[go: up one dir, main page]

JP3348469B2 - Operating method of vacuum degassing tower - Google Patents

Operating method of vacuum degassing tower

Info

Publication number
JP3348469B2
JP3348469B2 JP16695693A JP16695693A JP3348469B2 JP 3348469 B2 JP3348469 B2 JP 3348469B2 JP 16695693 A JP16695693 A JP 16695693A JP 16695693 A JP16695693 A JP 16695693A JP 3348469 B2 JP3348469 B2 JP 3348469B2
Authority
JP
Japan
Prior art keywords
water
treated water
treated
degassing chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16695693A
Other languages
Japanese (ja)
Other versions
JPH0724213A (en
Inventor
有之 竹田
忠康 持田
源久 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP16695693A priority Critical patent/JP3348469B2/en
Publication of JPH0724213A publication Critical patent/JPH0724213A/en
Application granted granted Critical
Publication of JP3348469B2 publication Critical patent/JP3348469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は真空脱気塔に関するもの
であり、特に超LSI製造用の超純水の製造に用いるの
に好適な、改良された真空脱気塔に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum degassing tower, and more particularly to an improved vacuum degassing tower suitable for use in the production of ultrapure water for VLSI production.

【0002】[0002]

【従来の技術】超LSIの製造工程でウェハーの洗浄に
用いられる超純水は、溶存酸素を10μg/l以下とい
う超微量にまで除去することが必要とされている。従
来、超純水の製造工程で溶存酸素を除去するには、通
常、真空脱気塔が用いられているが、常用の真空脱気塔
では溶存酸素濃度30〜50μg/lを達成するのが実
用的な限界であった。
2. Description of the Related Art Ultrapure water used for cleaning a wafer in a process of manufacturing an ultra LSI is required to remove dissolved oxygen to an extremely small amount of 10 μg / l or less. Conventionally, in order to remove dissolved oxygen in the process of producing ultrapure water, a vacuum degassing tower is usually used. However, a conventional vacuum degassing tower can achieve a dissolved oxygen concentration of 30 to 50 μg / l. It was a practical limit.

【0003】そこで、本発明者等は従来の真空脱気塔が
30〜50μg/lの溶存酸素濃度しか達成できない理
由について検討した結果、真空脱気塔からの抽気位置に
問題があることを見い出し、真空脱気塔からの抽気を気
液接触部材が充填された充填層下方の下部脱気室より行
うことにより、真空源の容量を増大させることなく溶存
酸素濃度が10μg/l以下の処理水を安定供給できる
真空脱気塔を提案した(特願平3−99123)。
[0003] The inventors of the present invention have studied the reason why the conventional vacuum degassing tower can only achieve a dissolved oxygen concentration of 30 to 50 µg / l and found that there is a problem in the position of the bleeding from the vacuum degassing tower. By extracting air from the vacuum degassing tower from the lower degassing chamber below the packed bed filled with the gas-liquid contact member, treated water having a dissolved oxygen concentration of 10 μg / l or less without increasing the capacity of the vacuum source Has been proposed (Japanese Patent Application No. 3-99123).

【0004】ところが、最近の超純水では、溶存酸素濃
度は5μg/l以下、さらには1μg/l以下という極
々低濃度にすることが要求されつつある。このような溶
存酸素濃度に対する要求に対して、従来の真空脱気塔で
も、充填層高を高くし、更に抽気量を大きくすれば溶存
酸素濃度5μg/l付近までの処理水を得ることは可能
であるが、抽気量の増大は真空源の大型化を伴い、大型
化した真空源は繊細な運転技術を要するため、常に水質
の安定した処理水を得ることは極めて困難である。
However, in recent ultrapure water, the dissolved oxygen concentration is required to be extremely low, such as 5 μg / l or less, and further 1 μg / l or less. In response to such a demand for dissolved oxygen concentration, it is possible to obtain treated water having a dissolved oxygen concentration of about 5 μg / l by increasing the height of the packed bed and further increasing the amount of bleeding even with a conventional vacuum degassing tower. However, an increase in the amount of extracted air is accompanied by an increase in the size of the vacuum source, and the enlarged vacuum source requires delicate operation technology, so that it is extremely difficult to always obtain treated water with stable water quality.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は、従来の
真空脱気塔に簡単な改良を加えることにより、溶存酸素
濃度が常に5μg/l以下という極々低濃度にまで低下
した処理水を安定して供給することができる真空脱気塔
を提供することを目的に鋭意検討を行なった。その一環
として真空脱気塔内の温度分布について詳細に解析した
ところ、充填層の上層部と下層部ではかなりの温度差が
生じていることを見い出した。
SUMMARY OF THE INVENTION The present inventors have made a simple improvement to a conventional vacuum degassing tower to remove the treated water whose dissolved oxygen concentration has always been reduced to an extremely low concentration of 5 μg / l or less. Intensive study was conducted for the purpose of providing a vacuum degassing tower that can be supplied stably. As a part of this, a detailed analysis of the temperature distribution inside the vacuum degassing tower revealed that a considerable temperature difference occurred between the upper and lower layers of the packed bed.

【0006】すなわち、真空脱気塔では、被処理水は充
填層内を流下して行くうちにその一部が蒸発して水蒸気
となる。塔内を強く減圧すればするほど充填層での水蒸
気の発生が多くなり、その際の気化熱により充填層の下
部に行くにつれて処理水の水温が下がると同時に下部脱
気室の温度も下がる。その結果、処理水の飽和溶解酸素
濃度が上昇するため、充填層を長くし、且つさらに抽気
量を増大しても、処理水の溶存酸素濃度が5μg/l以
下に安定しない要因となっているものと考えられる。
[0006] That is, in the vacuum degassing tower, a part of the water to be treated evaporates into water vapor while flowing down the packed bed. The more the pressure in the column is reduced, the more water vapor is generated in the packed bed, and the heat of vaporization at that time causes the temperature of the treated water to decrease as it goes to the lower part of the packed bed and the temperature of the lower degassing chamber. As a result, the saturated dissolved oxygen concentration of the treated water increases, so that even if the packed bed is lengthened and the amount of bleeding is further increased, the dissolved oxygen concentration of the treated water is not stabilized at 5 μg / l or less. It is considered something.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するものであって、その要旨とするところは、気液接触
部材を充填してなる充填層をはさんで、その上方に上部
脱気室、下方に下部脱気室及び処理水を貯留する処理水
貯留部を有し、該上部脱気室には被処理水供給手段及び
真空源に連通した抽気管が設けられており、処理水貯留
部と下部脱気室の間には処理水貯留部から処理水を抜出
して加熱したのち下部脱気室に散水する機構が設けられ
ている真空脱気塔を用いて被処理水の脱気を行うに際
し、加熱された被処理水をフラッシュ蒸発しないように
散水するか、被処理水を1〜2℃加熱して散水するか、
又は被処理水を20〜35℃で上部脱気室に供給するこ
とを特徴とする方法である。
SUMMARY OF THE INVENTION The present invention has been accomplished to achieve the above-mentioned object, and the gist of the invention is to sandwich a filling layer formed by filling a gas-liquid contact member, and to remove the upper part from above. air chamber has a treated water reservoir for storing the lower degassing chamber and the treated water downwards, the upper degassing chamber is provided with a extraction pipe communicating with the water to be treated supply means and a vacuum source, processing Water storage
Extraction of treated water from the treated water storage section between the section and the lower degassing chamber
A mechanism to spray water into the lower degassing chamber after heating
When degassing the water to be treated using a vacuum degassing tower
To prevent flash evaporation of the heated water to be treated.
Sprinkling or heating the water to be treated by 1-2 ° C
Alternatively, supply the water to be treated to the upper degassing chamber at 20 to 35 ° C.
And a method characterized by the following.

【0008】本発明について更に詳細に説明するに、本
発明は蒸発潜熱を奪われて冷却した処理水貯溜部の処理
水を加温して、その溶存酸素が放出され易いようにする
ことにより、極低濃度の溶存酸素しか含有しない処理水
を安定して取得しようとするものである。本発明を図面
に基づいてさらに具体的に説明するに、図1及び図2は
本発明に係る真空脱気塔を説明するための概念図であ
り、図1は処理水の加温手段を真空脱気塔の外部に設け
た場合、図2は真空脱気塔の内部に設けた場合の例であ
る。
The present invention will be described in further detail. The present invention heats treated water in a treated water storage section which has been deprived of latent heat of vaporization and cooled, so that the dissolved oxygen is easily released. It is intended to stably obtain treated water containing only a very low concentration of dissolved oxygen. 1 and 2 are conceptual views for explaining a vacuum degassing tower according to the present invention, and FIG. FIG. 2 shows an example in which it is provided outside the degassing tower, and FIG.

【0009】図1において、真空脱気塔1はラシヒリン
グ等の気液接触部材を充填した充填層5、この充填層5
の上方に設けられた上部脱気室4及び充填層5の下方に
設けられた下部脱気室6、処理水貯溜部7に区分されて
いる。上部脱気室4には散水機構3が設けられており、
更に真空ポンプからなる真空源11と連結する抽気管1
0が開口している。また抽気管10の途中にコンデンサ
ー21を設置して抽気ガス中の水蒸気を凝縮させると真
空源11の容量を小さくできるため好ましい。この真空
脱気装置を用いて被処理水の溶存酸素を除去するには、
被処理水導入管2を経て導入された被処理水を散水機構
3により上部脱気室4内に散水する。散水された被処理
水は充填層5を流下して下部脱気室6に流入し、処理水
貯溜部7に貯溜される。この間に被処理水中の溶存ガス
は気相に放出され、抽気管10、コンデンサー21を経
て系外に排出される。一方、処理水貯溜部7に貯溜され
た処理水は、処理水抜出し管8、及び処理水抜出しポン
プ9を経て系外に抜出されるとともに、その一部はリサ
イクル管19を経て処理水加温用熱交換器16により加
温し、下部脱気室6にリサイクル水散水機構20により
散水される。リサイクル水を何度昇温させるかは、リサ
イクル水の流量、コンデンサー、真空源の容量、及び要
求される処理水の溶存酸素濃度等により決定されるが、
通常は1〜2℃とするのが好ましい。また、リサイクル
水の水温はできるだけ一定とするのが好ましい。
In FIG. 1, a vacuum degassing tower 1 includes a packed layer 5 filled with a gas-liquid contact member such as a Raschig ring,
Are divided into an upper degassing chamber 4 provided above the lower layer, a lower degassing chamber 6 provided below the packed bed 5, and a treated water storage 7. The upper deaeration chamber 4 is provided with a watering mechanism 3,
Further, the bleeding tube 1 connected to a vacuum source 11 comprising a vacuum pump
0 is open. In addition, it is preferable to install a condenser 21 in the middle of the bleed pipe 10 to condense the water vapor in the bleed gas because the capacity of the vacuum source 11 can be reduced. To remove dissolved oxygen in the water to be treated using this vacuum deaerator,
The treated water introduced through the treated water introduction pipe 2 is sprinkled into the upper deaeration chamber 4 by the sprinkling mechanism 3. The sprinkled water to be treated flows down the packed bed 5, flows into the lower degassing chamber 6, and is stored in the treated water storage 7. During this time, the dissolved gas in the water to be treated is released into the gas phase, and is discharged outside the system via the bleed pipe 10 and the condenser 21. On the other hand, the treated water stored in the treated water storage section 7 is discharged out of the system through a treated water extraction pipe 8 and a treated water extraction pump 9, and a part of the treated water is heated through a recycling pipe 19. The water is heated by the heat exchanger 16 and water is sprinkled into the lower degassing chamber 6 by the recycled water sprinkling mechanism 20. How many times the temperature of the recycle water is increased depends on the flow rate of the recycle water, the capacity of the condenser and the vacuum source, and the required dissolved oxygen concentration of the treated water.
Usually, the temperature is preferably 1 to 2 ° C. Further, it is preferable that the temperature of the recycled water be as constant as possible.

【0010】本発明に係る真空脱気塔では、下部脱気室
に散水されるリサイクル水の温度を上部脱気室に散水さ
れる被処理水よりも高くすることにより、下部脱気室の
酸素分圧が上部脱気室の酸素分圧よりも低くなるように
操作することができる。すなわち真空脱気塔内の気相部
は、水蒸気と水から放出された酸素ガス等により占めら
れているが、水蒸気の占める部分、すなわち水蒸気の分
圧は水の水蒸気圧により決定される。従って充填層の圧
損を無視すると、下部脱気室と上部脱気室とは同じ圧力
なので、散水される水の温度が高い方の脱気室が、水蒸
気分圧が高い分だけ酸素分圧が低くなるのである。
In the vacuum degassing tower according to the present invention, the temperature of the recycle water sprinkled in the lower degassing chamber is set higher than the water to be treated sprinkled in the upper degassing chamber, so that the oxygen in the lower degassing chamber is reduced. It can be operated such that the partial pressure is lower than the oxygen partial pressure in the upper degassing chamber. That is, the gas phase portion in the vacuum degassing tower is occupied by water vapor and oxygen gas released from water, and the portion occupied by water vapor, that is, the partial pressure of water vapor is determined by the water vapor pressure of water. Therefore, ignoring the pressure loss of the packed bed, the lower degassing chamber and the upper degassing chamber have the same pressure, so the degassing chamber with the higher temperature of the water to be sprinkled has an oxygen partial pressure corresponding to the higher steam partial pressure. It will be lower.

【0011】真空脱気塔1に導入される被処理水は、イ
オン交換処理や逆浸透膜処理等を経たいわゆる純水(抵
抗率0.2MΩ・cm以上)であるのが好ましい。被処
理水は、通常、操業の安定性や不純物の析出防止の観点
から20〜35℃のほぼ一定温度で導入される。導入時
の溶存酸素濃度は、一般に大気飽和、すなわちその温度
での空気との平衡濃度もしくは若干過飽和濃度の6〜1
2μg/lとなっていることが多いため、予め従来用い
られている真空脱気塔により簡単な脱気を施して溶存酸
素濃度を200〜10μg/lにしておけば更に効率的
に脱酸素を行うことが出来る。
The water to be introduced into the vacuum degassing tower 1 is preferably so-called pure water (resistivity of 0.2 MΩ · cm or more) which has been subjected to an ion exchange treatment or a reverse osmosis membrane treatment. The water to be treated is usually introduced at a substantially constant temperature of 20 to 35 ° C. from the viewpoint of stability of operation and prevention of precipitation of impurities. The concentration of dissolved oxygen at the time of introduction is generally 6-1 of the atmospheric saturation, that is, the equilibrium concentration with air or a slightly supersaturated concentration at that temperature.
Since the concentration is often 2 μg / l, if the concentration of dissolved oxygen is adjusted to 200 to 10 μg / l by performing simple degassing in advance using a conventionally used vacuum degassing tower, deoxygenation can be performed more efficiently. You can do it.

【0012】本発明に係る真空脱気塔では、図1の如
く、処理水加温手段を真空脱気塔の外部に設置する代り
に、処理水貯溜部7または下部脱気室に設置し処理水を
直接加温することも可能である。この場合、処理水加温
手段の設置場所は処理水貯溜部7の処理水水面付近が良
い。図2はその1例を概念的に示すものであり、処理水
加温用ヒーター22として金属製の蛇管を処理水貯溜部
7の表層部に設置し、その中にスチームを供給すること
により、処理水を加温する方式のものである。スチーム
ヒーターの代りに電気ヒーターを用いて加温しても良
い。
In the vacuum degassing tower according to the present invention, as shown in FIG. 1, instead of installing the treated water heating means outside the vacuum degassing tower, it is installed in the treated water reservoir 7 or the lower degassing chamber. It is also possible to heat the water directly. In this case, the location of the treated water heating means is preferably near the treated water surface of the treated water storage 7. FIG. 2 conceptually shows one example of such a case, in which a metal snake tube is provided as a treated water heating heater 22 on the surface layer of the treated water storage unit 7 and steam is supplied therein. This is a method of heating treated water. Heating may be performed using an electric heater instead of the steam heater.

【0013】[0013]

【実施例】内径208mm、高さ11600mmの円筒
の中間付近に、ポールリング(プラスチック製、サイズ
1インチ、岩尾磁器工業(株)製)を充填して高さ36
25mmの充填層を形成した。充填層の上方の上部脱気
室に散水管と抽気管を開口させ、さらに処理水貯溜部に
は処理水加温手段として、外部循環式の熱交換器を設け
た(図1参照)。この真空脱気塔を用いて溶存酸素除去
テストを行った。
EXAMPLE A pole ring (plastic, size 1 inch, manufactured by Iwao Porcelain Co., Ltd.) was filled in the middle of a cylinder having an inner diameter of 208 mm and a height of 11600 mm to fill a height of 36 mm.
A 25 mm packed layer was formed. A sprinkling pipe and a bleeding pipe were opened in the upper deaeration chamber above the packed bed, and an external circulation type heat exchanger was provided in the treated water reservoir as treated water heating means (see FIG. 1). A dissolved oxygen removal test was performed using this vacuum degassing tower.

【0014】この真空脱気塔にイオン交換処理水(抵抗
率1.0MΩ・cm、水温25℃、溶存酸素濃度8mg
/l)を被処理水として、2.5m3 /hrで供給し
た。抽気量を157m3 /hr、上部脱気室の圧力を2
4Torrに保持し、かつ処理水貯溜部の水温が27℃
になるように、処理水を熱交換器で加温して下部脱気室
に散水しながら脱酸素を行なった。得られた処理水の溶
存酸素濃度は0.5μg/lであった。
Into this vacuum degassing tower, ion-exchanged water (resistivity: 1.0 MΩ · cm, water temperature: 25 ° C., dissolved oxygen concentration: 8 mg)
/ L) as the water to be treated was supplied at 2.5 m 3 / hr. The amount of bleed air was 157 m 3 / hr, and the pressure in the upper deaeration chamber was 2
4 Torr and the temperature of the treated water storage is 27 ° C
The deoxidation was performed while heating the treated water with a heat exchanger and spraying water into the lower degassing chamber. The dissolved oxygen concentration of the obtained treated water was 0.5 μg / l.

【0015】〔比較例1〕熱交換器による処理水の加温
を行なわないこと以外は、実施例と全て同一の操作条件
で脱酸素処理を行なった。得られた処理水の溶存酸素濃
度は30μg/lであった。
[Comparative Example 1] Deoxygenation treatment was performed under the same operating conditions as in the example except that the treatment water was not heated by the heat exchanger. The dissolved oxygen concentration of the obtained treated water was 30 μg / l.

【0016】〔比較例2〕抽気管を下部脱気室に開口す
るように配管変更を行なった真空脱気塔を用い、実施例
と同一の操作条件で脱酸素処理を行なった。得られた処
理水の溶存酸素濃度は5μg/lであった。
[Comparative Example 2] Deoxygenation treatment was performed under the same operating conditions as in the example using a vacuum degassing tower in which the piping was changed so that the bleeding pipe was opened to the lower degassing chamber. The dissolved oxygen concentration of the obtained treated water was 5 μg / l.

【0017】〔比較例3〕比較例2において処理水の加
温を行なわないこと以外は、比較例2と同一の操作条件
で脱酸素処理を行なった。得られた処理水の溶存酸素濃
度は比較例2と同じく5μg/lであった。
Comparative Example 3 A deoxygenation treatment was performed under the same operating conditions as in Comparative Example 2, except that the treated water was not heated in Comparative Example 2. The dissolved oxygen concentration of the obtained treated water was 5 μg / l as in Comparative Example 2.

【0018】[0018]

【発明の効果】本発明によれば、従来の真空脱気塔に簡
単な改良を加えることにより、脱気塔内での水蒸気発生
に起因する脱気塔内の温度低下及び処理水水温の低下に
よる、塔下部気相の酸素分圧の増加を防止出来るばかり
ではなく、処理水の加温温度を塔に導入する被処理水の
水温よりも高く調節することにより、塔下部気相の酸素
分圧を塔上部よりも低くできるので効率よく脱酸素でき
る。
According to the present invention, the temperature of the degassing tower and the temperature of the treated water are reduced by simply improving the conventional vacuum degassing tower by generating steam in the degassing tower. Not only can prevent an increase in the oxygen partial pressure of the gaseous phase at the bottom of the tower, but also by adjusting the heating temperature of the treated water to be higher than the temperature of the water to be treated introduced into the tower. Since the pressure can be made lower than that at the top of the tower, deoxygenation can be performed efficiently.

【0019】従って、本発明の真空脱気塔を用いれば、
溶存酸素濃度1μg/l以下、例えば0.5μg/lと
いう極低濃度の処理水が安定して得られる。
Therefore, if the vacuum degassing tower of the present invention is used,
A very low concentration of treated water having a dissolved oxygen concentration of 1 μg / l or less, for example, 0.5 μg / l, can be stably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る真空脱気塔において、処理水加温
手段を真空脱気塔の外部に設置したものの1例の概念図
である。
FIG. 1 is a conceptual diagram of an example of a vacuum degassing tower according to the present invention in which treated water heating means is installed outside the vacuum degassing tower.

【図2】本発明に係る真空脱気塔において、処理水加温
手段を真空脱気塔の内部に設置したものの1例の概念図
である。
FIG. 2 is a conceptual diagram of an example of a vacuum degassing tower according to the present invention in which treated water heating means is installed inside the vacuum degassing tower.

【符号の説明】[Explanation of symbols]

1 真空脱気塔 2 被処理水導入管 3 散水機構 4 上部脱気室 5 充填層 6 下部脱気室 7 処理水貯溜部 8 処理水抜き出し管 9 処理水抜き出しポンプ 10 抽気管 11 真空源 12 冷却水供給管 13 冷却水排出管 14 凝縮水排出管(大気脚) 15 凝縮水貯槽 16 処理水加温用熱交換器 17 スチーム供給管 18 スチーム排出管 19 処理水リサイクル管 20 リサイクル水散水機構 21 コンデンサー 22 処理水加温用ヒーター DESCRIPTION OF SYMBOLS 1 Vacuum deaeration tower 2 To-be-treated water introduction pipe 3 Sprinkling mechanism 4 Upper deaeration chamber 5 Packing layer 6 Lower deaeration chamber 7 Treated water storage part 8 Treated water extraction pipe 9 Treated water extraction pump 10 Extraction pipe 11 Vacuum source 12 Cooling Water supply pipe 13 Cooling water discharge pipe 14 Condensed water discharge pipe (atmosphere leg) 15 Condensed water storage tank 16 Heat exchanger for heating treated water 17 Steam supply pipe 18 Steam discharge pipe 19 Treated water recycling pipe 20 Recycled water sprinkling mechanism 21 Condenser 22 Heater for heating treated water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮地 源久 北九州市八幡西区黒崎城石1番1号 三 菱化成株式会社黒崎工場内 (56)参考文献 特開 平6−246259(JP,A) 実開 昭62−174607(JP,U) (58)調査した分野(Int.Cl.7,DB名) B01D 19/00 - 19/04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Genhisa Miyaji 1-1, Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu City Inside the Kurosaki Plant of Mitsubishi Chemical Co., Ltd. (56) References JP-A-6-246259 (JP, A) 1987-174607 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 19/00-19/04

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 気液接触部材を充填してなる充填層をは
さんで、その上方に上部脱気室、下方に下部脱気室及び
処理水を貯留する処理水貯留部を有し、該上部脱気室に
は被処理水供給手段及び真空源に連通する抽気管が設け
られてる真空脱気塔を用いて被処理水の脱気を行うに
際し、処理水貯留部に貯留された処理水を抜出して加熱
したのち下部脱気室に散水する(但し、フラッシュ蒸発
する場合を除く)ことを特徴とする方法。
An upper deaeration chamber, a lower deaeration chamber, and a treated water storage section for storing treated water above and below a filling layer formed by filling a gas-liquid contact member; to the upper degassing chamber to degas the water to be treated with a vacuum degassing tower that provided the extraction pipe communicating with the water to be treated supply means and a vacuum source
At this time, the treated water stored in the treated water storage section is extracted and heated.
After that, spray water into the lower degassing chamber (however, flash evaporation
(Except when doing so).
【請求項2】 気液接触部材を充填してなる充填層をは
さんで、その上方に上部脱気室、下方に下部脱気室及び
処理水を貯留する処理水貯留部を有し、該上部脱気室に
は被処理水供給手段及び真空源に連通する抽気管が設け
られている真空脱気塔を用いて被処理水の脱気を行うに
際し、処理水貯留部に貯留された処理水を抜出して1〜
2℃加熱したのち下部脱気室に散水することを特徴とす
る方法。
2. A packing layer formed by filling a gas-liquid contact member.
Above, the upper degassing chamber above, the lower degassing chamber below and
It has a treated water storage section for storing treated water, and the upper degassing chamber
Is provided with a bleed pipe that communicates with the water supply means and the vacuum source.
Degassed water using a vacuum degassing tower
At this time, extract the treated water stored in the treated water storage
After heating at 2 ° C, sprinkle water into the lower degassing chamber.
Way.
【請求項3】 気液接触部材を充填してなる充填層をは3. A filling layer formed by filling a gas-liquid contact member is provided.
さんで、その上方に上部脱気室、下方に下部脱気室及びAbove, the upper degassing chamber above, the lower degassing chamber below and
処理水を貯留する処理水貯留部を有し、該上部脱気室にIt has a treated water storage section for storing treated water, and the upper degassing chamber
は被処理水供給手段及び真空源に連通する抽気管が設けIs provided with a bleed pipe that communicates with the water supply means and the vacuum source.
られている真空脱気塔を用いて被処理水の脱気を行うにDegassed water using a vacuum degassing tower
際し、被処理水を20〜35℃で上部脱気室に供給し、At this time, the water to be treated is supplied to the upper degassing chamber at 20 to 35 ° C,
かつ処理水貯留部に貯留された処理水を抜出して加温しThe treated water stored in the treated water storage section is extracted and heated.
たのち下部脱気室に散水することを特徴とする方法。A method characterized by sprinkling water in the lower degassing chamber afterwards.
【請求項4】 処理水貯留部に貯留された処理水を抜出4. Extracting the treated water stored in the treated water storage section
して、上部脱気室に供給される被処理水よりも高温に加To a higher temperature than the water to be treated supplied to the upper degassing chamber.
熱したのち下部脱気室に散水することを特徴とする請求After heating, water is sprayed into the lower degassing chamber.
項1ないし3のいずれかに記載の方法。Item 4. The method according to any one of Items 1 to 3.
【請求項5】 処理水の溶存酸素濃度が1μg/l以下5. The concentration of dissolved oxygen in the treated water is 1 μg / l or less.
となるように脱気を行うことを特徴とする請求項1ない2. The method according to claim 1, wherein degassing is performed so that
し4のいずれかに記載の方法。5. The method according to any of 4.
JP16695693A 1993-07-06 1993-07-06 Operating method of vacuum degassing tower Expired - Lifetime JP3348469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16695693A JP3348469B2 (en) 1993-07-06 1993-07-06 Operating method of vacuum degassing tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16695693A JP3348469B2 (en) 1993-07-06 1993-07-06 Operating method of vacuum degassing tower

Publications (2)

Publication Number Publication Date
JPH0724213A JPH0724213A (en) 1995-01-27
JP3348469B2 true JP3348469B2 (en) 2002-11-20

Family

ID=15840740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16695693A Expired - Lifetime JP3348469B2 (en) 1993-07-06 1993-07-06 Operating method of vacuum degassing tower

Country Status (1)

Country Link
JP (1) JP3348469B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2326297A (en) * 1996-03-06 1997-09-22 I. Belloch Corporation Method for treating liquid materials
JP5024693B2 (en) * 2001-04-18 2012-09-12 野村マイクロ・サイエンス株式会社 Vacuum deaerator
CN101043832A (en) 2004-10-22 2007-09-26 株式会社资生堂 Lip categorizing method, makeup method, categorizing map, and makeup tool

Also Published As

Publication number Publication date
JPH0724213A (en) 1995-01-27

Similar Documents

Publication Publication Date Title
EP0226216B1 (en) Distilling apparatus
JP4572067B2 (en) Method for esterifying fatty acids
JPH0673603B2 (en) Method for removing dissolved oxygen in pure water or ultrapure water
US4409064A (en) Process for concentrating sulfuric acid in an evaporator
JP2008229424A (en) Vacuum distillation apparatus
TW201638542A (en) Vapor supplying apparatus, vapor drying apparatus, vapor supplying method, and vapor drying method
US20060157335A1 (en) Low energy vacuum distillation method and apparatus
US20050178648A1 (en) Low energy vacuum distillation method and apparatus
JP3348469B2 (en) Operating method of vacuum degassing tower
WO2018082199A1 (en) Gradient sub-boiling distiller
US3528890A (en) Distillation of saline water to recover fresh water
JP7607663B2 (en) Separation tower for treating condensate and method thereof
JP3068244B2 (en) Method and apparatus for heating and multi-step degassing of makeup water using steam in a power plant
JP5024693B2 (en) Vacuum deaerator
JP3434474B2 (en) Evaporative production method and apparatus for pure water
US1146014A (en) Method for concentrating nicotin solutions.
JP4138473B2 (en) Method and apparatus for evaporating and concentrating foaming liquid
JP2737378B2 (en) Refrigerant degassing equipment
JP2920719B2 (en) High purity degassed water production method
JP2007319849A (en) Apparatus for regenerating used coolant liquid
JP2994688B2 (en) Low-temperature liquefied gas vaporizer that can produce fresh water
JP4683773B2 (en) Method for evaporating and concentrating effervescent liquid
CA1142424A (en) Process for concentrating dilute solutions in an evaporator
JPH0775642B2 (en) Method for evaporating and concentrating aqueous solution containing water-soluble organic matter
JPH1128453A (en) Method for removing trace of component in aqueous liquid by evaporation and device thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

EXPY Cancellation because of completion of term