ
ム弾性で伸張された状態が緩和しないので張りのある、
皺になりにくい成形体とすることもできる。Since the laminated net formed by fusion bonding the thermoplastic elastic resin layer and the thermoplastic inelastic resin layer is substantially flat on both sides, the laminated net and other nets, non-woven fabrics and knitted fabrics are formed. Other adhesive components (such as heat-bonded non-woven fabric, heat-bonded fiber, heat-bonded film, heat-bonded resin) and adhesives for bonding with heat-bonded materials such as cotton, film, foam, metal, etc. To obtain products such as vehicle seats, marine seats, commercial and household beds for vehicles, ships, hospitals, etc., furniture chairs, office chairs, futons, etc. , Because the contact area with the surface of the adherend can be widened,
It is possible to obtain a product having a large bonding area and strong bonding and good bonding durability. In this case, the use of a flame-retardant heat-bonded body can provide a flame-retardant integrated laminated structure, and is a particularly preferred embodiment of the present invention. In addition, by performing the above-mentioned pseudo-crystallization treatment at any stage from the formation of the laminated network to the product, the melting curve of the thermoplastic elastic resin component in the structure measured with a differential scanning calorimeter is higher than room temperature. It is more preferable to have an endothermic peak at a temperature lower than the melting point, since the heat resistance of the product is remarkably improved. The filament of the thermoplastic elastic resin layer of the laminated network body of the present invention is formed into a composite structure, and a low melting point thermoplastic elastic resin having a high soft segment content that facilitates energy conversion of vibration and deformation stress is used as a heat bonding component. The use of a thermoplastic elastic resin having a small soft segment content as the shape-retaining component can impart a thermal bonding function. In order to provide a preferable thermal bonding function, for example, in a core-score structure, a thermoplastic elastic resin having a large soft segment content that facilitates energy conversion of vibration and deformation stress of a sheath component is used as a thermal bonding component, and a core component is used as a core component. A structure in which a thermoplastic elastic resin having a small soft segment content is used as a high melting point component to have a function of holding a net-like form, by using a material in which the melting point of the heat bonding component is lower than the melting point of the high melting point resin by 10 ° C. or more. The function of the heat bonding layer can be provided. The preferred melting point of the heat bonding component is a melting point 15 to 50 ° C. lower than the melting point of the high melting component, and more preferably a melting point 20 to 40 ° C. lower. The laminated network of the present invention having a heat bonding function, which is a preferred embodiment, has a substantially flat surface, and most of the contact portions are fused, so that the network, a nonwoven fabric, a knitted woven fabric, a hardened Cotton, film,
Since the area of contact with the surface of the object to be bonded such as foam or metal can be increased, the area of thermal bonding is increased, and a new molded body and a vehicle seat, a boat seat, a vehicle, a boat, etc. Hospital and other commercial and household beds, furniture chairs,
Office chairs and futon products can be obtained.
In addition, by performing pseudo-crystallization treatment at an arbitrary stage until a new molded product and product are commercialized, the melting line measured by a differential scanning calorimeter was used to measure the filaments of the thermoplastic elastic resin in the structure. It is more preferable that the curve has an endothermic peak at a temperature between room temperature and the melting point, since a product having significantly improved heat resistance and durability can be provided. If the adhered body is adhered in the stretched state during heat bonding, the adhered body is stretched due to the rubber elasticity of the adhesive layer, so it is stretched.
A molded article that does not easily wrinkle can be formed.
【0017】次に本発明の製法を述べる。本発明の製法
は、複数のオリフィスを持つ多列ノズルよりソフトセグ
メント量(A重量%)と燐含有量(Bppm)が60A
+200≦B≦100000の関係を満足する熱可塑性
弾性樹脂と燐含有量が1000ppmから20000p
pm含有する熱可塑性非弾性樹脂とを各層にできる様に
各ノズルオリフィスに分配し、該熱可塑性樹脂の融点よ
り10℃以上、120℃未満高い溶融温度で、該ノズル
より下方に向けて吐出させ、溶融状態で互いに接触させ
て融着させ3次元構造を形成しつつ、引取り装置で挟み
込み冷却槽で冷却せしめる難燃性積層網状体の製法であ
り、好ましくは、冷却後から一体成形して製品化に至る
工程で熱可塑性弾性樹脂の融点より少なくとも10℃以
下の温度でアニ−リングする難燃性積層網状体及び製品
の製法である。燐含有熱可塑性弾性樹脂及び燐含有熱可
塑性弾性樹脂は、本発明では、前記の如く、燐化合物を
重合時に添加して共重合する方法と重合後に添加して混
合練り込みする方法ができる。混合練り込みは二軸混練
押出機又はダルメ−ジ、ピン等の混練機能をもつ単軸押
出機を用い、溶融押し出し前に行う場合と、溶融押し出
し時に行う場合を選択できる。難燃剤の定量供給が出来
れば溶融押し出し時に混練するのが最も安価な方法とな
る。固体状の難燃剤は樹脂と共に乾燥混合して偏析しな
いように押出機に供給すれば簡単であるが、液状の難燃
剤は樹脂を混練押出機に定量供給しつつ別途に液状の難
燃剤も定量供給しつつ混練する方法を取るのが最も望ま
しい。例えば、二軸混練押出機のベント穴から液状難燃
剤を定量供給する方法等が例示できる。このような方法
でソフトセグメント量(A重量%)と燐含有量(Bpp
m)が60A+200≦B≦100000の関係を満足
する燐含有量を熱可塑性弾性樹脂及び燐含有量が100
0ppmから20000ppm含有するように熱可塑性
非弾性樹脂に添加して、次いで網状体を形成する。網状
体は、多成分押出機を用い、熱可塑性弾性樹脂と熱可塑
性非弾性樹脂を各単独成分毎に別々に溶融し、ノズル背
面で熱可塑性弾性樹脂を網状体の片面又は両面を構成す
るように分配し、熱可塑性非弾性樹脂を他の部分に分配
してオリフィスより下方へ吐出する。シ−スコアでは、
コア成分を中心から供給し、その回りからシ−ス成分を
合流させ吐出する。サイドバイサイドでは左右又は前後
から各成分を合流させ吐出する。本発明の好ましい実施
形態では、例えば、長手方向の有効幅50mm、ノズルの
幅方向の列の孔間ピッチは10mm一定、列間のピッチが
5mm一定の丸断面のオリフィス形状の場合、熱可塑性弾
性樹脂層を、片面に配する場合は1列目〜7列目、両面
に配する場合は1列目〜6列目と10列目〜11列目に
分配し、熱可塑性非弾性樹脂を他の列に分配して、好ま
しくは、各成分の融点より10℃以上、120℃以下の
同一の溶融温度で、各成分の層が所望の見掛け密度にな
る吐出量、例えば、単孔吐出量は、熱可塑性弾性樹脂層
の部分は2.5g/分、熱可塑性非弾性樹脂層となる部
分は2g/分のように、好ましくは、各成分を各ギヤポ
ンプにてノズルへ溶融状態の熱可塑性樹脂を送り、下方
に向けて各オリフィスより吐出させる。この時の溶融温
度は、熱可塑性樹脂の融点より10℃〜120℃高い温
度である。低融点成分の融点より120℃を越える高い
溶融温度にすると熱分解が著しくなり熱可塑性樹脂の特
性が低下するので好ましくない。他方、高融点成分の融
点より10℃以上高くしないとメルトフラクチャ−を発
生し正常な線条形成が出来なくなり、また、吐出後ル−
プ形成しつつ接触させ融着させる際、線条の温度が低下
して線条同士が融着しなくなり接着が不充分な網状体と
なる場合があり好ましくない。好ましい溶融温度は低融
点成分の融点より20℃から100℃高い温度、より好
ましくは融点より30℃から80℃高い温度であり、高
融点成分の融点より15℃から40℃高い温度、より好
ましくは融点より20℃から30℃高い温度となる同一
の溶融温度で吐出する。好ましい溶融温度は低融点成分
の融点より20℃から100℃高い温度、より好ましく
は融点より30℃から80℃高い温度であり、高融点成
分の融点より15℃から40℃高い温度、より好ましく
は融点より20℃から30℃高い温度となる同一の溶融
温度で吐出させる。複合紡糸の場合は合流直前の溶融温
度差は10℃以下にしないと異常流動を発生し複合形態
の形成が損なわれる場合がある。オリフィスの形状は特
に限定されないが、中空断面(例えば三角中空、丸型中
空、突起つきの中空等となるよう形状)及び、又は異形
断面(例えば三角形、Y型、星型等の断面二次モ−メン
トが高くなる形状)とすることで前記効果以外に溶融状
態の吐出線条が形成する3次元構造が流動緩和し難く
し、逆に接触点での流動時間を長く保持して接着点を強
固にできるので特に好ましい。特開平1−2075号公
報に記載の接着のための加熱をする場合、3次元構造が
緩和し易くなり平面的構造化し、3次元立体構造化が困
難となるので好ましくない。網状体の特性向上効果とし
ては、見掛けの嵩を高くでき軽量化になり、また抗圧縮
性が向上し、弾発性も改良できへたり難くなる。中空断
面では中空率が80%を越えると断面が潰れ易くなるの
で、好ましくは軽量化の効果が発現できる10%以上7
0%以下、より好ましくは20%以上60%以下であ
る。オリフィスの孔間ピッチは線状が形成するル−プが
充分接触できるピッチとする必要がある。緻密な構造に
するには孔間ピッチを短くし、粗密な構造にするには孔
間ピッチを長くする。本発明の孔間ピッチは好ましくは
3mm〜20mm、より好ましくは5mm〜10mmである。本
発明のより好ましい実施形態からは、構成本数を熱可塑
性弾性樹脂層で増やす場合、例えば、1列目から6列目
の孔間ピッチを5mm、10列目と11列目の孔間ピッチ
を6.67mmに変更して各成分の全吐出量を同一で吐出
させれば、熱可塑性弾性樹脂層の見掛け密度を0.05
5g/cm3 、及び0.067g/cm3 、熱可塑性非弾性
樹脂層の見掛け密度を0.041g/cm3 のまま変えず
に構成本数を2倍、及び約1.5倍に増加させた緻密な
熱可塑性弾性樹脂層にできる。勿論、熱可塑性非弾性樹
脂層の特定部分の孔密度をかえて、クッション特性を最
適化することができる。本発明では所望に応じ異密度化
や異繊度化もできる。列間のピッチ又は孔間のピッチも
変えた構成、及び列間と孔間の両方のピッチも変える方
法などで異密度層を形成できる。また、オリフィスの断
面積を変えて吐出時の圧力損失差を付与すると、溶融し
た熱可塑性樹脂を同一ノズルから一定の圧力で押し出さ
れる吐出量が圧力損失の大きいオリフィスほど少なくな
る原理を用いると列内、列間で異繊度線条からなる網状
構造体も製造できる。例えば上述のように7列目から9
列目に熱可塑性非弾性樹脂を分配する場合、7列目から
8列目のオリフィス径を0.7mm、孔間ピッチを5mmと
し、他の列のオリフィス径を1.0mmとすることで非弾
性樹脂の層を2層形成して座り心地や変形応力の分散を
良くすることができる。次いで、該ノズルより下方に向
けて吐出させ、ル−プを形成させつつ溶融状態で互いに
接触させて融着させ3次元構造を形成しつつ、線状が溶
融状態の多層網状構造体両面を引取りネットで挟み込
み、網状体の表面の溶融状態の曲がりくねった吐出線条
を45°以上折り曲げて変形させて表面をフラット化す
ると同時に曲げられていない吐出線条との接触点を接着
して構造を形成後、連続して冷却媒体(通常は室温の水
を用いるのが冷却速度を早くでき、コスト面でも安くな
るので好ましい)で急冷して本発明の3次元立体網状構
造体化した積層網状体を得る。ノズル面と引取り点の距
離は少なくとも40cm以下にすることで吐出線条が冷却
され接触部が融着しなくなることを防ぐのが好ましい。
吐出線条の吐出量5g/分孔以上と多い場合は10cm〜
40cmが好ましく、吐出線条の吐出量5g/分孔未満と
少ない場合は5cm〜20cmが好ましい。積層網状体の厚
みは溶融状態の3次元立体構造体両面を挟み込む引取り
ネットの開口幅(引取りネット間の間隔)で決まる。本
発明では上述の理由から引取りネットの開口幅は5mm以
上とする。次いで水切り乾燥するが冷却媒体中に界面活
性剤等を添加すると、水切りや乾燥がしにくくなった
り、熱可塑性弾性樹脂が膨潤することもあり好ましくな
い。次いで所望の長さまたは形状に切断してクッション
材に用いる。尚、ノズル面と樹脂を固化させる冷却媒体
上に設置した引取りコンベアとの距離、樹脂の溶融粘
度、オリフィスの孔径と吐出量などにより所望のループ
径や線径をきめられる。冷却媒体上に設置した間隔が調
整可能な一対の引取りコンベアで溶融状態の吐出線条を
挟み込み停留させることで互いに接触した部分を融着さ
せつつ、連続して冷却媒体中に引込み固化させ網状構造
体を形成する時、上記コンベアの間隔を調整すること
で、融着した網状体が溶融状態でいる間で厚み調節が可
能となり、所望の厚みのものが得られる。コンベア速度
も速すぎると、接触点の形成が不充分になったり、融着
点が充分に形成されるまでに冷却され、接触部の融着が
不充分になる場合がある。また、速度が遅過ぎると溶融
物が滞留し過ぎ、密度が高くなるので、所望の見掛け密
度に適したコンベア速度を設定する必要がある。本発明
の好ましい方法としては、一旦冷却後、一体成形して製
品化に至る任意の工程で熱可塑性弾性樹脂の融点より少
なくとも10℃以下の温度でアニ−リングよる疑似結晶
化処理を行い積層網状体又は製品を得るのがより好まし
い製法である。疑似結晶化処理温度は、少なくとも融点
(Tm)より10℃以上低く、Tanδのα分散立ち上
がり温度(Tαcr)以上で行う。この処理で、融点以
下に吸熱ピ−クを持ち、疑似結晶化処理しないもの(吸
熱ピ−クを有しないもの)より耐熱耐へたり性が著しく
向上する。本発明の好ましい疑似結晶化処理温度は(T
αcr+10℃)から(Tm−20℃)である。単なる
熱処理により疑似結晶化させると耐熱耐へたり性が向上
する。が更には、10%以上の圧縮変形を付与してアニ
−リングすることで耐熱耐へたり性が著しく向上するの
でより好ましい。また、一旦冷却後、乾燥工程を経する
場合、乾燥温度をアニ−リング温度とすることで同時に
疑似結晶化処理を行うができる。また、製品化する工程
で別途疑似結晶化処理を行うができる。Next, the production method of the present invention will be described. According to the production method of the present invention, the soft segment amount (A weight%) and the phosphorus content (Bppm) are 60 A from a multi-row nozzle having a plurality of orifices.
+ 200 ≦ B ≦ 100,000 thermoplastic elastic resin and phosphorus content from 1000ppm to 20,000p
pm-containing thermoplastic inelastic resin is distributed to each nozzle orifice so as to form each layer, and discharged downward from the nozzle at a melting temperature higher than the melting point of the thermoplastic resin by 10 ° C. or more and less than 120 ° C. This is a method of producing a flame-retardant laminated mesh body which is brought into contact with each other in a molten state and fused to form a three-dimensional structure, sandwiched by a take-off device and cooled by a cooling tank, and is preferably integrally molded after cooling. This is a method for producing a flame-retardant laminated net and an article which are annealed at a temperature of at least 10 ° C. below the melting point of the thermoplastic elastic resin in a process leading to commercialization. In the present invention, the phosphorus-containing thermoplastic elastic resin and the phosphorus-containing thermoplastic elastic resin can be, as described above, a method in which a phosphorus compound is added during polymerization and copolymerized, or a method in which the compound is added after polymerization and mixed and kneaded. Mixing and kneading can be carried out using a twin-screw kneading extruder or a single-screw extruder having a kneading function such as dalmage or pin, and can be selected to be performed before melt extrusion or at the time of melt extrusion. If the flame retardant can be supplied at a constant rate, kneading during melt extrusion is the cheapest method. It is easy if the solid flame retardant is dry-mixed with the resin and fed to the extruder to prevent segregation.However, the liquid flame retardant is supplied to the kneading extruder quantitatively while the liquid flame retardant is separately measured. It is most desirable to adopt a method of kneading while supplying. For example, a method of quantitatively supplying a liquid flame retardant from a vent hole of a twin-screw kneading extruder can be exemplified. In this way, the soft segment amount (A weight%) and the phosphorus content (Bpp
m) satisfying the relationship of 60A + 200 ≦ B ≦ 100000 when the thermoplastic elastic resin and the phosphorus content are 100
0 ppm to 20000 ppm is added to the thermoplastic inelastic resin to form a network. The reticulated body uses a multi-component extruder, and the thermoplastic elastic resin and the thermoplastic inelastic resin are separately melted for each single component, and the thermoplastic elastic resin is formed on one side or both sides of the reticulated body on the back surface of the nozzle. And the thermoplastic inelastic resin is distributed to other portions and discharged below the orifice. In the score,
The core component is supplied from the center, and the sheath component is merged and discharged from around the core component. In side-by-side, each component is merged from right and left or front and rear and discharged. In a preferred embodiment of the present invention, for example, in the case of an orifice having a circular cross section in which the effective width in the longitudinal direction is 50 mm, the pitch between the holes in the row in the width direction of the nozzle is constant at 10 mm, and the pitch between the rows is constant at 5 mm, When the resin layer is arranged on one side, it is distributed in the first to seventh rows, and when arranged on both sides, it is distributed in the first to sixth rows and the tenth to eleventh rows. And preferably, at the same melting temperature of 10 ° C. or more and 120 ° C. or less from the melting point of each component, the discharge amount at which each component layer has a desired apparent density, for example, the single-hole discharge amount is The portion of the thermoplastic elastic resin layer is 2.5 g / min, and the portion of the thermoplastic inelastic resin layer is 2 g / min. And discharge it from each orifice downward. The melting temperature at this time is a temperature higher by 10 ° C. to 120 ° C. than the melting point of the thermoplastic resin. If the melting temperature is higher than the melting point of the low melting point component by more than 120 ° C., the thermal decomposition is remarkable, and the properties of the thermoplastic resin are undesirably reduced. On the other hand, if the melting point is not higher than the melting point of the high melting point component by 10 ° C. or more, melt fracture occurs, making it impossible to form normal filaments.
When contacting and fusing while forming a wire, the temperature of the filaments decreases, and the filaments may not fuse with each other, resulting in a network having insufficient adhesion, which is not preferable. A preferred melting temperature is a temperature 20 ° C. to 100 ° C. higher than the melting point of the low melting point component, more preferably a temperature 30 ° C. to 80 ° C. higher than the melting point, a temperature 15 ° C. to 40 ° C. higher than the melting point of the high melting point component, more preferably Discharge is performed at the same melting temperature that is 20 ° C. to 30 ° C. higher than the melting point. A preferred melting temperature is a temperature 20 ° C. to 100 ° C. higher than the melting point of the low melting point component, more preferably a temperature 30 ° C. to 80 ° C. higher than the melting point, a temperature 15 ° C. to 40 ° C. higher than the melting point of the high melting point component, more preferably Discharge is performed at the same melting temperature that is 20 ° C. to 30 ° C. higher than the melting point. In the case of composite spinning, if the melting temperature difference immediately before merging is not 10 ° C. or less, abnormal flow may occur and the formation of a composite form may be impaired. Although the shape of the orifice is not particularly limited, a hollow cross section (for example, a shape having a triangular hollow, a round hollow, a hollow with a projection, or the like) and a modified cross section (for example, a triangular, Y-shaped, star-shaped, etc. In addition to the above-described effects, the three-dimensional structure formed by the melted discharge filaments is less likely to flow, and conversely, the flow time at the contact point is maintained longer to strengthen the bonding point. It is particularly preferred because it can be In the case of heating for bonding described in Japanese Patent Application Laid-Open No. 1-2075, it is not preferable because the three-dimensional structure is easily relaxed, and it becomes difficult to form a three-dimensional structure. As the effect of improving the properties of the net-like body, the apparent bulk can be increased and the weight can be reduced, and the compression resistance and the resilience can be improved. In the case of a hollow cross section, if the hollow ratio exceeds 80%, the cross section is likely to be crushed.
0% or less, more preferably 20% or more and 60% or less. The pitch between the holes of the orifices must be such that the loop formed by the linear shape can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is increased for a dense structure. The pitch between the holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm. From a more preferred embodiment of the present invention, when the number of components is increased by the thermoplastic elastic resin layer, for example, the pitch between the first to sixth rows is 5 mm, and the pitch between the tenth and eleventh rows is If the total discharge amount of each component is changed to 6.67 mm and the same amount is discharged, the apparent density of the thermoplastic elastic resin layer becomes 0.05.
5 g / cm 3, and 0.067 g / cm 3, increased the apparent density of the thermoplastic non-elastic resin layer 2 fold configuration number without changing leave 0.041 g / cm 3, and about 1.5 times A dense thermoplastic elastic resin layer can be formed. Of course, the cushion properties can be optimized by changing the pore density of a specific portion of the thermoplastic inelastic resin layer. In the present invention, different densities and different finenesses can be obtained as desired. A different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is changed, or a method in which the pitch between both rows and between holes is also changed. Also, if the pressure loss difference at the time of discharge is given by changing the cross-sectional area of the orifice, the discharge amount that is extruded from the same nozzle at a constant pressure from the same nozzle will decrease as the orifice with a larger pressure loss becomes smaller. Among them, a net-like structure composed of different fineness filaments between rows can be manufactured. For example, from the 7th column to 9 as described above
When distributing the thermoplastic inelastic resin to the rows, the orifice diameter in the seventh to eighth rows is set to 0.7 mm, the pitch between the holes is set to 5 mm, and the orifice diameter in the other rows is set to 1.0 mm. By forming two elastic resin layers, it is possible to improve sitting comfort and dispersion of deformation stress. Next, the nozzle is discharged downward from the nozzle, and while being formed into a loop, they are brought into contact with each other in a molten state and fused to form a three-dimensional structure. The wire is sandwiched between the nets, and the surface of the reticulated body is bent and bent at least 45 ° to deform and flatten the surface, and at the same time, the structure is formed by bonding the contact points with the unbent discharge lines. After formation, the laminated network is continuously cooled by a cooling medium (usually, it is preferable to use water at room temperature because the cooling rate can be increased and the cost is reduced), thereby forming a three-dimensional three-dimensional network structure of the present invention. Get. It is preferable that the distance between the nozzle surface and the take-up point is at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion from being fused.
10 cm or more when the discharge amount of discharge line is as large as 5 g / min or more.
It is preferably 40 cm, and in the case where the discharge amount of the discharge filament is as small as 5 g / min or less, it is preferably 5 cm to 20 cm. The thickness of the laminated network is determined by the opening width (interval between the take-off nets) of the take-off net that sandwiches both sides of the molten three-dimensional structure. In the present invention, the opening width of the take-up net is set to 5 mm or more for the above-described reason. Then, drying with water is performed. However, if a surfactant or the like is added to the cooling medium, draining or drying becomes difficult, and the thermoplastic elastic resin may swell, which is not preferable. Next, it is cut into a desired length or shape and used as a cushion material. The desired loop diameter and wire diameter can be determined by the distance between the nozzle surface and a take-off conveyor provided on a cooling medium for solidifying the resin, the melt viscosity of the resin, the hole diameter of the orifice, and the discharge amount. A pair of take-up conveyors with adjustable intervals installed on the cooling medium sandwich the discharge lines in the molten state and stop and fuse the parts in contact with each other, while continuously drawing into the cooling medium and solidifying. When the structure is formed, by adjusting the interval between the conveyors, the thickness can be adjusted while the fused net is in a molten state, and a desired thickness can be obtained. If the conveyor speed is too high, the contact point may be insufficiently formed, or the contact point may be cooled until the fusion point is sufficiently formed, and the fusion of the contact portion may be insufficient. On the other hand, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set a conveyor speed suitable for the desired apparent density. As a preferred method of the present invention, a pseudo-crystallization treatment by annealing is performed at a temperature of at least 10 ° C. below the melting point of the thermoplastic elastic resin in an arbitrary step from molding to product after cooling once, and then forming a laminated network. Obtaining a body or product is a more preferred process. The pseudo-crystallization treatment temperature is at least 10 ° C. lower than the melting point (Tm) and is equal to or higher than the α dispersion rise temperature (Tαcr) of Tan δ. This treatment has an endothermic peak below the melting point, and significantly improves heat resistance and sag resistance as compared with those without the pseudo-crystallization treatment (without the endothermic peak). The preferred pseudo-crystallization temperature of the present invention is (T
αcr + 10 ° C.) to (Tm−20 ° C.). Pseudo crystallization by simple heat treatment improves heat set resistance. However, it is more preferable to perform annealing by giving a compression deformation of 10% or more, since the heat set resistance is remarkably improved. In the case where a drying step is performed after cooling once, the pseudo crystallization treatment can be performed at the same time by setting the drying temperature to the annealing temperature. In addition, a pseudo crystallization process can be separately performed in a process of commercialization.
【0018】本発明の難燃性積層網状体をクッション用
いる場合、その使用目的、使用部位により使用する樹
脂、繊度、ル−プ径、嵩密度を選択する必要がある。例
えば、ソフトなタッチと適度の沈み込みと張りのある膨
らみを付与するためには、低密度で細い繊度、細かいル
−プ径にするのが好ましく、中層のクッション機能も発
現させるには、共振振動数を低くし、適度の硬さと圧縮
時のヒステリシスを直線的に変化させて体型保持性を良
くし、耐久性を保持させるために、中密度で太い繊度、
やや大きいル−プ径の層と低密度で細い繊度、細かいル
−プ径の層を積層一体化した構造にするのが好ましい。
また、3次元構造を損なわない程度に成形型等を用いて
使用目的にあった形状に成形してそのまま側地を被せ車
両用座席、船舶用座席、ベット、椅子、家具等に用いる
ことができる。勿論、用途との関係で要求性能に合うべ
く他の素材、例えば、異なる網状体、短繊維集合体から
なる硬綿クッション材、不織布等と組合せて用いること
も可能である。また、樹脂製造過程以外でも性能を低下
させない範囲で製造過程から成形体に加工し、製品化す
る任意の段階で難燃化、防虫抗菌化、耐熱化、撥水撥油
化、着色、芳香等の機能付与を薬剤添加等の処理加工が
できる。When the flame-retardant laminated net of the present invention is used as a cushion, it is necessary to select the resin, fineness, loop diameter, and bulk density to be used depending on the purpose of use and the site of use. For example, in order to provide a soft touch and a moderate sunk and firm bulge, it is preferable to use a low-density, fine fineness and a small loop diameter. To reduce the frequency, moderately change the hardness and the hysteresis at the time of compression linearly to improve body shape retention and maintain durability, medium density and thick fineness,
It is preferable to adopt a structure in which a layer having a relatively large loop diameter and a layer having a low density, a fine fineness and a small loop diameter are laminated and integrated.
Further, it can be formed into a shape suitable for the purpose of use using a molding die or the like to the extent that the three-dimensional structure is not impaired, and can be used as a vehicle seat, a boat seat, a bed, a chair, furniture, or the like by directly covering the side ground. . Of course, it is also possible to use in combination with other materials, for example, a different net-like material, a hard cotton cushion material composed of a short fiber aggregate, a nonwoven fabric, or the like in order to meet the required performance in relation to the application. In addition to the resin manufacturing process, the product is processed into a molded product from the manufacturing process to the extent that the performance is not degraded, and flame retardation, antibacterial and antibacterial, heat resistance, water and oil repellency, coloring, fragrance etc. The function can be imparted by processing such as adding a drug.
【0019】[0019]
【実施例】以下に実施例で本発明を詳述する。The present invention will be described in detail with reference to the following examples.
【0020】なお、実施例中の評価は以下の方法で行っ
た。 1.融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 2.Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 3.見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値) 4.線条の繊度 試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。各部分の断面写真より各部の断面積(Si)を求
める。また、同様にして得た切片をアセトンでアクリル
樹脂を溶解し、真空脱泡して密度勾配管を用いて40℃
にて測定した比重(SGi)を求める。ついで次式より
線状の9000mの重さを求める。(単位cgs) 繊度=〔(1/n)ΣSi×SGi〕×900000 5.融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 6.難燃性 F−MVSS302法により難燃基準(60秒以下で消
炎する)を満たすものを合格、満たさないものを不合格
と判定した。 7.燃焼ガスの毒性指数 JIS−K−7217の方法で測定した各燃焼ガス量
(mg)を10分間吸入での致死量(mg/10りット
ル)で除した値の積算値で示す。 8.耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a−b)/a×100より算出する。単
位%(n=3の平均値) 9.繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚み(b)を求め、処理前の
厚み(a)から次式、即ち(a−b)/a×100より
算出する。単位%(n=3の平均値) 10. 座り心地 常法により公知の複合紡糸機にて、後述する熱可塑性弾
性樹脂A−1をシ−ス成分、A−2をコア成分となるよ
うに個々に溶融してオリフィス直前で分配し、各吐出量
を50/50重量比で、単孔当たり1.6g/分孔
(0.8g/分:0.8g/分)として紡糸温度245
℃にて吐出し、紡糸速度3500m/分にて得た繊度が
4.1デニ−ル、乾熱160℃での収縮率8%の糸を収
束してトウ状でクリンパ−にて機械巻縮を付与し、64
mmに切断してシ−スコア断面の熱可塑性弾性樹脂からな
る熱接着繊維を得た。母材繊維は、常法により、極限粘
度0.63と0.56のPETを重量比50/50にて
分配し、単孔当たりの吐出量3.0g/分(1.5g/
分:1.5g/分)として紡糸温度285℃にてC型オ
リフィスより吐出し、紡糸速度1300m/分で複合紡
糸し、次いで70℃及び180℃にて2段延伸して得た
延伸糸を64mmに切断し、乾熱160℃にて巻縮を発現
させて得た6デニ−ル、初期引張り抵抗度38g/デニ
−ルの立体巻縮糸を得た。得られた熱接着繊維(30重
量%)及び母材繊維(70重量%)を混合しオ−プナ−
にて予備開繊した後カ−ドで開繊して得たウエッブを目
付け500g/m2 に積層したカ−ドウエッブを、バケ
ットシ−トの形状に切断した積層網状体の熱可塑性弾性
樹脂層側又は熱可塑性弾性樹脂層の厚みが厚い側に、成
形したクッションの見掛けの嵩密度を0.05g/cm3
となるように積層して熱成形用雌金型に入れ、牡金型で
圧縮して詰め込み200℃の熱風にて5分間熱接着成形
してバケットシ−ト状に成形したクッションに東洋紡績
製ハイムからなるポリエステルモケットの側地を被っ
て、座席用フレ−ムにセットして座部は4か所、背部は
6か所の側地止めを入れた座席を作成し、30℃RH7
5%室内で作成した座席にパネラ−を座らせ以下の評価
をおこなった。(n=5) (1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;× (2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎ (4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;× (5) 総合評価: (1)から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。The evaluation in the examples was performed by the following method. 1. Endothermic peak at melting point (Tm) and below the melting point The endothermic peak (melting peak) was obtained from an endothermic curve measured at a heating rate of 20 ° C./min using a Shimadzu TA50 / DSC50 differential thermal analyzer. -H) The temperature was determined. 2. Heat the Tαcr polymer to the melting point + 10 ° C and make the thickness about 300μm.
And a Tan δ (ratio M ″ / tan δ (imaginary elastic modulus M ″ and real part M ′ of elastic modulus) measured at 110 Hz and at a heating rate of 1 ° C./min using a Vibron DDVII model manufactured by Orientec. M ′) is the rise temperature of α-dispersion corresponding to the transition point temperature from the rubber elastic region to the melting region. 3. Apparent density The sample is cut into a size of 15 cm × 15 cm, the height of four places is measured, the volume is determined, and the weight of the sample is indicated by a value obtained by reducing the weight by the volume. (Average value of n = 4) 4. Fineness of filaments Each filamentous portion is cut out from 10 places of the sample, and the cross section is cut out by embedding with an acrylic resin to prepare a section to obtain a photograph of the cross section. The cross-sectional area (Si) of each part is determined from a cross-sectional photograph of each part. Further, the section obtained in the same manner was dissolved in an acrylic resin with acetone, degassed in vacuo, and heated at 40 ° C. using a density gradient tube.
The specific gravity (SGi) measured in is obtained. Next, the linear weight of 9000 m is obtained from the following equation. (Unit cgs) Fineness = [(1 / n) ΣSi × SGi] × 90000000 5. Fusion Check whether the sample is fused by visual judgment. It is judged that what is not separated is fused. 6. Flame Retardancy Those that satisfy the flame retardancy standard (extinguish flame in 60 seconds or less) according to the F-MVSS302 method are judged as pass, and those that do not meet the criteria are judged as fail. 7. Toxicity index of combustion gas It indicates the integrated value of the value obtained by dividing each combustion gas amount (mg) measured by the method of JIS-K-7217 by lethal dose (mg / 10 liters) for inhalation for 10 minutes. 8. Heat resistance and durability (70 ° C residual strain) A sample was cut into a size of 15 cm × 15 cm, compressed by 50%, allowed to stand in dry heat at 70 ° C for 22 hours, cooled to remove the compressive strain, and removed after 1 day of thickness ( b) is calculated, and is calculated from the thickness (a) before the processing according to the following equation, that is, (ab) / a × 100. Unit% (average value of n = 3) 9. Repetitive compressive strain A sample was cut into a size of 15 cm × 15 cm, and 50% in a RH chamber at 25 ° C. and 65% with a Shimadzu servo pulsar.
The compression recovery is repeated at a cycle of 1 Hz until the thickness of the sample reaches 20,000 times, the thickness (b) of the sample after standing for 1 day is determined, and the thickness (a) before the treatment is calculated from the following formula, that is, (ab) / a × Calculated from 100. Unit% (average value of n = 3) 10. Sitting comfort Using a known composite spinning machine, a thermoplastic elastic resin A-1 described later is used as a sheath component and A-2 is used as a core component by a known composite spinning machine. Melted individually and distributed immediately before the orifice, and the spinning temperature is 245 at a 50/50 weight ratio, with 1.6 g / min per hole (0.8 g / min: 0.8 g / min).
At a spinning speed of 3500 m / min, a yarn with a denier of 4.1 denier and a shrinkage of 8% at 160 ° C dry heat was converged and mechanically crimped in a tow-like crimper. And 64
The resultant was cut into mm to obtain a heat-bonded fiber made of a thermoplastic elastic resin having a cross-section of the core. The matrix fiber is obtained by distributing PET having intrinsic viscosity of 0.63 and 0.56 at a weight ratio of 50/50 by a conventional method, and discharging amount of 3.0 g / min (1.5 g / min) per single hole.
Min .: 1.5 g / min.) At a spinning temperature of 285 ° C. from a C-type orifice, and spinning at a spinning speed of 1300 m / min. It was cut into 64 mm, and a three-dimensional crimped yarn having 6 deniers and an initial tensile resistance of 38 g / denier obtained by expressing crimping at 160 ° C. in dry heat was obtained. The obtained heat-bonding fiber (30% by weight) and the base material fiber (70% by weight) were mixed and opened.
The card web obtained by pre-spreading in step (1) and then opening with a card is cut into a bucket sheet shape by laminating a card web laminated to a basis weight of 500 g / m 2 on the thermoplastic elastic resin layer side. Alternatively, the apparent bulk density of the molded cushion is set to 0.05 g / cm 3 on the thicker side of the thermoplastic elastic resin layer.
Into a female mold for thermoforming, compressed with a male mold, packed, and heat-bonded with hot air at 200 ° C. for 5 minutes to form a cushion formed into a bucket sheet. Cover the polyester moquette, and set it on the seating frame to make a seat with four seats and six backrests at the back, 30 ° C RH7
A panel was seated on a seat prepared in a 5% room, and the following evaluation was performed. (N = 5) (1) Feeling of flooring: The degree of feeling "hit" when sitting and hitting the floor was sensually evaluated qualitatively. Not felt; ◎, almost felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: After sitting for two hours, sensationally felt that the part in contact with the buttocks and the inner part of the crotch was stuffy. It was qualitatively evaluated. Almost no: ◎, slight stuffiness; ○, slight stuffiness; △, noticeable stuffiness; × (3) How long to be patient in 8 hours or less: 1 hour; × within 2 hours; △ within 4 hours;
○: 4 hours or more; ◎ (4) The degree of waist fatigue when seated in a seat for 4 hours was qualitatively evaluated sensoryly. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points of ◎ from (1) to (4), ○
Is 3 points, Δ is 2 points, and × is 1 point, 12 points or more do not contain Δ; very good (◎), 12 points or more include Δ; good (○), 10 points or more are × Was evaluated as poor (x), poor x (x), and poor (x).
【0021】実施例1 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤を2%添加し、
混合練込み後ペレット化し、50℃48時間真空乾燥し
て得られた熱可塑性弾性樹脂原料の処方を表1に示す。Example 1 Dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used as a polyester elastomer.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, transesterified by a conventional method, and polytetramethylene glycol (PTMG) was added. -Forming a terester block copolymer elastomer, then adding 2% of an antioxidant,
Table 1 shows the formulation of the thermoplastic elastic resin raw material obtained by mixing, kneading, pelletizing, and vacuum drying at 50 ° C. for 48 hours.
【0022】[0022]
【表1】 [Table 1]
【0023】幅50cm、長さ5cmのノズル有効面に幅方
向の孔間ピッチを1列から6列を5mm、7列から9列を
10mm,10列と11列を6.67mmとし、長さ方向の
孔間ピッチ5mmの千鳥配列としたオリフィス形状は外径
2mm、内径1.6mmでトリプルブリッジの中空形成性断
面としたノズルに、得られた熱可塑性弾性樹脂原料(A
−1及びA−2)を2本の混練機能をもつ押出機にて別
々に定量供給しつつ、難燃剤として既存化学物質番号
(3)−3735を燐含有量10000ppmとなるよ
うに添加して溶融し、酸成分としてジメチルテレフタル
酸と10〔2・3・ジ(2・ヒドロキシエトキシ)−カ
ルボニルプロピル〕9・10・ジヒドロ・9・オキサ・
10ホスファフェナレンス・10オキシロを燐含有量で
10000ppmとなる量と、グリコ−ル成分に1・4
BDを少量の触媒と仕込み、常法によりエステル交換
後、昇温減圧しつつ重縮合せしめて得た相対粘度1.0
の共重合PBTを押出機にて溶融し、A−1とA−2を
オリフィス直前でA−1をシ−ス成分に、A−2をコア
成分となるように(シ−ス/コア:50/50重量比)
1列目から6列目と10列目と11列目に分配し、PB
Tを7列目から9列目に分配し、溶融温度265℃に
て、1列目から6列目の吐出量を758g/分、7列目
から9列目の吐出量を304g/分、10列目と11列
目の吐出量を253g/分にてノズル下方に吐出させ、
ノズル面10cm下に冷却水を配し、幅60cmのステンレ
ス製エンドレスネットを平行に5cm間隔で一対の引取り
コンベアを水面上に一部出るように配して、該溶融状態
の吐出線状を曲がりくねらせル−プを形成して接触部分
を融着させつつ3次元網状構造を形成した積層体の両面
を挟み込みつつ毎分1mの速度で25℃の冷却水中へ引
込み固化させ、次いで100℃の熱風乾燥機中で20分
疑似結晶化処理した後、所定の大きさに切断して得られ
た多層網状体の特性を表−2に示す。実施例1の表面の
熱可塑性弾性樹脂層の網状体は断面形状がシ−スコア構
造の三角おむすび型中空断面で中空率が38%、繊度が
5600デニ−ルの線条で形成しており、平均の見掛け
密度が0.055g/cm3 、燐含有量9000ppm
(60A+200=2780ppm)、裏面側の熱可塑
性弾性樹脂層の網状体は断面形状がシ−スコア構造の三
角おむすび型中空断面で中空率が38%、繊度が750
0デニ−ルの線条で形成しており、平均の見掛け密度が
0.067g/cm3 、燐含有量9000ppm(60A
+200=2780ppm)、中間の熱可塑性非弾性樹
脂層の網状体は断面形状が三角おむすび型の中空断面で
中空率が40%、繊度が9000デニ−ルの線条で形成
しており、平均の見掛け密度が0.041g/cm3 で燐
含有量9000ppm、融着一体化した積層網状体全体
の平均見掛け密度は0.053g/cm3 であった。表2
で明らかなごとく、実施例1は柔らかい弾性樹脂の特性
とやや硬い弾性樹脂の特性を生かせた積層網状構造のた
め耐熱性、常温での耐久性、座り心地ともに優れたクッ
ション機能を有し、難燃性を有し、燃焼ガスの毒性指数
も低い安全性の高いクッション材であった。評価用に作
成した座席も性能が優れていることが判る。In the nozzle effective surface having a width of 50 cm and a length of 5 cm, the pitch between the holes in the width direction is set to 5 mm for 1 to 6 rows, 10 mm for 9 to 9 rows, and 6.67 mm for 10 and 11 rows. The orifice shape in a staggered arrangement with a pitch between holes in the direction of 5 mm is a 2 mm outer diameter, 1.6 mm inner diameter and a triple bridge hollow-forming nozzle, and the obtained thermoplastic elastic resin raw material (A
-1 and A-2) are separately supplied in a constant amount by two extruders having a kneading function, and an existing chemical substance number (3) -3735 is added as a flame retardant so as to have a phosphorus content of 10000 ppm. Is melted, and dimethyl terephthalic acid is added as an acid component to 10 [2.3-di (2-hydroxyethoxy) -carbonylpropyl] 9.10-dihydro-9.oxa.
10 phosphaphenylene / 10 oxylo in an amount of 10000 ppm in terms of phosphorus content and 1.4 parts in the glycol component
BD was charged with a small amount of a catalyst, transesterified by a conventional method, and subjected to polycondensation while increasing the temperature and pressure to obtain a relative viscosity of 1.0.
Is melted by an extruder, and A-1 and A-2 are immediately before the orifice so that A-1 is a sheath component and A-2 is a core component (seise / core: (50/50 weight ratio)
From the first row to the sixth, tenth, and eleventh rows, PB
T is distributed from the seventh column to the ninth column, and at a melting temperature of 265 ° C., the discharge amount of the first to sixth columns is 758 g / min, the discharge amount of the seventh to ninth columns is 304 g / min, The discharge amount of the 10th and 11th columns is discharged below the nozzle at 253 g / min.
Cooling water is placed 10 cm below the nozzle surface, and a pair of take-up conveyors are placed in parallel with stainless steel endless nets having a width of 60 cm at intervals of 5 cm so as to partially emerge above the water surface. While forming a meandering loop and fusing the contact portions while sandwiching both sides of the laminate having a three-dimensional network structure, the laminate is drawn into cooling water at 25 ° C. at a speed of 1 m per minute, and then solidified at 100 ° C. Table 2 shows the characteristics of the multilayer net obtained by pseudo-crystallization treatment in a hot air dryer for 20 minutes and then cutting to a predetermined size. The reticulated body of the thermoplastic elastic resin layer on the surface of Example 1 was formed of a triangular diaper-shaped hollow cross-section having a sheath-core structure, a hollow ratio of 38%, and a fineness of 5600 denier. Average apparent density 0.055 g / cm 3 , phosphorus content 9000 ppm
(60A + 200 = 2780 ppm), the net of the thermoplastic elastic resin layer on the back side has a triangular diaper-shaped hollow cross section having a sea-core structure, a hollow ratio of 38%, and a fineness of 750.
It is formed of 0 denier filaments, has an average apparent density of 0.067 g / cm 3 and a phosphorus content of 9000 ppm (60 A
+ 200 = 2780 ppm), and the mesh of the intermediate thermoplastic inelastic resin layer has a triangular tapered hollow cross section with a hollow ratio of 40% and a fineness of 9000 denier. The apparent density was 0.041 g / cm 3 , the phosphorus content was 9000 ppm, and the average apparent density of the entire laminated and integrated laminated network was 0.053 g / cm 3 . Table 2
As is clear from the above, Example 1 has a cushioning function that is excellent in heat resistance, durability at room temperature, and sitting comfort because of a laminated net structure utilizing characteristics of a soft elastic resin and characteristics of a slightly hard elastic resin. It was a highly safe cushioning material having flammability and low combustion gas toxicity index. It can be seen that the seat created for evaluation also has excellent performance.
【0024】[0024]
【表2】 [Table 2]
【0025】実施例2 ジメチルイソフタレ−ト(DMI)20モル%とDMT
80モル%及び1・4ブタンジオ−ル(1・4BD)を
少量の触媒と仕込み、実施例1の方法と同様にして得た
ポリエステル系熱可塑性弾性樹脂の処方を表1に示す。
オリフィスの孔形状を孔径φ1mmの丸断面としたノズル
を孔形状を孔径φ1mmの丸断面とし、幅方向の孔間ピッ
チを10mm、長さ方向の孔間ピッチを5mmの千鳥配列と
したノズルを用い、熱可塑性弾性樹脂にA−3を用い、
燐含有量9000ppmとなるように難燃剤を添加し
て、1列目から7列目に分配し吐出量710g/分にて
吐出し、熱可塑性非弾性樹脂として実施例1と同様にし
て得た燐含有量9000ppmのPBTを用いて8列目
から11列目に分配し、吐出量410g/分にて吐出し
た以外実施例1と同様にして得た多層網状体のA−3層
の網状体は中実丸断面で繊度9000デニ−ル、平均の
見掛け密度が0.044g/cm3 で燐含有量9000p
pm(60A+200=3320ppm)、PBT層の
網状体は中実丸断面で繊度9100デニ−ル、平均の見
掛け密度が0.047g/cm3 で燐含有量9000pp
m、融着一体化した平均の見掛け密度は0.045g/
cm3 の積層網状体の特性を表2に示す。表2で明らかな
ごとく、実施例2は耐熱性と常温での耐久性は実用上使
用可能で、体型保持性が改善され、座り心地の優れたク
ッション機能を有し、難燃性で、燃焼ガスの毒性指数も
低い安全性の高いクッション材であり、評価用に作成し
た座席も優れていることが判る。Example 2 Dimethyl isophthalate (DMI) 20 mol% and DMT
Table 1 shows the formulation of a polyester-based thermoplastic elastic resin obtained in the same manner as in Example 1 by charging 80 mol% and 1.4 butanediol (1.4 BD) with a small amount of a catalyst.
The orifice has a round cross-section with a diameter of φ1 mm. The nozzle has a round cross-section with a diameter of φ1 mm. The pitch between holes in the width direction is 10 mm, and the pitch between holes in the length direction is 5 mm. Using A-3 as a thermoplastic elastic resin,
A flame retardant was added so as to have a phosphorus content of 9000 ppm, and the mixture was distributed from the first row to the seventh row and discharged at a discharge rate of 710 g / min to obtain a thermoplastic inelastic resin in the same manner as in Example 1. A-3 layer network of a multilayer network obtained in the same manner as in Example 1 except that PBT having a phosphorus content of 9000 ppm was distributed from the 8th to 11th rows and discharged at a discharge rate of 410 g / min. Is a solid round section with a fineness of 9000 denier, an average apparent density of 0.044 g / cm 3 and a phosphorus content of 9000 p
pm (60A + 200 = 3320 ppm), the net of the PBT layer has a solid round cross section of 9100 denier, an average apparent density of 0.047 g / cm 3 and a phosphorus content of 9000 pp.
m, the average apparent density of fused and integrated is 0.045 g /
Table 2 shows the characteristics of the laminated net having a size of cm 3 . As is clear from Table 2, the heat resistance and the durability at room temperature are practically usable in Example 2, the body shape retention is improved, the cushioning function is excellent in sitting comfort, the flame retardancy is high, and the combustion is incombustible. It is a highly safe cushioning material with a low gas toxicity index, and the seats created for evaluation are also excellent.
【0026】実施例3 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで抗酸化
剤2%を添加混合練込み後ペレット化し真空乾燥してポ
リエ−テル系ウレタンポリマ−の処方を表3に示す。Example 3 Polyurethane-based elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG, and 1.4BD as a chain extender were added and polymerized, and then 2% of an antioxidant was added and mixed. After kneading, pelletizing and vacuum drying, the formulation of the polyether urethane polymer is shown in Table 3.
【0027】[0027]
【表3】 [Table 3]
【0028】得られた熱可塑性弾性樹脂(シ−ス成分:
B−1、コア成分:B−2)に燐含有量12000pp
mとなるように難燃剤を添加した以外実施例1と同様に
して得られた熱可塑性弾性樹脂をシ−ス成分にB−1,
コア成分にB−2を用いた以外実施例1と同様にして得
た積層網状体の特性を表2に示す。実施例3はB−1と
B−2の複合化した熱可塑性弾性樹脂層の表面側の線状
の断面形状はシ−スコア構造の三角おむすび型中空断面
で中空率40%、繊度は6200デニ−ル、平均の見掛
け密度が0.055g/cm3 で燐含有量12000pp
m(60A+200=3260ppm)、裏面側は線条
の断面形状がシ−スコア構造の三角おむすび型の中空断
面で中空率40%、繊度が8300デニ−ル、平均の見
掛け密度が0.066g/cm3 で燐含有量12000p
pm(60A+200=3260ppm)、中間のPB
T層は繊度が9000デニ−ル、平均の見掛け密度が
0.041g/cm3 で燐含有量10000ppm、融着
一体化した網状体全体の平均の見掛け密度が0.053
g/cm3 であった。なお、B−1をシ−ス成分に、B−
2をコア成分とし、紡糸温度を200℃とした以外座り
心地の評価で作成した熱接着繊維の製法と同様にして得
た、繊度が4.5デニ−ル、150℃での収縮率が9%
の熱接着繊維を用いた以外座り心地の評価法と同様にし
て座り心地を評価した。実施例3は熱可塑性弾性樹脂に
ウレタンを用いた積層網状体で耐熱性、常温での耐久
性、座り心地ともに優れたクッション機能を有し、難燃
性で、燃焼ガスの毒性指数も低い安全性の高いクッショ
ン材であった。評価用に作成した座席も優れていること
が判る。The obtained thermoplastic elastic resin (seed component:
B-1; core component: B-2) with phosphorus content of 12,000 pp
m, and the thermoplastic elastic resin obtained in the same manner as in Example 1 except that the flame retardant was added so as to obtain a B-1 and B-1
Table 2 shows the properties of the laminated net obtained in the same manner as in Example 1 except that B-2 was used as the core component. In Example 3, the linear cross-sectional shape on the surface side of the composite thermoplastic elastic resin layer of B-1 and B-2 is a triangular diaper-shaped hollow cross section having a sea core structure, a hollow ratio of 40%, and a fineness of 6200 denier. , With an average apparent density of 0.055 g / cm 3 and a phosphorus content of 12,000 pp
m (60A + 200 = 3260 ppm), the back side is a triangular diaper-shaped hollow cross section having a sea-score structure with a hollow core of 40%, a fineness of 8300 denier, and an average apparent density of 0.066 g / cm. 3 with phosphorus content of 12000p
pm (60A + 200 = 3260 ppm), intermediate PB
The T layer has a fineness of 9000 denier, an average apparent density of 0.041 g / cm 3 , a phosphorus content of 10000 ppm, and an average apparent density of 0.053 of the whole of the fused and integrated network.
g / cm 3 . In addition, B-1 is used as a sheath component, and B-
2 was used as a core component, and the fineness was 4.5 denier and the shrinkage at 150 ° C was 9 obtained in the same manner as in the production of the heat-bonded fiber prepared in the evaluation of sitting comfort except that the spinning temperature was 200 ° C. %
The sitting comfort was evaluated in the same manner as the evaluation method of the sitting comfort except that the heat-bonded fiber was used. Example 3 is a laminated net using urethane as a thermoplastic elastic resin, which has excellent heat resistance, durability at room temperature, and a cushion function with excellent sitting comfort, is flame-retardant, and has a low toxicity index of combustion gas. It was a highly cushioning material. It turns out that the seat made for evaluation is also excellent.
【0029】比較例1 固有粘度0.63のポリエチレンテレフタレ−ト(PE
T)単成分のみを用い、燐含有量5000ppmとなる
ように難燃剤を添加して、溶融温度を280℃とした以
外、実施例2と同様にして得た比較例1に用いる網状体
は、繊度が8800デニ−ル、見掛け密度が0.047
g/cm3 、燐含有量5000ppmであった。次いで、
疑似結晶化処理しなかった以外、実施例2と同様にして
得た積層網状体の特性を表2に示す。比較例1は難燃性
を有するが、非弾性ポリエステルからなる網状体のため
耐熱耐久性が悪く、硬くて座り心地も悪いクッション材
である。Comparative Example 1 Polyethylene terephthalate having an intrinsic viscosity of 0.63 (PE
T) The network used in Comparative Example 1 obtained in the same manner as in Example 2 except that only a single component was used and a flame retardant was added so that the phosphorus content was 5000 ppm, and the melting temperature was 280 ° C, Fineness 8800 denier, apparent density 0.047
g / cm 3 and the phosphorus content was 5000 ppm. Then
Table 2 shows the properties of the laminated network obtained in the same manner as in Example 2 except that the pseudo-crystallization treatment was not performed. Comparative Example 1 is a cushioning material which has flame retardancy, but is poor in heat resistance and durability due to a mesh body made of inelastic polyester, and is hard and has poor sitting comfort.
【0030】比較例2 A−3に燐含有量200ppmとなるように難燃剤を添
加し、疑似結晶化処理しなかった以外、実施例2と同様
にして得た積層網状体のA−3層の網状体は中実丸断面
で繊度9000デニ−ル、平均の見掛け密度が0.04
4g/cm3 で燐含有量200ppm(60A+200=
3320ppm)、PBT層の網状体は中実丸断面で繊
度9100デニ−ル、平均の見掛け密度が0.047g
/cm3 で燐含有量9000ppm、融着一体化した平均
の見掛け密度は0.045g/cm 3 の積層網状体の特性
を表2に示す。表2で明らかなごとく、比較例2は座り
心地は良いが、耐熱性や耐久性が劣り、熱可塑性弾性樹
脂層の難燃性が不充分な場合に難燃性も不合格になるク
ッション材の例である。Comparative Example 2 Flame retardant was added to A-3 so that the phosphorus content was 200 ppm.
In addition, the same as Example 2 except that the pseudo-crystallization treatment was not performed.
A-layer net of the laminated net obtained in the above step is a solid round cross section.
With a fineness of 9000 denier and an average apparent density of 0.04
4g / cmThreeWith a phosphorus content of 200 ppm (60A + 200 =
3320 ppm), the mesh of the PBT layer is
Degree 9100 denier, average apparent density 0.047g
/cmThreeWith phosphorus content of 9000 ppm, fusion-integrated average
Has an apparent density of 0.045 g / cm ThreeOf Laminated Network
Are shown in Table 2. As is clear from Table 2, Comparative Example 2 was sitting
Comfortable, but inferior in heat resistance and durability, thermoplastic elastic
If the flame retardancy of the oily layer is insufficient, the flame retardancy will also be rejected.
It is an example of a cushion material.
【0031】比較例3 燐含有量100ppmのPBTを用い、疑似結晶化処理
しなかった以外実施例2と同様にして得た多層網状体の
難燃性は不合格であった。熱可塑性弾性樹脂が難燃性で
も熱可塑性非弾性樹脂が難燃化されないと積層網状体は
難燃性にならない例である。Comparative Example 3 The flame retardancy of the multilayer network obtained in the same manner as in Example 2 except that pseudo crystallization was not performed using PBT having a phosphorus content of 100 ppm was rejected. This is an example in which the laminated network does not become flame-retardant unless the thermoplastic inelastic resin is made flame-retardant even if the thermoplastic elastic resin is flame-retardant.
【0032】比較例4 ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、実施例2
と同様の方法で得た網状体は接着状態が不良で不織布と
も接着しにくく形態保持が悪いため、難燃性、見掛け密
度、70℃残留歪、繰返圧縮歪み、及び座り心地の評価
はしていない。比較例4は形態が固定されていないので
クッション材に適さない例である。Comparative Example 4 Example 2 was repeated except that the take-up conveyor net was arranged 60 cm below the nozzle surface and the pseudo-crystallization treatment was not performed after the take-up conveyor net.
Since the reticulated body obtained by the same method as in Example 1 has a poor adhesion state and is difficult to adhere to the nonwoven fabric and has poor form retention, the flame retardancy, apparent density, 70 ° C residual strain, repeated compression strain, and sitting comfort are evaluated. Not. Comparative Example 4 is an example that is not suitable for a cushion material because the form is not fixed.
【0033】比較例5 A−3に燐含有量を121000ppmとなるように難
燃剤を添加し、疑似結晶化処理しなかった以外、実施例
2と同様にして得たA−3層は中実丸断面で繊度900
0デニ−ルの線条から形成されており、見掛け密度が
0.044g/cm 3 、燐含有量121000ppm(6
0A+200=3320ppm)でPBT層の網状体は
中実丸断面で繊度9100デニ−ル、平均の見掛け密度
が0.047g/cm3 で燐含有量9000ppm、融着
一体化した平均の見掛け密度は0.045g/cm3 の積
層網状体あった。比較例5はA−3層の燐含有量が多量
すぎて、難燃性は合格するが熱可塑性弾性樹脂の特性が
劣化して、座り心地がやや劣り、耐熱性や耐久性が著し
く劣るクッション材の例である。Comparative Example 5 A-3 was difficult to have a phosphorus content of 121000 ppm.
Example except that the fuel was added and the pseudo-crystallization treatment was not performed.
The A-3 layer obtained in the same manner as in Example 2 had a solid round section and a fineness of 900
It is formed from 0 denier filaments and has an apparent density of
0.044g / cm Three, Phosphorus content 121000 ppm (6
0A + 200 = 3320 ppm) and the network of the PBT layer is
9100 denier fine solid round section, average apparent density
Is 0.047 g / cmThreeWith phosphorus content of 9000ppm, fusion
The integrated average apparent density is 0.045 g / cmThreeProduct
There was a layer network. Comparative Example 5 has a large phosphorus content in the A-3 layer.
Too good, the flame retardancy is passed, but the characteristics of thermoplastic elastic resin
Deterioration, seating comfort is slightly inferior, heat resistance and durability are remarkable
This is an example of an inferior cushioning material.
【0034】比較例6 燐含有量21000ppmのPBTを重合して用いた以
外、実施例2と同様にして得た積層網状体は、A−3層
は中実丸断面で繊度9000デニ−ルの線条から形成さ
れており、見掛け密度が0.044g/cm3 、燐含有量
9000ppm(60A+200=3320ppm)で
PBT層の網状体は中実丸断面で繊度9100デニ−
ル、平均の見掛け密度が0.047g/cm3 で燐含有量
21000ppm、融着一体化した平均の見掛け密度は
0.045g/cm3 の積層網状体あった。比較例6はP
BT層の燐含有量が多量過ぎて、難燃性は合格するが熱
可塑性非弾性樹脂の特性が劣化して、座り心地がやや劣
り、耐熱性や耐久性が著しく劣るクッション材の例であ
る。Comparative Example 6 A laminated network obtained in the same manner as in Example 2 except that PBT having a phosphorus content of 21,000 ppm was polymerized was used. The A-3 layer had a solid round cross section and a fineness of 9000 denier. It is formed from filaments, has an apparent density of 0.044 g / cm 3 , a phosphorus content of 9000 ppm (60A + 200 = 3320 ppm), and has a solid round cross-section with a fineness of 9100 denier.
The laminated net had an average apparent density of 0.047 g / cm 3 , a phosphorus content of 21000 ppm, and an average apparent density of 0.045 g / cm 3 integrated by fusion. Comparative Example 6
This is an example of a cushion material in which the phosphorus content of the BT layer is too large and the flame retardancy is passed, but the properties of the thermoplastic inelastic resin are deteriorated, the sitting comfort is slightly inferior, and the heat resistance and durability are extremely inferior. .
【0035】比較例7 単孔当たりの吐出量3g/分にて吐出させ、引取りコン
ベアネットの速度を0.3m/分とし、疑似結晶化処理
しなかった以外実施例2と同様して得た線条繊度がA−
3層、PBT層共に繊度が13000デニ−ルで、網状
体の平均見掛け密度が0.21g/cm3 、燐含有量90
00ppm(60A+200=3320ppm)の積層
網状体の特性を表−2に示す。比較例6は見掛け密度が
高いため、タッチは良好だが座り心地がやや劣り、耐熱
性、耐久性が不充分なクッション材であった。Comparative Example 7 Discharge was performed at a discharge rate of 3 g / min per single hole, the speed of the take-off conveyor net was set to 0.3 m / min, and the same procedure as in Example 2 was performed except that the pseudo-crystallization treatment was not performed. A-line fineness is A-
Each of the three layers and the PBT layer has a fineness of 13,000 denier, an average apparent density of the network of 0.21 g / cm 3 , and a phosphorus content of 90.
Table 2 shows the characteristics of the laminated network at 00 ppm (60A + 200 = 3320 ppm). Comparative Example 6 had a high apparent density, so that the cushioning material was good in touch but slightly inferior in sitting comfort and insufficient in heat resistance and durability.
【0036】比較例8 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ10mm、長さ方向の孔間ピッチ20mmの千鳥配列とし
たオリフィス径φ2mmとしたノズルを用いて、1〜3列
目にA−3を、4〜7列目にPBTを分配し、単孔当た
りの吐出量25g/分にて吐出させて、ノズル面30cm
下に引取りコンベアネットを配して1m/分にて引き取
り、疑似結晶化処理しなかった以外、実施例2と同様に
して得た線条の繊度は113000デニ−ルで、平均の
見掛け密度は0.157g/cm3の積層網状体の特性を
表2に示す。比較例8は難燃性は合格するが、繊度が著
しく太く密度斑のある積層網状体のため、耐熱耐久性が
悪くなり、座り心地もやや悪くなるクッション材であ
る。COMPARATIVE EXAMPLE 8 A nozzle having an orifice diameter of 2 mm in a staggered arrangement having a pitch between holes in the width direction of 10 mm and a pitch between holes in the length direction of 20 mm was formed on the effective surface of a nozzle having a width of 50 cm and a length of 5 cm. A-3 is distributed in the third row, and PBT is distributed in the fourth to seventh rows, and discharged at a discharge rate of 25 g / min per single hole.
The fineness of the filaments obtained in the same manner as in Example 2 except that the take-up conveyor net was arranged below and taken at 1 m / min and not subjected to the pseudo-crystallization treatment was 113000 denier, and the average apparent density Table 2 shows the characteristics of the laminated net having a weight of 0.157 g / cm 3 . Comparative Example 8 is a cushioning material that passes the flame retardancy, but has a remarkably large fineness and a density unevenness, and thus has poor heat resistance and durability, and has a slightly worse sitting comfort.
【0037】比較例9 1列目から7列目にA−3を140g/分、8列目から
11列目に共重合PBTを80g/分供給し、ノズル面
下5cmに引取りコンベアネットを配して引取り、疑似結
晶化処理しなかった以外、実施例2と同様にして得たA
−3層とPBT層が共に、繊度が1800デニ−ル、見
掛け密度0.009g/cm3 の積層網状体は、難燃性は
合格するが、密度が低すぎて座り心地が著しく劣り、耐
熱性、耐久性も不充分なクッション材であった。Comparative Example 9 140 g / min of A-3 was supplied to the first to seventh rows and 80 g / min of copolymerized PBT was supplied to the eighth to eleventh rows, and a take-off conveyor net was placed 5 cm below the nozzle surface. A obtained in the same manner as in Example 2 except that the
The laminated mesh having a fineness of 1800 denier and an apparent density of 0.009 g / cm 3 in both the -3 layer and the PBT layer passes the flame retardancy, but the density is too low and the sitting comfort is extremely poor, and the heat resistance is high. The cushioning material had insufficient properties and durability.
【0038】比較例10 引取りコンベアネット表面が凸凹の引取りコンベア−を
用い、疑似結晶化処理しない以外、実施例2と同様にし
て得たA−3層の線条繊度が9000デニ−ルで、網状
体の平均見掛け密度が0.043g/cm3 、燐含有量9
000ppm(60A+200=3320ppm)、P
BT層の繊度が9100デニ−ル、平均の見掛け密度が
0.047g/cm3 で燐含有量9000ppm、融着一
体化した平均の見掛け密度は0.045g/cm3 の積層
網状体は網状体の表面が凹凸になっているため、見掛け
密度が低いのに耐久性が劣り、熱接着が不充分になり、
異物感を感じる座り心地の劣るクッション材であった。Comparative Example 10 Using a take-up conveyor having a take-up conveyor net having an uneven surface, the filament fineness of the A-3 layer obtained in the same manner as in Example 2 except that the pseudo-crystallization treatment was not performed was 9000 denier. The average apparent density of the reticulated body was 0.043 g / cm 3 , and the phosphorus content was 9
000 ppm (60A + 200 = 3320 ppm), P
The laminated network having a BT layer fineness of 9100 deniers, an average apparent density of 0.047 g / cm 3 , a phosphorus content of 9000 ppm, and a fusion-integrated average apparent density of 0.045 g / cm 3 is a reticulated body. The surface is uneven, so the apparent density is low but the durability is inferior, and the thermal adhesion is insufficient,
The cushioning material was inferior in sitting comfort with a foreign body sensation.
【0039】実施例4 実施例1で得た難燃性積層網状体を長さ120cmに切断
して、座り心地の評価に用いた熱接着繊維と母材繊維を
40/60重量比で混合開繊したウエッブを積層し、見
掛け密度が0.05g/cm3 になるように圧縮して、2
00℃熱風にて熱接着成形し、厚み6cm、幅120cm、
長さ50cm毎にキルティングした幅120cm、長さ20
0cmの側地に入れマットレスを作成した。このマットレ
スをベッドに設置し、25℃RH65%室内にてパネラ
−4人に7時間使用させて寝心地を官能評価した。な
お、ベットにはシ−ツを掛け、掛け布団は1.8kgのダ
ウン/フェザ−:90/10を中綿にしたもの、枕はパ
ネラ−が毎日使用しているものを着用させた。評価結果
は、床つき感がなく、沈み込みが適度で、蒸れを感じな
い快適な寝心地のベットであった。比較のため、密度
0.04g/cm3 で厚み10cmの発泡ウレタン板状体で
同様のマットレスを作成し、ベットに設置して寝心地を
評価した結果、床つき感は少ないが沈み込みが大きくや
や蒸れを感じる寝心地の悪いベットであった。Example 4 The flame-retardant laminated net obtained in Example 1 was cut into a piece having a length of 120 cm, and the heat-bonded fiber and the base fiber used for the evaluation of sitting comfort were mixed and opened at a weight ratio of 40/60. The woven web is laminated and compressed so that the apparent density becomes 0.05 g / cm 3.
Hot-adhesive molding with hot air at 00 ° C, thickness 6cm, width 120cm,
Quilted every 50cm, width 120cm, length 20
Mattresses were made by placing them in a side yard of 0 cm. The mattress was set on a bed, and four panelists used it for 7 hours in a room at 25 ° C. and 65% RH for sensory evaluation of sleeping comfort. In addition, sheets were hung on the bed, the comforter was made of batting 1.8 kg of down / feather: 90/10, and the pillow was worn by the paneler every day. The evaluation result was a bed with a comfortable sleeping feeling without feeling of flooring, moderate sinking, and no stuffiness. For comparison, a similar mattress was made of a urethane foam plate having a density of 0.04 g / cm 3 and a thickness of 10 cm, and was placed on a bed to evaluate the sleeping comfort. It was an uncomfortable bed that felt stuffy.
【0040】実施例5 実施例4で得た不織布を積層熱成形した難燃性積層網状
体を幅38cm、長さ40cmでコ−ナ−をア−ル10cmと
した形状に切断し、座り心地評価用に用いたポリエステ
ルモケットを側地にして事務椅子フレ−ムに設置し、市
販のポリウレタンをクッションに使用した事務椅子と対
比させて、座り心地を4時間座らせ評価した結果、蒸れ
感、床つき感、座ったまま我慢できる時間は、本発明の
難燃性積層網状体を用いたものが著しく優れていた。Example 5 The flame-retardant laminated net obtained by laminating and thermoforming the nonwoven fabric obtained in Example 4 was cut into a shape having a width of 38 cm, a length of 40 cm and a corner of 10 cm to provide a comfortable seat. The polyester moquette used for evaluation was placed on the side of the office chair frame, and compared with the office chair using a commercially available polyurethane cushion, sitting comfort was evaluated for 4 hours. The feeling of flooring and the time during which the patient can stand while sitting was remarkably excellent in the case of using the flame-retardant laminated net of the present invention.
【0041】[0041]
【発明の効果】振動や応力吸収性の良い燐含有熱可塑性
弾性樹脂から成る線条層と抗圧縮性を示す燐含有熱可塑
性非弾性樹脂から成る線条層とが3次元立体構造を形成
し融着一体化した表面が実質的にフラット化された難燃
性積層網状体は、振動遮断性、耐熱耐久性、嵩高性、座
り心地の良く蒸れにくい、且つ難燃性で燃焼ガスの毒性
指数が低い安全性の高いクッション材であり、そのまま
側地を被せて又は、他の素材との併用で、上記の好まし
い特性を付与した車両用座席、船舶用座席、車両用、船
舶用、病院やホテル等の業務用ベット、家具用クッショ
ン、寝装用品等の製品を提供できる。更には、車両用や
建築資材としての内装材や断熱材等にも有用なものであ
る。According to the present invention, a striated layer made of a phosphorus-containing thermoplastic elastic resin having good vibration and stress absorption and a striated layer made of a phosphorus-containing thermoplastic inelastic resin having anti-compression properties form a three-dimensional structure. The flame-retardant laminated mesh body with a flattened surface that is fused and integrated is a vibration-insulating property, heat-resistant and durable, bulky, comfortable to sit, is not easily stuffed, and is flame-retardant. Is a low safety cushioning material, covering the side land as it is, or in combination with other materials, vehicle seats, marine seats, vehicles, marine, hospitals and the like that have been given the preferred characteristics described above Products such as beds for business use such as hotels, cushions for furniture, bedding products and the like can be provided. Further, it is also useful for interior materials and heat insulating materials for vehicles and building materials.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI D04H 3/16 D04H 3/16 (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 B68G 1/00 - 15/00 B32B 1/00 - 32/00 D01F 1/00 - 13/04 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 7 identification code FI D04H 3/16 D04H 3/16 (58) Field surveyed (Int.Cl. 7 , DB name) D04H 1/00-18/00 B68G 1/00-15/00 B32B 1/00-32/00 D01F 1/00-13/04
Claims (6)
有量(Bppm)が60A+200≦B≦100000
の関係を満足する熱可塑性弾性樹脂層と燐含有量が10
00〜2000ppmの熱可塑性非弾性樹脂からなる、
それぞれ100000デニ−ル以下の連続した線条を曲
がりくねらせ互いに接触させて該接触部の大部分が融着
した3次元立体構造を形成したそれぞれの網状体が積層
融着して、その両面が実質的にフラット化されており、
見掛密度が0.01〜0.2g/cm3 であることを特徴
とする難燃性積層網状体。1. The amount of soft segment (A weight%) and phosphorus content (Bppm) are 60A + 200 ≦ B ≦ 100,000.
And a phosphorus content of 10 which satisfies the relationship of
Consisting of 00 to 2000 ppm of a thermoplastic inelastic resin,
The continuous filaments each having a density of 100,000 denier or less are meandered and brought into contact with each other to form a three-dimensional three-dimensional structure in which most of the contact portions are fused. Is virtually flattened,
A flame-retardant laminated net having an apparent density of 0.01 to 0.2 g / cm 3 .
及び異形断面である請求項1記載の難燃性積層網状体。2. The flame-retardant laminated net according to claim 1, wherein the cross section of the continuous filament is a hollow cross section or an irregular cross section.
脂が示差走査型熱量計で測定した融解曲線に室温以上融
点以下の温度に吸熱ピークを有する請求項1記載の難燃
性積層網状体。3. The flame-retardant laminated net according to claim 1, wherein the thermoplastic elastic resin constituting the continuous filament has an endothermic peak in a melting curve measured by a differential scanning calorimeter at a temperature from room temperature to a melting point. .
ソフトセグメント量(A重量%)と燐含有量(Bpp
m)が60A+200≦B≦100000の関係を満足
する熱可塑性弾性樹脂と燐含有量が1000ppm以上
20000ppm以下の熱可塑性非弾性樹脂を各層にな
るように各ノズルオリフィスに分配し、該熱可塑性樹脂
の融点より10〜120℃高い溶融温度で、該ノズルよ
り下方に向けて吐出させ、溶融状態で互いに接触させて
融着させ3次元構造を形成しつつ、引取り装置で挟み込
み冷却槽で冷却せしめる難燃性積層網状体の製法。4. A multi-segment nozzle having a plurality of orifices has a soft segment amount (A weight%) and a phosphorus content (Bpp).
m) A thermoplastic elastic resin satisfying the relationship of 60A + 200 ≦ B ≦ 100000 and a thermoplastic inelastic resin having a phosphorus content of 1,000 ppm or more and 20,000 ppm or less are distributed to each nozzle orifice so as to be in each layer, and the thermoplastic resin is At a melting temperature of 10 to 120 ° C. higher than the melting point, it is difficult to be discharged downward from the nozzle, contacted with each other in a molten state and fused to form a three-dimensional structure, sandwiched by a take-off device, and cooled in a cooling tank. A method for producing a laminated flammable network.
程で熱可塑性弾性樹脂の融点より少なくとも10℃以下
の温度でアニ−リングする請求項4に記載の難燃性積層
網状体。5. The flame-retardant laminated net according to claim 4, wherein annealing is performed at a temperature of at least 10 ° C. below the melting point of the thermoplastic elastic resin in a step of forming the product after cooling and integrally forming the product.
いた車両用座席、船舶用座席、車両用、船舶用、病院用
等の業務用及び家庭用ベット、家具用椅子、事務用椅子
および布団のいずれかに記載の製品。6. A vehicle seat, a boat seat, a commercial or household bed, a furniture chair, office work, etc., using the flame-retardant laminated net according to claim 1. The product according to any of the chairs and futons.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10850694A JP3351491B2 (en) | 1994-05-23 | 1994-05-23 | Flame-retardant laminated net, manufacturing method and product using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10850694A JP3351491B2 (en) | 1994-05-23 | 1994-05-23 | Flame-retardant laminated net, manufacturing method and product using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07316967A JPH07316967A (en) | 1995-12-05 |
JP3351491B2 true JP3351491B2 (en) | 2002-11-25 |
Family
ID=14486513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10850694A Expired - Lifetime JP3351491B2 (en) | 1994-05-23 | 1994-05-23 | Flame-retardant laminated net, manufacturing method and product using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3351491B2 (en) |
-
1994
- 1994-05-23 JP JP10850694A patent/JP3351491B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07316967A (en) | 1995-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2921638B2 (en) | Cushion net structure and manufacturing method | |
JP3473710B2 (en) | Mixed fineness reticulated body, manufacturing method and products using it | |
JP3431097B2 (en) | Multilayer laminated net, manufacturing method and product using the same | |
JP3351488B2 (en) | Nonwoven laminated net, manufacturing method and product using the same | |
JP3430444B2 (en) | Netting structure for cushion, manufacturing method thereof and cushion product | |
JP3351491B2 (en) | Flame-retardant laminated net, manufacturing method and product using the same | |
JP3444375B2 (en) | Multilayer net, manufacturing method and products using the same | |
JP3473711B2 (en) | Polyester wadding material and its manufacturing method | |
JP3620604B2 (en) | Flame retardant seating and manufacturing method | |
JP3431098B2 (en) | Flame-retardant reinforced mesh, manufacturing method and products using the same | |
JP3351489B2 (en) | Nonwoven laminated net, manufacturing method and product using the same | |
JP3351490B2 (en) | Nonwoven laminated net, manufacturing method and product using the same | |
JP3431096B2 (en) | Nonwoven laminated net, manufacturing method and product using the same | |
JP2001061605A (en) | Seat for vehicle | |
JP3430445B2 (en) | Composite net, its manufacturing method and products using it | |
JP3622861B2 (en) | Vehicle seat and manufacturing method | |
JP3444368B2 (en) | Nonwoven laminated net, manufacturing method and product using the same | |
JP3346506B2 (en) | Flame-retardant composite network structure, manufacturing method and product using the same | |
JP3346507B2 (en) | Flame-retardant reticulated body, manufacturing method and products using the same | |
JP3430448B2 (en) | Laminated structure, manufacturing method and products using the same | |
JP3430447B2 (en) | Laminated elastic structure, manufacturing method and product using the same | |
JP3444372B2 (en) | Multilayer laminated net, manufacturing method and product using the same | |
JP3444370B2 (en) | Multilayer laminated net, manufacturing method and product using the same | |
JP3431092B2 (en) | Nonwoven laminated net, manufacturing method and product using the same | |
JP3431091B2 (en) | Nonwoven laminated net, manufacturing method and product using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070920 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080920 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20080920 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090920 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090920 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100920 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100920 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20110920 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20120920 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20130920 |
|
EXPY | Cancellation because of completion of term |