[go: up one dir, main page]

JP3349610B2 - Load change measurement method - Google Patents

Load change measurement method

Info

Publication number
JP3349610B2
JP3349610B2 JP32983894A JP32983894A JP3349610B2 JP 3349610 B2 JP3349610 B2 JP 3349610B2 JP 32983894 A JP32983894 A JP 32983894A JP 32983894 A JP32983894 A JP 32983894A JP 3349610 B2 JP3349610 B2 JP 3349610B2
Authority
JP
Japan
Prior art keywords
frequency component
load
change
power
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32983894A
Other languages
Japanese (ja)
Other versions
JPH08159890A (en
Inventor
篤 有賀
あつし 安達
Original Assignee
第一製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一製薬株式会社 filed Critical 第一製薬株式会社
Priority to JP32983894A priority Critical patent/JP3349610B2/en
Publication of JPH08159890A publication Critical patent/JPH08159890A/en
Application granted granted Critical
Publication of JP3349610B2 publication Critical patent/JP3349610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Glanulating (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Control Of Ac Motors In General (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】誘導電動機を使用する設備や装置
において、誘導電動機が消費する電力の周波数成分を解
析することにより、微視的な負荷変化を測定し、加えて
各種装置の制御、異常診断を行う方法に関する。
BACKGROUND OF THE INVENTION In equipment and devices that use induction motors, microscopic load changes are measured by analyzing the frequency components of the power consumed by the induction motors, and control and abnormalities of various devices are measured. A method for making a diagnosis.

【0002】[0002]

【従来の技術】従来、誘導電動機の負荷は、電動機の電
力や軸トルクにより測定されており、各種の制御や異常
診断に使用されている。これは、負荷から受ける静力学
的な力のモーメントを測定する方法である。
2. Description of the Related Art Conventionally, the load of an induction motor has been measured by electric power and shaft torque of the motor, and is used for various controls and abnormality diagnosis. This is a method of measuring the moment of static force received from a load.

【0003】上記の測定は、負荷から受ける静力学的な
力のモーメントを測定する方法である。
[0003] The above measurement is a method of measuring the moment of a static force received from a load.

【0004】しかし、従来の測定方法では、次の問題点
がある。すなわち、負荷から受ける静力学的な力のモー
メントを測定する方法であるため、制御や異常診断の測
定要素が静力学的な力のモーメントではなく、負荷の短
時間の変化(例えば、加減速トルク)や、誘導電動機の
稼働状態(例えば、負荷の安定性)である場合は使用で
きない。
However, the conventional measuring method has the following problems. That is, since this method measures the moment of the static force received from the load, the measurement element for control or abnormality diagnosis is not the moment of the static force but a short-term change in load (for example, acceleration / deceleration torque). ) Or the operating state of the induction motor (for example, load stability).

【0005】[0005]

【発明が解決しょうとする課題】そこで、本発明者ら
は、従来の技術が負荷から受ける静力学的な力のモーメ
ントを測定することであったが、新たに、誘導電動機を
使用する装置の微視的な負荷変化を測定する方法、具体
的には、 誘導電動機が負荷から受ける短時間の作業力を測定す
る方法 誘導電動機の稼働状態を測定する方法 と、それにより各種装置の制御や異常診断を行う方法を
得るものである。
Therefore, the present inventors have measured the static moment of the force received from the load in the prior art. However, the present inventors have newly developed an apparatus using an induction motor. A method of measuring a microscopic load change, specifically, a method of measuring the short-time working force received by a load from an induction motor.A method of measuring the operation state of an induction motor, and thereby controlling and abnormally controlling various devices. A method for making a diagnosis is obtained.

【0006】[0006]

【課題を解決するための手段】本発明は、上記のような
点に鑑みたもので、上記の課題を解決するために、図1
の構成により負荷の測定方法を提供する。図1におい
て、本願発明に用いられる装置は検出部(電力計)2と
解析部(FFTアナライザ)3、制御・異常判定部(パ
ーソナルコンピュータ)4からなる。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned points, and has been described with reference to FIG.
The method of measuring a load is provided by the configuration of (1). In FIG. 1, the device used in the present invention includes a detection unit (power meter) 2, an analysis unit (FFT analyzer) 3, and a control / abnormality determination unit (personal computer) 4.

【0007】電力計2は、誘導電動機の負荷を電力信号
に変換する装置であり、測定回路は、電力信号の平均化
・積分等の内部演算を行わないものが望ましい。また、
零点や測定幅の調整が行えるものが望ましい。
The wattmeter 2 is a device for converting the load of the induction motor into a power signal, and it is desirable that the measurement circuit does not perform internal calculations such as averaging and integration of the power signal. Also,
It is desirable to be able to adjust the zero point and the measurement width.

【0008】FFTアナライザは、フ−リエ変換により
電力信号を周波数分解して、周波数成分の定量化を行う
装置である。また、下記のパーソナルコンピュータの行
う制御・異常判定をここで行ってもよい。
[0008] The FFT analyzer is a device for frequency-decomposing a power signal by Fourier transform to quantify frequency components. The control / abnormality determination performed by the following personal computer may be performed here.

【0009】パーソナルコンピュータは、FFTアナラ
イザで定量化したデ−タを表示・記録し、各種の設備や
装置の制御や異常診断信号を出力する装置である。
A personal computer is a device that displays and records data quantified by an FFT analyzer, controls various facilities and devices, and outputs an abnormality diagnosis signal.

【0010】本発明の測定方法は、誘導電動機を使用す
る設備・装置において、誘導電動機の電力を周波数解析
することを特徴とする微視的な負荷変化を測定し、これ
に基づいて各種の設備や装置の制御・異常診断を行うも
ので、その原理は以下のとおりである。交流において、
電源周波数をω[rad/sec]、ある時刻t[se
c]における電圧v[V]と電流i[A]の位相差をφ
[rad]、その瞬時値を v=√2Vsinωt i=√2Isin(ωt−φ) とすれば、瞬時電力p[VA]は、 p=vi =VIcosφ−VIcos(2ωt−φ) (1) で与えられる。誘導電動機が平衡状態で稼働している場
合、その電力は(1)式を1周期で積分した値、つま
り、有効電力P[W] P=VIcosφ (2) として、得られる。また、誘導電動機は、定常運転時
に、誘導電動機の出力トルクと負荷トルクが均衡する安
定動作点において、平衡速度Np[rpm]で回転する
性質、いわゆる定速度特性という特徴をもつ。そのた
め、電動機の負荷トルクが大きく変わる場合は、誘導電
動機はそれ自身が消費する電流を変えて、負荷トルクの
変化に対応する。電動機の負荷トルクに加減速トルクが
加わる場合は、誘導電動機は電圧と電流の位相差φを変
えて、加減速トルクの変化に対応する。
The measuring method according to the present invention measures microscopic load changes characterized by frequency analysis of the power of an induction motor in a facility or an apparatus using an induction motor, and based on this, measures various types of equipment. It performs control and abnormality diagnosis of devices and devices, and its principle is as follows. In the exchange
When the power supply frequency is ω [rad / sec] and a certain time t [se
c] is the phase difference between the voltage v [V] and the current i [A].
[Rad], assuming that the instantaneous value is v = √2Vsinωti = √2Isin (ωt−φ), the instantaneous power p [VA] is given by p = vi = VIcosφ−VIcos (2ωt−φ) (1) Can be When the induction motor is operating in an equilibrium state, its power is obtained as a value obtained by integrating the equation (1) in one cycle, that is, as an active power P [W] P = VIcos φ (2). In addition, the induction motor has a characteristic of rotating at an equilibrium speed Np [rpm] at a stable operation point where the output torque and the load torque of the induction motor are balanced during a steady operation, that is, a so-called constant speed characteristic. Therefore, when the load torque of the electric motor changes significantly, the induction motor changes the current consumed by itself and responds to the change in the load torque. When the acceleration / deceleration torque is added to the load torque of the motor, the induction motor changes the phase difference φ between the voltage and the current to respond to the change in the acceleration / deceleration torque.

【0011】本発明は、これらの誘導電動機の特徴と
(1)式に着目し、まず、負荷から加減速トルクを受
け、誘導電動機が平衡状態で稼働していない場合、瞬時
電力は2つの状態変化が起きることを見出した。具体的
には、負荷から誘導電動機に対して加減速トルクが加わ
り、時刻t1[sec]のΔt[sec]後のt2[s
ec]に、位相差がφ1[rad]からφ2[rad]
に変わった場合、(1)式には以下の電力差Δp1[V
A]とΔp2[VA]が生じる。 Δp1=VI(cosφ2−cosφ1) (3) Δp2=VI(cos(2ωt2−φ2)−cos(2ωt1−φ1))(4) (但し、Δt=t2−t1≒0、VI=一定) これらの変動因子は共に位相差であるが、Δp1は位相
差の変化に基づく電力差、またΔp2は位相差の差に比
例した電力差といえる。換言すれば、Δp1から、誘導
電動機が負荷から受ける短時間の作業力の大きさが測定
できる。またΔp2から、負荷の状態変化による誘導電
動機の稼働状態の測定、平衡状態の判断(平衡状態の時
はΔp2=0)ができる。
The present invention pays attention to the characteristics of these induction motors and the equation (1). First, when the acceleration / deceleration torque is received from the load and the induction motor is not operating in a balanced state, the instantaneous power is in two states. I found a change. Specifically, acceleration / deceleration torque is applied to the induction motor from the load, and t2 [s] after Δt [sec] at time t1 [sec]
ec], the phase difference is changed from φ1 [rad] to φ2 [rad].
(1), the following power difference Δp1 [V
A] and Δp2 [VA]. Δp1 = VI (cosφ2-cosφ1) (3) Δp2 = VI (cos (2ωt2-φ2) −cos (2ωt1-φ1)) (4) (However, Δt = t2-t1 ≒ 0, VI = constant) These fluctuations Although both factors are phase differences, it can be said that Δp1 is a power difference based on a change in the phase difference, and Δp2 is a power difference proportional to the difference in the phase difference. In other words, the magnitude of the short-time working force that the induction motor receives from the load can be measured from Δp1. From Δp2, it is possible to measure the operating state of the induction motor based on a change in the load state, and determine the equilibrium state (Δp2 = 0 when in the equilibrium state).

【0012】次に、測定法として、電力をフ−リエ変換
により周波数分解し、周波数成分毎に定量化するという
周波数解析が有効であることを見いだした。具体的に
は、位相差の変化は、誘導電動機が負荷から受ける加減
速トルクにより起こる。つまり、位相差は負荷の回転数
前後の周波数成分となる。Δp1はcosφの変化であ
り、その周波数成分は位相差と同様となる。よって、Δ
p1は負荷の回転数前後の周波数成分の大きさから測定
できる。また、Δp2は電源周波数の2倍の周期で変化
する正弦波の減算であるので、電源周波数の2倍の周波
数成分の大きさから測定できる。加えて、ここで得られ
た信号は、各種の設備や装置の制御・異常診断に使用す
ることができる。すなわち、本発明における2つの微視
的な負荷変化の測定方法は、誘導電動機が消費する電力
を周波数分解し、周波数成分毎に定量化することにより
行われる。
Next, as a measuring method, it has been found that frequency analysis in which power is frequency-decomposed by Fourier transform and quantified for each frequency component is effective. Specifically, the change in the phase difference is caused by the acceleration / deceleration torque that the induction motor receives from the load. That is, the phase difference is a frequency component around the rotational speed of the load. Δp1 is a change in cos φ, and its frequency component is similar to the phase difference. Therefore, Δ
p1 can be measured from the magnitude of the frequency component around the load rotation speed. Further, since Δp2 is a subtraction of a sine wave that changes in a cycle twice the power supply frequency, it can be measured from the magnitude of the frequency component twice the power supply frequency. In addition, the signal obtained here can be used for control and abnormality diagnosis of various facilities and devices. That is, the two microscopic load change measuring methods in the present invention are performed by frequency-decomposing the power consumed by the induction motor and quantifying it for each frequency component.

【0013】そこで、以下に具体的な測定方法を示す。
まず、誘導電動機の電力を電力計にて測定しその出力を
FFTアナライザに入力し、直流成分を除去後、フーリ
エ変換により周波数分解する。次に、FFTアナライザ
において以下の解析を行い、2つの値を求める。
Therefore, a specific measuring method will be described below.
First, the power of the induction motor is measured by a wattmeter, and the output is input to an FFT analyzer. After removing the DC component, the frequency is resolved by Fourier transform. Next, the following analysis is performed by the FFT analyzer to obtain two values.

【0014】Δp1は負荷の回転数前後の周波数成分の
大きさから測定できるので、ある特定領域(例えば0〜
10Hzの区間)のパワースペクトルのオーバーオール
にて定量化する。その理由はつぎのとおりである。
Since Δp1 can be measured from the magnitude of the frequency components before and after the rotational speed of the load, a specific region (for example, 0 to 0)
Quantification is performed based on the overall power spectrum (10 Hz section). The reason is as follows.

【0015】すなわち、式(3)より、Δp1の変動因
子はcosφであり、コサイン等の三角関数ではφの変
動と同様な変動がcosφで起こり、Δp1はcosφ
を変動因子としてもつため、結果的に、Δp1の変動は
位相差φの変動と同様となる。よって、Δp1は回転数
前後の周波数範囲の周波数成分の大きさから測定でき
る。この周波数成分の大きさは、電力信号をフーリエ変
換して、そこで得られるパワースペクトルから計測する
ことができる。加えて、回転数の変動はある幅をもって
起こるため、特定の周波数成分にだけ着目すると、正確
な測定はできない。そのため、ある範囲内の周波数成分
の大きさのすべてを積算する、オーバーオール機能を用
いて定量化する。
That is, from equation (3), the variation factor of Δp1 is cos φ, and in a trigonometric function such as cosine, a variation similar to the variation of φ occurs at cos φ, and Δp1 is cos φ
As a result, the variation of Δp1 is similar to the variation of the phase difference φ. Therefore, Δp1 can be measured from the magnitude of the frequency component in the frequency range around the rotation speed. The magnitude of this frequency component can be measured from the power spectrum obtained by Fourier-transforming the power signal. In addition, since the rotation speed varies with a certain width, accurate measurement cannot be performed by focusing only on a specific frequency component. Therefore, quantification is performed using an overall function that integrates all the magnitudes of the frequency components within a certain range.

【0016】Δp2は電源周波数の2倍の周波数成分で
あるので、例えば電源周波数が60Hzであれば、12
0Hzのパワースペクトルにて定量化する。その理由は
つぎのとおりである。
Since Δp2 is a frequency component twice as large as the power supply frequency, if the power supply frequency is 60 Hz, for example, 12
Quantify with a 0 Hz power spectrum. The reason is as follows.

【0017】すなわち、式4より、Δp2の変動因子
は、位相差φと電源周波数ωであることがわかる。更
に、式4では、電源周波数×2(2ω)の因子があるこ
とから、Δp2は、電源周波数の2倍の成分にのみ発生
することがいえる。よってΔp2は、電源周波数の2倍
の周波数成分から測定することができ、そこで計測され
る値は位相差φの変動に依存したものとなる。このよう
な周波数成分の定量化はΔp1と同様にパワースペクト
ルが有効である。
That is, from equation 4, it can be seen that the variation factors of Δp2 are the phase difference φ and the power supply frequency ω. Furthermore, in Equation 4, since there is a factor of power supply frequency × 2 (2ω), it can be said that Δp2 occurs only in a component twice as large as the power supply frequency. Therefore, Δp2 can be measured from a frequency component that is twice the power supply frequency, and the value measured there depends on the fluctuation of the phase difference φ. The power spectrum is effective for quantifying such frequency components as in the case of Δp1.

【0018】但し、この定量値は、瞬時電力ではなく、
FFTアナライザのサンプリング時間S1[sec]か
らS2[sec]までの電力信号である。よって、式
(5)、(6)に示すように、Δp1はPOA[W]、
Δp2はPf[W]として測定される。 これらは、パーソナルコンピユータにて収集し、測定結
果を表示する。この時、過去の経験値等に基づく設定値
をパーソナルコンピユータ内部に設定しておき、パーソ
ナルコンピユータから制御、異常診断信号を出力するこ
とで、各種の設備や装置の制御・異常診断を行うことが
可能となる。
However, this quantitative value is not instantaneous power,
This is a power signal from the sampling time S1 [sec] to S2 [sec] of the FFT analyzer. Therefore, as shown in Expressions (5) and (6), Δp1 is POA [W],
Δp2 is measured as Pf [W]. These are collected by a personal computer and the measurement results are displayed. At this time, setting values based on past experience values and the like are set in the personal computer, and control and abnormality diagnosis of various facilities and devices can be performed by outputting control and abnormality diagnosis signals from the personal computer. It becomes possible.

【0019】[0019]

【作用】本発明によれば、誘導電動機が負荷から受ける
短時間の作業力と誘導電動機の稼働状態が測定できるの
で、その効果として、従来の電力や軸トルクによる各種
の制御や異常診断とは異なる正確で迅速な制御や異常診
断が可能となる。
According to the present invention, it is possible to measure the short-time working force received by the induction motor from the load and the operating state of the induction motor. Different accurate and quick control and abnormality diagnosis become possible.

【0020】[0020]

【実施例】本発明を実施例について説明する。図2は薬
物A製造過程の攪拌造粒装置に対して、本発明を応用し
た一実施例である。使用した設備は次のとおりである。 電動機:無段変速機付きかご型三相誘導電動機(定格動
力数37kw、極数8P) 電源:電源周波数60Hz,定格電圧440W 攪拌翼:フィン付攪拌造粒用標準羽根(下段)、フィン
付フラット羽根(上、中段) 装置形状:ヘンシェル型(円筒形大) 装置容量:780L 回転数:180rpm また、粉体原料と結合液は次のとおりである。 粉体原料の処方 ・コーンスターチ :120、0kg ・アビセル : 30、0kg ・タルク : 7、5kg 結合液の処方 ・薬物A : 30、0kg ・水 : 24、5kg ・エタノール : 6、5kg さて、容器5内の粉体をある形状をもった攪拌翼6にて
水平に攪拌すると、粉体は攪拌翼6から遠心力と上昇推
進力が与えられ、容器内壁上を旋回運動する。攪拌造粒
法とは、この旋回運動による粉体への転動・圧密作用
と、結合液(主に水分)を加えることによる粉体表面へ
の粒子付着と粉体内部の毛細管力を利用した造粒法であ
る。本造粒法の特徴として、球形かつ重質な造粒物7が
得られる。従来、その造粒状態の測定と終了検出は電流
や電力にて行われているが、品質向上(造粒物の粒度分
布を揃える)のために、より高精度な測定法が望まれて
いる。
EXAMPLES The present invention will be described with reference to examples. FIG. 2 shows an embodiment in which the present invention is applied to an agitation granulator in the process of producing Drug A. The equipment used is as follows. Electric motor: Cage-type three-phase induction motor with a continuously variable transmission (rated power: 37 kW, number of poles: 8P) Power supply: Power supply frequency: 60 Hz, rated voltage: 440 W Stirring blade: Standard blade for stirring granulation with fins (lower stage), flat with fins Blade (upper, middle) Apparatus shape: Henschel type (large cylindrical) Apparatus capacity: 780 L Rotation speed: 180 rpm The powder raw material and the binding liquid are as follows. Prescription of powder raw material-Corn starch: 120, 0 kg-Avicel: 30, 0 kg-Talc: 7, 5 kg Formulation of binding solution-Drug A: 30, 0 kg-Water: 24, 5 kg-Ethanol: 6, 5 kg Well, container 5 When the powder inside is stirred horizontally by a stirring blade 6 having a certain shape, the powder is given a centrifugal force and a rising propulsive force from the stirring blade 6, and swirls on the inner wall of the container. The agitation granulation method uses the rolling / consolidating action on the powder due to this swirling motion, the adhesion of particles to the powder surface by adding a binding liquid (mainly moisture), and the capillary force inside the powder. It is a granulation method. As a feature of the present granulation method, a spherical and heavy granule 7 is obtained. Conventionally, the measurement of the state of granulation and the end detection have been performed with current or power, but a more accurate measurement method is desired for quality improvement (uniform particle size distribution of granulated material). .

【0021】本測定方法の測定の流れを図3に示す。ま
ず、攪拌造粒機1の誘導電動機の消費電力信号を測定
し、次に、FFTアナライザに入力しPOAとPfを求
める。これらは、パーソナルコンピユータでデータ表示
・収集する。なお、POA、Pfの測定周波数は、それ
ぞれ0〜10Hz、120Hzとした。
FIG. 3 shows a flow of the measurement in the present measurement method. First, the power consumption signal of the induction motor of the agitation granulator 1 is measured, and then input to the FFT analyzer to obtain POA and Pf. These are displayed and collected by a personal computer. The measurement frequencies of POA and Pf were 0 to 10 Hz and 120 Hz, respectively.

【0022】POA,Pfの測定結果を図6に示す。こ
れらは、造粒物の流動性が造粒の進行に伴い変化したた
め、攪拌翼に加わる加減速トルクの変化となり、POA
とPfの変化として観察された。
FIG. 6 shows the measurement results of POA and Pf. These changes in the acceleration / deceleration torque applied to the stirring blades due to the change in the fluidity of the granulated material as the granulation progresses, and the POA
And a change in Pf.

【0023】図6より、POAは経時的に変化し、S2
〜200secの間で最大値、S4以降で最低値を示し
た。粉体物性の経時変化において、造粒物の平均粒径
は、S2〜200secの間で最も急激に増加し、造粒
物の含水率は造粒後期まで経時的に減少していた。これ
らから、水分により造粒の作業力が変化しているとい
え、POAはその変化を捕らえていることがわかる。
FIG. 6 shows that POA changes with time and that S2
The maximum value was shown between 200 and 200 sec, and the minimum value was shown after S4. In the change over time in the powder properties, the average particle size of the granulated product increased most rapidly between S2 and 200 sec, and the moisture content of the granulated product decreased with time until the late granulation stage. From these, it can be seen that the working force of granulation is changed by the moisture, and that the POA captures the change.

【0024】図6より、Pfは、S3bにおいてほぼゼ
ロを示し、その前後のS2〜S3aとS4以後で異なる
安定した値を示した。粉体物性の経時変化において、S
3b以前は、造粒物の成長と球形化が起こり、S3bに
おいて、粒子表面は最も滑らかであった。S4以後は、
S3b点と比べ、粒子表面に若干の凹凸が目立ちはじめ
た。これらから、S3b点で造粒物の流動性が最もよく
なり、攪拌翼6が造粒物から受ける抵抗が最も小さくな
ったことがいえる。つまり、S3b点以前は造粒が、そ
れ以降は造粒と破砕による抵抗が起きていることがい
え、Pfはその変化を捕らえていることがわかる。
As shown in FIG. 6, Pf showed almost zero at S3b, and S2 before and after S3a and stable values different after S4. In the change of powder properties with time, S
Prior to 3b, the granules grew and spheroidized, and in S3b the particle surface was the smoothest. After S4,
As compared to the point S3b, slight irregularities began to be noticeable on the particle surface. From these, it can be said that the fluidity of the granulated material became the best at the point S3b, and the resistance that the stirring blade 6 receives from the granulated material became the smallest. That is, it can be said that granulation occurs before the point S3b, and after that, resistance due to granulation and crushing occurs, and it is understood that Pf captures the change.

【0025】実験は2回行い、第1の実験をRUN1と
し第2の実験をRUN2として図4および図5に示して
ある。また、図4および図5のRUN1データを図6に
まとめた。粉体物性を加味すると、攪拌造粒は図6に示
しているIからIVまでの4領域があることが本測定法
により判断でき、従来の電流などの測定より、造粒状態
の変化がよく計測できるといえる。更に、S3b〜S4
の間を造粒の終了点とした場合、流動性のよい造粒物を
安定して得ることができる。
The experiment was performed twice, the first experiment being RUN1 and the second experiment being RUN2, as shown in FIGS. FIG. 6 summarizes the RUN1 data of FIGS. 4 and 5. Taking the powder properties into consideration, it can be determined by the present measurement method that the stirring granulation has four regions from I to IV shown in FIG. 6, and the change in the granulation state is better than the conventional measurement of current or the like. It can be said that it can be measured. Further, S3b to S4
In the case where the end point of the granulation is set as the end time, a granulated material having good fluidity can be stably obtained.

【0026】また、POAとPfの変化が消費電力に加
わるため、以下に示す解析法でも造粒の計測は可能であ
る。 1)電力波形の確率密度関数の標準偏差 2)電力波形の歪み(スキューネス) 3)電力波形の尖り(クルトシス) 4)電力波形の正・負の面積 5)電力波形の正・負の最大値 6)電源周波数の2倍の自己相関係数
Since the change in POA and Pf adds to the power consumption, granulation can be measured by the following analysis method. 1) Standard deviation of probability density function of power waveform 2) Distortion of power waveform (skewness) 3) Sharpness of power waveform (Kurtosis) 4) Positive / negative area of power waveform 5) Positive / negative maximum value of power waveform 6) Autocorrelation coefficient twice the power supply frequency

【0027】(その他の実施例)以下に示す例では、異
常、変化が起きたときに、POAまたはPfの値は増加
する。また、正常時は、POAおよびPfの値は安定し
た値を示す。
(Other Embodiments) In the following example, when an abnormality or change occurs, the value of POA or Pf increases. In a normal state, the values of POA and Pf show stable values.

【0028】晶析装置の例 POAの値はある結晶濃度を越すと増加傾向を示す。晶
析とは結晶を析出させる操作であり、晶析進行に伴い、
結晶濃度は増加する。このことから、POAの値がある
POA設定値を超えたときに結晶終了信号を出力させ、
結晶操作の終了判断に使う。
Example of Crystallizer POA values tend to increase above a certain crystal concentration. Crystallization is an operation for precipitating crystals, and as crystallization progresses,
The crystal concentration increases. From this, when the POA value exceeds a certain POA set value, a crystal end signal is output,
Used to determine the end of the crystal operation.

【0029】回転機械の例 回転軸の曲がり、ベアリングの傷、しゅう動部(擦れる
部位)の歪みなどの異常が生じると、正常時と比べ、P
OAまたはPfの値が急増する。このことから、測定値
がある設定値を超えた時に装置の故障信号などを出す
る。
Example of a rotating machine When an abnormality such as bending of a rotating shaft, damage to a bearing, or distortion of a sliding portion (a portion to be rubbed) occurs, P
The value of OA or Pf increases rapidly. For this reason, when the measured value exceeds a certain set value, a failure signal of the device is issued.

【0030】搬送機械の例 瓶、缶などの搬送途中において、これらが転倒した場
合、搬送不良や搬送機械内での詰まりを起こし、円滑な
搬送ができなくなる。これらの転倒時には、と同様に
測定値が増加し、このことから測定値がある設定値を超
えた時に装置の異常信号などを出力する。
Examples of Transport Machines If bottles, cans, and the like fall during transport, they may cause poor transport or clogging in the transport machine, preventing smooth transport. At the time of these falls, the measured value increases in the same manner as described above, and when the measured value exceeds a certain set value, an abnormal signal of the device or the like is output.

【0031】切削加工機械の例 旋盤などでドリルを使って切削加工する場合、ドリルの
刃の劣化により、切削時間の延長、切削部の機械的精度
の低下、ドリルの破損が起こる。ドリルの劣化が起きる
場合、と同様に測定値が増加し、このことから測定値
がある設定値を超えた時に装置の異常信号などを出力す
る。
Example of Cutting Machine When cutting with a drill using a lathe or the like, deterioration of the drill blade causes an increase in cutting time, a decrease in mechanical accuracy of the cutting portion, and breakage of the drill. When the deterioration of the drill occurs, the measured value increases in the same manner as in the case of the above. When the measured value exceeds a certain set value, an abnormal signal of the device is output.

【0032】[0032]

【発明の効果】以上のように本発明にあっては、電動機
の電力の周波数成分解析による微視的な負荷変化を検出
する方法を攪拌造粒に応用することで、従来の電流によ
る造粒終了検出と比べ、精度のよい攪拌造粒過程の計測
が可能となるとともに、流動性のよい造粒物を安定して
得ることができる。
As described above, according to the present invention, a method of detecting a microscopic load change by analyzing a frequency component of electric power of an electric motor is applied to agitation granulation, whereby a conventional granulation by an electric current is performed. Compared with the end detection, the measurement of the stirring granulation process can be performed with high accuracy, and the granulated material having good fluidity can be stably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成による負荷の測定方法を示す図で
ある。
FIG. 1 is a diagram showing a load measuring method according to the configuration of the present invention.

【図2】本発明を応用した薬物A製造過程の攪拌造粒装
置。
FIG. 2 is an agitation granulator in the process of producing Drug A to which the present invention is applied.

【図3】本測定装置における測定の流れを示す図であ
る。
FIG. 3 is a diagram showing a flow of measurement in the present measurement device.

【図4】POAの測定結果を示す図である。FIG. 4 is a diagram showing measurement results of POA.

【図5】Pfの測定結果を示す図である。FIG. 5 is a view showing a measurement result of Pf.

【図6】図4と5のRUN1データをまとめた図であ
る。
FIG. 6 is a diagram summarizing RUN1 data of FIGS. 4 and 5;

【符号の簡単な説明】[Brief description of reference numerals]

1、電動機 2、検出部(電力計) 3、解析部(FFTアナライザ=) 4、制御・異常判定部(パーソナルコンピュータ) 5、容器 6、攪拌翼 7、造粒物 1, electric motor 2, detection unit (power meter) 3, analysis unit (FFT analyzer =) 4, control / abnormality judgment unit (personal computer) 5, container 6, stirring blade 7, granulated material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G01R 31/34 G01R 31/34 A H02P 7/36 302 H02P 7/36 302S (56)参考文献 特開 平2−51386(JP,A) 特開 平1−321890(JP,A) 特開 昭61−82127(JP,A) 特開 昭55−60830(JP,A) 特開 昭61−167884(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01L 5/00 G01R 31/34 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI G01R 31/34 G01R 31/34 A H02P 7/36 302 H02P 7/36 302S (56) References JP-A-2-51386 (JP) JP-A-1-321890 (JP, A) JP-A-61-82127 (JP, A) JP-A-55-60830 (JP, A) JP-A-61-167884 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G01L 5/00 G01R 31/34

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電動機が消費する電力を測定し、該電力の
周波数成分を解析することにより、ある計算値(POA
またはPfの値)の変化を負荷変化とする微視的な負荷
変化測定方法。
An electric power consumed by a motor is measured and a frequency component of the electric power is analyzed to obtain a certain calculated value (POA).
Alternatively, a microscopic load change measuring method in which a change in the value of Pf is used as a load change.
【請求項2】請求項1に記載の方法であって、それを各
種装置の制御に適用した制御方法。
2. The control method according to claim 1, wherein the method is applied to control of various devices.
【請求項3】請求項1に記載の方法であって、それを各
種装置の異常診断に適用した異常診断方法。
3. The abnormality diagnosis method according to claim 1, wherein the method is applied to abnormality diagnosis of various devices.
【請求項4】請求項1〜3のいずれか1項に記載の方法
であって、2つの周波数成分を用いる測定方法。
4. The method according to claim 1, wherein the measuring method uses two frequency components.
【請求項5】請求項4に記載の方法であって、1つの周
波数成分は負荷の回転数前後の周波数成分であり、他の
周波数成分は電源周波数の2倍の周波数成分である測定
方法。
5. The method according to claim 4, wherein one frequency component is a frequency component around the rotation speed of the load, and the other frequency component is a frequency component twice as high as the power supply frequency.
【請求項6】電動機によって攪拌翼を回転させるタイプ
の攪拌造粒装置において、該攪拌造粒装置が該電動機を
制御するための制御装置を有し、該制御装置は、該電動
機が消費する電力を測定して該電力の周波数成分を解析
することにより、造粒の進行に伴い造粒物の流動性が変
化することを攪拌翼に加わる加減速トルクの変化として
とらえて造粒制御をすることを特徴とする攪拌造粒装
置。
6. A stirring granulation apparatus of a type in which a stirring blade is rotated by an electric motor, wherein the stirring granulation apparatus has a control device for controlling the electric motor, and the control device controls the electric power consumed by the electric motor. And analyzing the frequency component of the electric power to control the granulation by grasping that the fluidity of the granulated material changes with the progress of granulation as a change in acceleration / deceleration torque applied to the stirring blade. A stirring granulation apparatus characterized by the above-mentioned.
JP32983894A 1994-12-06 1994-12-06 Load change measurement method Expired - Fee Related JP3349610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32983894A JP3349610B2 (en) 1994-12-06 1994-12-06 Load change measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32983894A JP3349610B2 (en) 1994-12-06 1994-12-06 Load change measurement method

Publications (2)

Publication Number Publication Date
JPH08159890A JPH08159890A (en) 1996-06-21
JP3349610B2 true JP3349610B2 (en) 2002-11-25

Family

ID=18225799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32983894A Expired - Fee Related JP3349610B2 (en) 1994-12-06 1994-12-06 Load change measurement method

Country Status (1)

Country Link
JP (1) JP3349610B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3628812B2 (en) * 1996-07-15 2005-03-16 松下電器産業株式会社 Abnormal fluctuation prediction method and abnormal fluctuation prediction apparatus
DE19743046C1 (en) * 1997-09-29 1999-04-29 Siemens Ag Method and device for detecting the operating temperature of engines
JP2008224468A (en) * 2007-03-14 2008-09-25 Fuji Oil Co Ltd Method for detecting whip state, and method for obtaining whip food
JP5407964B2 (en) * 2009-03-23 2014-02-05 Dic株式会社 Method for producing resin solution for printing ink varnish
KR101136493B1 (en) * 2011-04-18 2012-04-19 부산대학교 산학협력단 Method for stator shorted turn fault detection using opposed pair-phase voltage/current of electric motor
KR101357008B1 (en) * 2012-05-07 2014-02-05 (주) 동우엔지니어링 Gas Measuring Instrument for Constant Air Supply by Constant Voltage Control
JP6654400B2 (en) * 2014-12-02 2020-02-26 株式会社品川工業所 Apparatus, program, and method for detecting change in state of workpiece, and processing apparatus
JP2024146366A (en) * 2023-03-31 2024-10-15 株式会社貝印刃物開発センター Whisk

Also Published As

Publication number Publication date
JPH08159890A (en) 1996-06-21

Similar Documents

Publication Publication Date Title
JP3349610B2 (en) Load change measurement method
CN110320038A (en) Abnormal diagnosis method and abnormal diagnosis device of rolling bearing
CN1192221C (en) Vibration phasor monitoring system for rotating members
US20150185107A1 (en) Method and device for balancing ct gantry
JPH05284689A (en) Support apparatus for adjusting rotation body coupling part
EP3196626A1 (en) Vibration monitoring systems
TERAsHiTA et al. Determination of end-point by frequency analysis of power consumption in agitation granulation
US5215263A (en) Method and device for regulating the rotational speed of agitator ball mills
US4212429A (en) Method and an apparatus for controlling a crusher
CN118323930A (en) Method and device for detecting pressing force between rubber roller and servo roller and winding equipment
CN115144749A (en) Motor test system based on big data
TW201729917A (en) Status detection method of rolling apparatus
JP6995969B1 (en) Diagnostic device for rotating equipment
JPS58160843A (en) Centrifugal measuring method of particle size distribution
JPH0527486B2 (en)
KR102595992B1 (en) Viscosity estimation device and viscosity estimation method
JPS58193425A (en) Method for monitoring operation of rotary body
JPH04100666A (en) Method for detecting abnormality in roll for continuous casting device
SU624134A1 (en) Method of detecting different-size balls
CN113530766B (en) Blade mass unbalance identification method and device and wind turbine generator
WO2024257887A1 (en) Method for evaluating kneading state and kneader
JPH09222387A (en) How to measure viscosity and density
JPS61212732A (en) Electronic balance scale
CN113281045A (en) Calculation method and control method for friction torque of bearing ring
JPH07218415A (en) Method and apparatus for measuring viscosity

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees