[go: up one dir, main page]

JP3348198B2 - Evaluation surface roughness measurement method and evaluation surface roughness measurement device - Google Patents

Evaluation surface roughness measurement method and evaluation surface roughness measurement device

Info

Publication number
JP3348198B2
JP3348198B2 JP32243399A JP32243399A JP3348198B2 JP 3348198 B2 JP3348198 B2 JP 3348198B2 JP 32243399 A JP32243399 A JP 32243399A JP 32243399 A JP32243399 A JP 32243399A JP 3348198 B2 JP3348198 B2 JP 3348198B2
Authority
JP
Japan
Prior art keywords
intensity
scattered
roughness
electromagnetic wave
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32243399A
Other languages
Japanese (ja)
Other versions
JP2001141436A (en
Inventor
哲也 川西
Original Assignee
独立行政法人通信総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人通信総合研究所 filed Critical 独立行政法人通信総合研究所
Priority to JP32243399A priority Critical patent/JP3348198B2/en
Publication of JP2001141436A publication Critical patent/JP2001141436A/en
Application granted granted Critical
Publication of JP3348198B2 publication Critical patent/JP3348198B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料の評価面の粗
さを示す「表面粗さ」と「相関距離」を個別に求めるこ
とが可能な評価面の粗さ測定方法と、それを具現化する
評価面の粗さ測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaluation surface roughness measuring method capable of individually obtaining "surface roughness" and "correlation distance" indicating the roughness of an evaluation surface of a sample, and a method for implementing the method. The present invention relates to an apparatus for measuring roughness of an evaluation surface.

【0002】[0002]

【従来の技術】従来、評価面の粗さを測定する場合、プ
ローブを評価面に近接させて3次元形状を実測し、この
3次元形状のデータに基づいて、評価面の粗さを表す2
つのパラメータである表面粗さ(評価面の凹凸である高
さの二乗平均の平方根)と相関距離(相関の大きさがe
-1となる距離)を求めていた。
2. Description of the Related Art Conventionally, when measuring the roughness of an evaluation surface, a probe is brought close to the evaluation surface, a three-dimensional shape is actually measured, and the roughness of the evaluation surface is expressed based on the data of the three-dimensional shape.
The two parameters, surface roughness (the square root of the root mean square of the height of the unevenness of the evaluation surface) and the correlation distance (the magnitude of the correlation is e
-1 ).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
如く3次元形状測定装置による実測データから表面粗さ
と相関距離を演算すれば、評価面の粗さを高精度に求め
ることができる反面、高コストとなってしまうし、3次
元形状の実測に比較的長時間を要するため、全数検査が
必要な用途には向いていない。例えば、0.1μm程度
(光の波長以下)の凹凸が問題となるハードディスクの
磁気記録面などを評価する場合には、短時間で全数検査
できることが望ましく、評価面の粗さの指標となる「表
面粗さ」と「相関距離」の各パラメータのみを短時間で
効率良く測定できる方法や装置が必要とされている。
However, if the surface roughness and the correlation distance are calculated from the data actually measured by the three-dimensional shape measuring apparatus as in the prior art, the roughness of the evaluation surface can be obtained with high accuracy, but the cost is high. In addition, since it takes a relatively long time to actually measure the three-dimensional shape, it is not suitable for applications requiring 100% inspection. For example, when evaluating a magnetic recording surface of a hard disk or the like in which irregularities of about 0.1 μm (less than the wavelength of light) are a problem, it is desirable to be able to perform 100% inspection in a short time, and it is an index of roughness of the evaluation surface. There is a need for a method and apparatus that can efficiently measure only the parameters of “surface roughness” and “correlation distance” in a short time.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る評価面の粗さ測定方法は、評価面の
粗さ測定の試料である誘電体の評価面へP偏波の電磁波
を照射した際に、その入射角θ0 と電磁波照射側媒質に
対する誘電体の相対屈折率nに応じて、電磁波の照射側
媒質における散乱ブリュースタ角ΘB1が、
According to a first aspect of the present invention, there is provided a method for measuring the roughness of an evaluation surface, comprising the steps of: When irradiating the electromagnetic wave of, according to the incident angle θ 0 and the relative refractive index n of the dielectric with respect to the electromagnetic wave irradiation side medium, the scattering Brewster angle Θ B1 in the electromagnetic wave irradiation side medium,

【数5】 を満たす条件下で、散乱ブリュースタ角ΘB1において取
得される散乱波のP偏波成分の強度に対するS偏波成分
の強度の比に基づいて、評価面の相関距離を求めるよう
にしたことを特徴とする。
(Equation 5) Under the conditions that satisfy the condition, the correlation distance of the evaluation plane is calculated based on the ratio of the intensity of the S-polarized component to the intensity of the P-polarized component of the scattered wave obtained at the scattering Brewster angle Θ B1 . Features.

【0005】また、請求項2に係る評価面の粗さ測定方
法は、上記請求項1において、散乱ブリュースタ角ΘB1
において取得される散乱波のP偏波成分の強度に対する
S偏波成分の強度の比に基づいて求めた相関距離と、試
料表面からの電磁波散乱強度に基づいて、評価面の表面
粗さを求めるようにしたことを特徴とする。
According to a second aspect of the present invention, there is provided a method for measuring roughness of an evaluation surface according to the first aspect, wherein the scattering Brewster angle Θ B1
The surface roughness of the evaluation surface is obtained based on the correlation distance obtained based on the ratio of the intensity of the S-polarized component to the intensity of the P-polarized component of the scattered wave obtained in the above, and the electromagnetic wave scattering intensity from the sample surface. It is characterized by doing so.

【0006】また、請求項3に係る評価面の粗さ測定方
法は、評価面の粗さ測定の試料である誘電体の評価面へ
P偏波の電磁波を照射した際に、その入射角θ0 と電磁
波照射側媒質に対する誘電体の相対屈折率nに応じて、
電磁波が入射する誘電体側における散乱ブリュースタ角
Θ′B2が、
According to a third aspect of the present invention, there is provided a method for measuring the roughness of an evaluation surface, the method comprising: when irradiating a P-polarized electromagnetic wave to an evaluation surface of a dielectric, which is a sample for measuring the roughness of the evaluation surface; According to 0 and the relative refractive index n of the dielectric with respect to the electromagnetic wave irradiation side medium,
The scattered Brewster angle に お け る ' B2 on the dielectric side where the electromagnetic wave enters is

【数6】 を満たす条件下で、散乱ブリュースタ角Θ′B2において
取得される散乱波のP偏波成分の強度に対するS偏波成
分の強度の比に基づいて、評価面の相関距離を求めるよ
うにしたことを特徴とする。
(Equation 6) The correlation distance of the evaluation plane is determined based on the ratio of the intensity of the S-polarized component to the intensity of the P-polarized component of the scattered wave obtained at the scattered Brewster angle Θ ′ B2 under the condition satisfying It is characterized by.

【0007】また、請求項4に係る評価面の粗さ測定方
法は、上記請求項3において、散乱ブリュースタ角Θ′
B2において取得される散乱波のP偏波成分の強度に対す
るS偏波成分の強度の比に基づいて求めた相関距離と、
試料内部への電磁波散乱強度に基づいて、評価面の表面
粗さを求めるようにしたことを特徴とする。
According to a fourth aspect of the present invention, in the method for measuring the roughness of the evaluation surface according to the third aspect, the scattering Brewster angle Θ '
A correlation distance obtained based on the ratio of the intensity of the S-polarized component to the intensity of the P-polarized component of the scattered wave obtained in B2 ,
It is characterized in that the surface roughness of the evaluation surface is determined based on the intensity of electromagnetic wave scattering inside the sample.

【0008】また、請求項5に係る評価面の粗さ測定装
置は、評価面の粗さ測定の試料である誘電体(22)の
評価面へP偏波の電磁波を照射する電磁波照射手段(2
1)と、上記電磁波照射手段から照射される電磁波の入
射角θ0 と電磁波照射側媒質に対する誘電体の相対屈折
率nに応じて、電磁波の照射側媒質における散乱ブリュ
ースタ角ΘB1が、
According to a fifth aspect of the present invention, there is provided an apparatus for measuring roughness of an evaluation surface, comprising: an electromagnetic wave irradiation means for irradiating a P-polarized electromagnetic wave to an evaluation surface of a dielectric (22) which is a sample for measuring the roughness of the evaluation surface. 2
1) and the scattering Brewster angle Θ B1 of the electromagnetic wave irradiation side medium according to the incident angle θ 0 of the electromagnetic wave irradiated from the electromagnetic wave irradiation means and the relative refractive index n of the dielectric with respect to the electromagnetic wave irradiation side medium,

【数7】 を満たす条件下で、散乱ブリュースタ角ΘB1において散
乱波のS偏波成分を取得する第1散乱波取得手段(2
4)と、散乱ブリュースタ角ΘB1において散乱波のP偏
波成分を取得する第2散乱波取得手段(25)と、上記
第2散乱波取得手段により取得したP偏波成分の強度と
第1散乱波取得手段により取得したS偏波成分の強度と
の比に基づいて、評価面の相関距離を演算する粗さ演算
手段(26)と、からなることを特徴とする。
(Equation 7) The first scattered wave obtaining means (2) for obtaining the S-polarized component of the scattered wave at the scattered Brewster angle Θ B1 under the condition satisfying
4), a second scattered wave obtaining means (25) for obtaining the P-polarized component of the scattered wave at the scattered Brewster angle Θ B1 , and the intensity of the P-polarized component obtained by the second scattered wave obtaining means and the second And a roughness calculating means (26) for calculating a correlation distance of the evaluation surface based on a ratio of the intensity of the S-polarized component acquired by the one scattered wave acquiring means.

【0009】また、請求項6に係る評価面の粗さ測定装
置は、上記請求項5において、粗さ演算手段が、P偏波
成分の強度に対するS偏波成分の強度の比に基づいて求
めた相関距離と、試料表面からの電磁波散乱強度とに基
づいて、評価面の表面粗さを演算するものとしたことを
特徴とする。
According to a sixth aspect of the present invention, in the apparatus for measuring the roughness of the evaluation surface, the roughness calculating means determines the roughness based on a ratio of the intensity of the S-polarized component to the intensity of the P-polarized component. The surface roughness of the evaluation surface is calculated based on the calculated correlation distance and the intensity of electromagnetic wave scattering from the sample surface.

【0010】また、請求項7に係る評価面の粗さ測定装
置は、評価面の粗さ測定の試料である誘電体(32)の
評価面へP偏波の電磁波を照射する電磁波照射手段(3
1)と、上記電磁波照射手段から照射される電磁波の入
射角θ0 と電磁波照射側媒質に対する誘電体の相対屈折
率nに応じて、電磁波の入射する誘電体側における散乱
ブリュースタ角Θ′B2が、
According to a seventh aspect of the present invention, there is provided an evaluation surface roughness measuring device for irradiating a P-polarized electromagnetic wave to an evaluation surface of a dielectric (32) which is a sample of the evaluation surface roughness measurement. 3
1) and the scattering Brewster angle Θ ′ B2 on the dielectric side where the electromagnetic wave is incident is determined according to the incident angle θ 0 of the electromagnetic wave emitted from the electromagnetic wave irradiating means and the relative refractive index n of the dielectric with respect to the electromagnetic wave irradiation side medium. ,

【数8】 を満たす条件下で、散乱ブリュースタ角Θ′B2において
散乱波のS偏波成分を取得する第1散乱波取得手段(3
4)と、散乱ブリュースタ角Θ′B2において散乱波のP
偏波成分を取得する第2散乱波取得手段(35)と、上
記第2散乱波取得手段により取得したP偏波成分の強度
と第1散乱波取得手段により取得したS偏波成分の強度
との比に基づいて、評価面の相関距離を演算する粗さ演
算手段(36)と、からなることを特徴とする。
(Equation 8) The first scattered wave obtaining means (3) for obtaining the S-polarized component of the scattered wave at the scattered Brewster angle Θ ' B2 under the condition
4) and the P of the scattered wave at the scattered Brewster angle Θ ' B2
A second scattered wave obtaining means (35) for obtaining a polarized wave component, the intensity of the P polarized light component obtained by the second scattered wave obtaining means, and the intensity of the S polarized light component obtained by the first scattered wave obtaining means. And a roughness calculating means (36) for calculating the correlation distance of the evaluation surface based on the ratio of

【0011】また、請求項8に係る評価面の粗さ測定装
置は、上記請求項7において、粗さ演算手段が、P偏波
成分の強度に対するS偏波成分の強度の比に基づいて求
めた相関距離と、試料内部への電磁波散乱強度とに基づ
いて、評価面の表面粗さを演算するものとしたことを特
徴とする。
According to an eighth aspect of the present invention, in the above-described seventh aspect, the roughness calculating means determines the roughness based on a ratio of the intensity of the S-polarized component to the intensity of the P-polarized component. The surface roughness of the evaluation surface is calculated based on the correlation distance and the intensity of scattering of electromagnetic waves into the sample.

【0012】[0012]

【発明の実施の形態】次に、添付図面に基づいて、本発
明に係る評価面の粗さ測定方法と、この方法を具現化し
得る評価面の粗さ測定装置の実施形態を説明する。それ
に先立ち、本件発明者が特願平10−267451号に
より提案した誘電体の表面評価を非接触に行える方法お
よび装置について、その原理と概要を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a method for measuring roughness of an evaluation surface according to the present invention and an apparatus for measuring roughness of an evaluation surface capable of realizing the method will be described with reference to the accompanying drawings. Prior to that, the principle and outline of a method and an apparatus proposed by the inventor of the present invention in Japanese Patent Application No. 10-267451 which can evaluate the surface of a dielectric without contact will be described.

【0013】図1に示す如く、空気中から透光性の試料
に入射角θ0 で光を照射したとき、照射面の粗さが小さ
ければ、入射側媒質(空気)へ反射される散乱波と、透
過側媒質(透光性の試料)へ透過する透過波とには、散
乱光のP偏波成分がゼロに等しくなる散乱ブリュースタ
角ΘB1および散乱ブリュースタ角Θ′B2が生ずる。
As shown in FIG. 1, when a transparent sample is irradiated with light at an incident angle θ 0 from the air, if the roughness of the irradiated surface is small, the scattered wave reflected on the incident side medium (air) is reduced. And the transmitted wave transmitted through the transmission side medium (translucent sample) have a scattered Brewster angle Θ B1 and a scattered Brewster angle Θ ' B2 in which the P polarization component of the scattered light is equal to zero.

【0014】[0014]

【数9】 (Equation 9)

【0015】[0015]

【数10】 (Equation 10)

【0016】上記した二式において、nは試料の空気に
対する相対屈折率である。また、このような現象は微小
な不規則構造を持つ誘電体表面に電磁波を照射した場合
等に見られるものである。なお、試料に対する透過・非
透過は電磁波の波長や強度によっても異なるので、可視
光領域では不透明な誘電体であっても、上述した性質を
呈する場合がある。
In the above two equations, n is a relative refractive index of the sample to air. Such a phenomenon is observed, for example, when an electromagnetic wave is irradiated on a dielectric surface having a minute irregular structure. Since the transmission and non-transmission of the sample differs depending on the wavelength and intensity of the electromagnetic wave, the above-described properties may be exhibited even if the dielectric is opaque in the visible light region.

【0017】また、光の照射や散乱は三次元立体的に把
握されるが、図1では説明を簡単にするため、光は試料
の照射面に垂直な平面内で照射するものとし、散乱ブリ
ュースタ角ΘB1および散乱ブリュースタ角Θ′B2も同一
平面内に現れるようにしてある。すなわち、光の入射方
向に対する方位角(φS )は、散乱ブリュースタ角Θ B1
においてはφS =0゜、散乱ブリュースタ角Θ′B2にお
いてはφs =180゜となる。
Further, light irradiation and scattering are three-dimensionally grasped.
In Fig. 1, light is applied to the sample for simplicity.
Irradiation in a plane perpendicular to the irradiation surface of
Wuster angleΘB1And the scattering Brewster angle Θ 'B2Also the same
It appears in the plane. In other words, how light enters
Azimuth (φS) Is the scattering Brewster angle Θ B1
AtS= 0, scattering Brewster angle Θ 'B2In
And φs= 180 °.

【0018】ここで、散乱波は一般に1次、2次、3
次、・・・などの成分に分けて考えることが可能であ
り、1次散乱強度は表面粗さの2乗に、2次は4乗に、
3次は6乗に依存することから、表面の粗さが小さい場
合には1次散乱が支配的となり、表面の凹凸が顕著な場
合(粗さが大きい場合)には高次の散乱が支配的となる
という性質を有している。そして、散乱ブリュースタ角
ΘB1では、P偏波成分の1次散乱強度がゼロになる。
Here, the scattered waves generally have first, second, and third order.
It is possible to consider components such as the following,..., The primary scattering intensity becomes the square of the surface roughness, the secondary becomes the fourth power,
Since the third order depends on the sixth power, the first-order scattering is dominant when the surface roughness is small, and the high-order scattering is dominant when the surface unevenness is remarkable (when the roughness is large). It has the property of becoming a target. Then, the scattering Brewster angle theta B1, 1-order scattering intensity P polarization component is zero.

【0019】従って、表面の粗さが小さい試料に電磁波
を照射すると、散乱波の性質は1次散乱が支配的となっ
て散乱ブリュースタ角ΘB1における散乱光のP偏波成分
の減少が顕著となり、表面が粗い試料に電磁波を照射す
ると、高次散乱が支配的となって散乱ブリュースタ角Θ
B1における散乱光のP偏波成分の減少が目立たなくな
る。これと同様に、表面の粗さが小さい試料に電磁波を
照射すると、散乱ブリュースタ角Θ′B2へ散乱される散
乱波の性質も1次散乱が支配的となって散乱光のP偏波
成分の減少が顕著となり、表面の粗さが粗い試料に電磁
波を照射すると、散乱ブリュースタ角Θ′B2へ散乱され
る散乱波の性質も高次散乱が支配的となって散乱光のP
偏波成分の減少が目立たなくなる。
Accordingly, when a sample having a small surface roughness is irradiated with an electromagnetic wave, the primary scattering is predominant in the nature of the scattered wave, and the P polarization component of the scattered light at the scattered Brewster angle Θ B1 is significantly reduced. When a sample with a rough surface is irradiated with electromagnetic waves, higher-order scattering becomes dominant and the scattering Brewster angle Θ
The decrease in the P polarization component of the scattered light at B1 becomes inconspicuous. Similarly, when a sample with a small surface roughness is irradiated with an electromagnetic wave, the first-order scattering becomes dominant in the nature of the scattered wave scattered to the scattered Brewster angle Θ ′ B2 , and the P-polarized component of the scattered light When a sample having a rough surface is irradiated with an electromagnetic wave, the property of the scattered wave scattered to the scattered Brewster angle Θ ′ B2 is also dominated by higher-order scattering, and the P of the scattered light becomes higher.
The decrease in the polarization component becomes inconspicuous.

【0020】すなわち、電磁波照射面の粗さが小さい場
合、試料表面からの散乱波のS偏波成分は図2(a)に
示すように散乱強度分布が滑らかな変化となるが、P偏
波成分においては図2(b)に示すように散乱角θS
散乱ブリュースタ角ΘB1の時にP偏波成分が消えるとい
う現象が生ずる。一方、電磁波照射面が粗い場合には、
S偏波成分およびP偏波成分共に、図3に示すような散
乱強度分布を示し、散乱ブリュースタ角ΘB1においても
P偏波成分が消失することはない。なお、この性質は散
乱ブリュースタ角Θ′B2への散乱光でも同様に見いださ
れるものである。
That is, when the roughness of the electromagnetic wave irradiation surface is small, the S-polarized component of the scattered wave from the sample surface changes smoothly in the scattering intensity distribution as shown in FIG. As shown in FIG. 2B, when the scattering angle θ S is equal to the scattering Brewster angle Θ B 1 , the P polarization component disappears. On the other hand, when the electromagnetic wave irradiation surface is rough,
Both the S polarization component and the P polarization component show a scattering intensity distribution as shown in FIG. 3, and the P polarization component does not disappear even at the scattering Brewster angle 散乱B1 . This property is also found in the scattered light to the scattered Brewster angle Θ ′ B2 .

【0021】従って、上記した散乱ブリュースタ角ΘB1
もしくは散乱ブリュースタ角Θ′B2への散乱強度のP偏
波成分が、誘電体表面の粗さに応じて変化するという普
遍的な現象を利用し、測定対象に依存することなく汎用
性のある安定した表面粗さの評価を行うことが可能なの
である。
Therefore, the above-mentioned scattering Brewster angle し たB1
Alternatively, utilizing the universal phenomenon that the P-polarized component of the scattering intensity to the scattering Brewster angle Θ ′ B2 changes according to the roughness of the dielectric surface, it is versatile without depending on the measurement target. It is possible to perform stable evaluation of the surface roughness.

【0022】なお、このP偏波成分の特性を利用した第
1の評価方法としては、S偏波成分とP偏波成分とを含
む電磁波を誘電体の評価面へ照射して、散乱ブリュース
タ角ΘB1もしくは散乱ブリュースタ角Θ′B2への散乱光
からS偏波成分とP偏波成分とを各々取得し、P偏波成
分の減少の度合いをS偏波成分とP偏波成分と比率から
判定する方法がある。すなわち、P偏波成分の比率が低
いほど表面の粗さは小さく、逆にP偏波成分の比率が高
いほど表面の粗さは大きいという性質に基づき、評価面
の表面粗さを評価するのである。
As a first evaluation method utilizing the characteristics of the P-polarized component, an electromagnetic wave including an S-polarized component and a P-polarized component is radiated to an evaluation surface of a dielectric, and a scattering Brewster is used. The S polarization component and the P polarization component are respectively obtained from the scattered light to the angle Θ B1 or the scattering Brewster angle Θ ′ B2 , and the degree of reduction of the P polarization component is determined by the S polarization component and the P polarization component. There is a method of judging from the ratio. That is, the surface roughness of the evaluation surface is evaluated based on the property that the lower the ratio of the P polarization component is, the smaller the surface roughness is, and conversely, the higher the ratio of the P polarization component is, the higher the surface roughness is. is there.

【0023】図4に示すのは、第1の評価方法を具現化
する非接触表面粗さ評価装置であり、45度に偏波した
レーザ光(S偏波およびP偏波を含む電磁波)を照射す
る電磁波照射手段としてのレーザ光源1と、該レーザ光
源1から試料2の表面に対して照射されたレーザの散乱
光を散乱ブリュースタ角ΘB1で受けるように配置した偏
光ビームスプリッタ3と、該偏光ビームスプリッタ3に
より分離されたS偏波成分を取得する第1散乱波取得手
段としての第1光検出器4と、上記偏光ビームスプリッ
タ3により分離されたP偏波成分を取得する第2散乱波
取得手段としての第2光検出器5と、これら第1,第2
光検出器4,5より取得したS偏波成分とP偏波成分と
に基づいて試料2の評価面の粗さを判定するコンピュー
タ6とからなる。
FIG. 4 shows a non-contact surface roughness evaluation device which embodies the first evaluation method, and which converts a laser beam (electromagnetic wave including S-polarized wave and P-polarized wave) polarized at 45 degrees. A laser light source 1 as an electromagnetic wave irradiating means for irradiating, a polarizing beam splitter 3 arranged to receive scattered light of a laser radiated from the laser light source 1 onto a surface of a sample 2 at a scatter Brewster angle Θ B1 ; A first photodetector 4 as first scattered wave obtaining means for obtaining the S polarization component separated by the polarization beam splitter 3, and a second photodetector 4 for obtaining the P polarization component separated by the polarization beam splitter 3; A second photodetector 5 as scattered wave acquisition means,
The computer 6 determines the roughness of the evaluation surface of the sample 2 based on the S-polarized component and the P-polarized component obtained from the photodetectors 4 and 5.

【0024】上記コンピュータ6による判定には、予め
評価基準となるデータを記憶させておき、このデータに
基づいて評価時に取得したS偏波成分とP偏波成分との
比率から表面評価を行うのである。
In the determination by the computer 6, data serving as an evaluation criterion is stored in advance, and the surface is evaluated based on the ratio between the S-polarization component and the P-polarization component obtained at the time of evaluation based on this data. is there.

【0025】また、P偏波成分の特性を利用した第2の
評価方法としては、P偏波成分のみを含む電磁波を誘電
体の評価面へ照射し、散乱ブリュースタ角ΘB1もしくは
散乱ブリュースタ角Θ′B2への散乱光の散乱強度と、こ
の散乱ブリュースタ角ΘB1および散乱ブリュースタ角
Θ′B2とは異なる方向(評価基準角θ1 )へ散乱光の散
乱強度とを各々検出し、散乱ブリュースタ角ΘB1におけ
るP偏波成分の減少の度合い若しくは散乱ブリュースタ
角Θ′B2におけるP偏波成分の減少の度合いを両散乱強
度の比率(「θ1 :ΘB1」もしくは「θ1 :Θ′B2」)
として判定する方法がある。すなわち、散乱ブリュース
タ角ΘB1もしくは散乱ブリュースタ角Θ′ B2における散
乱強度の比率が低いほど表面の粗さは小さく、逆に散乱
ブリュースタ角ΘB1もしくは散乱ブリュースタ角Θ′B2
における散乱強度の比率が高いほど表面の粗さは大きい
という性質に基づき、評価面の粗さを評価するのであ
る。
Further, a second method utilizing the characteristics of the P polarization component
As an evaluation method, electromagnetic waves containing only P-polarized
Irradiation on the evaluation surface of the body, scattering Brewster angle ΘB1Or
Scattering Brewster angle Θ 'B2And the scattering intensity of the scattered light
Scattering Brewster angleB1And scattering Brewster angle
Θ ′B2Direction (evaluation reference angle θ1) Scattered light scattering
And the scattered Brewster angle ΘB1Smell
Degree of reduction of P polarization component or scattering Brewster
Angle Θ 'B2The degree of reduction of the P polarization component at
Degree ratio ("θ1: ΘB1Or “θ1: Θ 'B2")
Is determined. That is, scattering bruss
TA angle ΘB1Or scattering Brewster angle Θ ' B2Scattered in
The lower the ratio of the turbulence intensity, the smaller the surface roughness, and conversely the scattering
Brewster angleΘB1Or scattering Brewster angle Θ 'B2
The higher the ratio of the scattering intensity at the surface, the greater the surface roughness
Based on this property, the roughness of the evaluation surface is evaluated.
You.

【0026】図5に示すのは、第2の評価方法を具現化
する非接触表面粗さ評価装置であり、P偏波を主成分と
する電磁波を照射する電磁波照射手段としてのレーザ光
源11と、該レーザ光源11から試料12の表面に対し
て照射されたレーザの散乱光を散乱ブリュースタ角ΘB1
とは異なる評価基準角θ1 における散乱強度を検出する
ように配置した第1散乱強度検出手段としての第3光検
出器13と、上記レーザ光源11から試料12の表面に
対して照射されたレーザの散乱光を散乱ブリュースタ角
ΘB1で受けるように配置した第4光検出器14と、これ
ら第3,第4光検出器13,14により検出した評価基
準角θ1 における散乱強度と散乱ブリュースタ角ΘB1
おける散乱強度とに基づいて試料12の評価面の粗さを
判定するコンピュータ15とからなる。
FIG. 5 shows a non-contact surface roughness evaluation apparatus which embodies the second evaluation method, and includes a laser light source 11 as an electromagnetic wave irradiation means for irradiating an electromagnetic wave mainly composed of P-polarized light. The scattered light of the laser radiated from the laser light source 11 to the surface of the sample 12 is scattered by the Brewster angle Θ B1.
A third light detector 13 serving as first scattering intensity detection means arranged to detect scattering intensity at an evaluation reference angle θ 1 different from the laser light emitted from the laser light source 11 to the surface of the sample 12. A fourth photodetector 14 arranged to receive the scattered light at the scatter Brewster angle Θ B1 , a scattered intensity and a scatter Brew at the evaluation reference angle θ 1 detected by the third and fourth photodetectors 13 and 14. consisting determines computer 15. the roughness of the evaluation surface of the specimen 12 on the basis of the scattering intensity in the static angle theta B1.

【0027】上記コンピュータ15による判定には、予
め評価基準となるデータを記憶させておき、このデータ
に基づいて評価時に取得した評価基準角θ1 における散
乱強度と散乱ブリュースタ角ΘB1における散乱強度との
比率から表面評価を行うのである。
In the determination by the computer 15, data serving as an evaluation reference is stored in advance, and the scattering intensity at the evaluation reference angle θ 1 and the scattering intensity at the scattering Brewster angle Θ B1 acquired at the time of evaluation based on this data. The surface is evaluated from the ratio.

【0028】しかしながら、上記のような散乱ブリュー
スタ角ΘB1による表面評価は、評価面の粗さ測定におけ
る2つのパラメータの一方である「表面粗さ」のみに基
づいて試料表面を評価しているに過ぎず、他方のパラメ
ータである「相関距離」についての測定は行えない。す
なわち、評価面の粗さ測定において要求される2つのパ
ラメータを測定できるものではないのである。
However, in the surface evaluation based on the scattering Brewster angle Θ B1 as described above, the sample surface is evaluated based only on “surface roughness” which is one of two parameters in the roughness measurement of the evaluation surface. And the other parameter “correlation distance” cannot be measured. That is, it is not possible to measure the two parameters required for measuring the roughness of the evaluation surface.

【0029】そこで、本発明においては、散乱ブリュー
スタ角ΘB1への散乱波の特質を利用して、表面粗さと相
関距離を個別に測定できるような方法と、これを具現化
できる装置を提供するものとした。以下に、その原理と
実施形態を詳述する。
Therefore, in the present invention, there is provided a method capable of individually measuring the surface roughness and the correlation distance by utilizing the characteristics of the scattered wave to the scattered Brewster angle Θ B1 and an apparatus capable of realizing the method. To do. Hereinafter, the principle and embodiments will be described in detail.

【0030】先ず、表面粗さの小さい評価面において、
散乱ブリュースタ角ΘB1でP偏波成分がゼロとなる現象
が生ずるのは、上述した如く、一次散乱の特性が支配的
となるからである。しかし、厳密には高次散乱(多重散
乱)の効果を考慮する必要があるため、共偏波成分(入
射波の偏波と同じ偏波の成分:P偏波)と交差偏波成分
(入射波の偏波と直交する偏波の成分:S偏波)が検出
されることとなる。そして、二次散乱の性質として、上
記した数9の関係式が成り立つ散乱ブリュースタ角ΘB1
で取得される共偏波成分の強度と交差偏波成分の強度
は、表面粗さと相関距離に応じて変化するが、共偏波成
分の強度と交差偏波成分の強度との比は表面粗さに依存
することなくほぼ一定となる。これを示すのが、図6
(a)と図6(b)の特性曲線図である。
First, on the evaluation surface having a small surface roughness,
The phenomenon that the P polarization component becomes zero at the scattering Brewster angle Θ B1 occurs because the characteristic of the primary scattering becomes dominant as described above. However, strictly speaking, it is necessary to consider the effect of higher-order scattering (multiple scattering), so that a co-polarization component (a component of the same polarization as the polarization of the incident wave: P-polarization) and a cross-polarization component (incident polarization) The component of the polarization orthogonal to the polarization of the wave: S-polarization) is detected. Then, as a property of the secondary scattering, the scattering Brewster angle 立 つB1 that satisfies the above-described relational expression 9
The intensity of the co-polarized component and the intensity of the cross-polarized component obtained in step (a) vary according to the surface roughness and the correlation distance, but the ratio of the intensity of the co-polarized component to the intensity of the cross-polarized component is It is almost constant without depending on the size. This is shown in FIG.
It is a characteristic-curve figure of (a) and FIG.6 (b).

【0031】図6(a),(b)は、評価対象である試
料と光入射側媒質との相対屈折率nが1.51となる環
境下において、P偏波成分の光を試料表面に照射した場
合の散乱を数値シミュレーションしたものである。な
お、各図の横軸は散乱角、縦軸はP偏波成分の強度に対
するS偏波成分の強度の比(S/P)である。また、l
は相関距離、σは表面粗さ、kは入射波の波数である。
FIGS. 6A and 6B show that the light of the P-polarized component is applied to the sample surface in an environment where the relative refractive index n between the sample to be evaluated and the light incident side medium is 1.51. This is a numerical simulation of scattering when irradiated. The horizontal axis in each figure is the scattering angle, and the vertical axis is the ratio (S / P) of the intensity of the S polarization component to the intensity of the P polarization component. Also, l
Is the correlation distance, σ is the surface roughness, and k is the wave number of the incident wave.

【0032】そして、図6は、相関距離lを2.0/k
に固定して、表面粗さσを0.05/k、0.1/k、
0.3/k、0.5/kに変えた場合の各特性を示して
おり、散乱ブリュースタ角(ΘB1=53.3度)におい
ては、表面粗さσの値に依存することなく、S/Pは一
定値となっている。一方、図7は、表面粗さσを0.1
/kに固定して、相関距離lを2.0/k、3.0/
k、4.0/k、8.0/kに変えた場合の各特性を示
しており、散乱ブリュースタ角(ΘB1=53.3度)に
おいては、相関距離lに応じてS/Pが異なる値をとっ
ている。
FIG. 6 shows that the correlation distance 1 is 2.0 / k
And the surface roughness σ is 0.05 / k, 0.1 / k,
Each characteristic is shown when the ratio is changed to 0.3 / k and 0.5 / k. At the scattering Brewster angle (Θ B1 = 53.3 degrees), it does not depend on the value of the surface roughness σ. , S / P are constant. On the other hand, FIG. 7 shows that the surface roughness σ is 0.1
/ K, and the correlation distance 1 is 2.0 / k, 3.0 /
k, 4.0 / k and 8.0 / k are shown, and at the scattering Brewster angle (Θ B1 = 53.3 degrees), S / P is changed according to the correlation distance l. Have different values.

【0033】すなわち、散乱ブリュースタ角ΘB1の方向
で取得される散乱波は、共偏波成分と交差偏波成分の比
(例えば、S/P)が相関距離lのみに依存し、表面粗
さσには依存しないという現象が生ずるのである。
That is, in the scattered wave obtained in the direction of the scattered Brewster angle Θ B1 , the ratio (for example, S / P) of the co-polarized component and the cross-polarized component depends only on the correlation distance l, and the surface roughness That is, a phenomenon that does not depend on the magnitude σ occurs.

【0034】従って、1次散乱が支配的となって散乱ブ
リュースタ角ΘB1における散乱光のP偏波成分の減少が
顕著となる程度に表面の粗さが小さい試料にP偏波成分
の電磁波を照射し、P偏波成分とS偏波成分とを散乱ブ
リュースタ角ΘB1において取得すれば、P偏波成分の強
度とS偏波成分の強度との比に基づいて、評価面の相関
距離を直接測定することが可能となる。
Therefore, the sample having a small surface roughness such that the primary scattering becomes dominant and the decrease of the P-polarized component of the scattered light at the scattering Brewster angle Θ B1 becomes remarkable is applied to the electromagnetic wave of the P-polarized component. And the P-polarized component and the S-polarized component are acquired at the scattering Brewster angle Θ B1 , the correlation between the evaluation plane and the intensity of the P-polarized component and the S-polarized component is obtained. The distance can be measured directly.

【0035】なお、散乱強度などの測定可能なデータ
は、一般に、表面粗さと相関距離の両方のパラメータに
依存するので、上述した如く相関距離を求めれば、当該
試料表面からの電磁波散乱強度に基づいて表面粗さを特
定することができる。すなわち、相関距離と表面粗さの
関係に基づいて散乱強度が定まるので、測定された散乱
強度を得るための表面粗さと相関距離の組み合わせの中
から、相関距離が特定されれば、必然的に表面粗さも特
定できるのである。具体的には、「散乱強度」と「表面
粗さ」と「相関距離」の組み合わせからなる参照テーブ
ルを予め用意しておき、この中から条件を満たすものを
抽出すれば良い。斯くして、本発明に係る評価面の粗さ
測定方法によれば、評価面の粗さを示す2つのパラメー
タである「表面粗さ」と「相関距離」とを個別に求める
ことができ、実質的に評価面の粗さを測定することが可
能となる。
Incidentally, measurable data such as the scattering intensity generally depends on both parameters of the surface roughness and the correlation distance. Therefore, if the correlation distance is determined as described above, the data is based on the electromagnetic wave scattering intensity from the sample surface. To determine the surface roughness. That is, since the scattering intensity is determined based on the relationship between the correlation distance and the surface roughness, if the correlation distance is specified from the combination of the surface roughness and the correlation distance for obtaining the measured scattering intensity, it is inevitable. The surface roughness can also be specified. Specifically, a reference table including a combination of “scattering intensity”, “surface roughness”, and “correlation distance” is prepared in advance, and a table satisfying the condition may be extracted from the table. Thus, according to the method for measuring the roughness of the evaluation surface according to the present invention, two parameters indicating the roughness of the evaluation surface, that is, “surface roughness” and “correlation distance” can be individually obtained, It is possible to substantially measure the roughness of the evaluation surface.

【0036】図7に示すのは、散乱ブリュースタ角ΘB1
への散乱波を利用した評価面の粗さ測定方法を具現化す
る評価面の粗さ測定装置の第1実施形態であり、P偏波
成分のみを含む電磁波を照射する電磁波照射手段として
のレーザ光源21と、該レーザ光源21から試料22の
表面に対して照射されたレーザの散乱光を散乱ブリュー
スタ角ΘB1で受けるように配置した偏光ビームスプリッ
タ23と、該偏光ビームスプリッタ23により分離され
たS偏波成分を取得する第1散乱波取得手段としての第
1光検出器24と、上記偏光ビームスプリッタ23によ
り分離されたP偏波成分を取得する第2散乱波取得手段
としての第2光検出器25と、これら第1,第2光検出
器24,25より取得したP偏波成分の強度とS偏波成
分の強度との比に基づいて試料22の評価面の相関距離
を求め、更にその相関距離と試料22表面からの電磁波
散乱強度とに基づいて表面粗さを求める粗さ演算手段と
してのコンピュータ26と、からなる。
FIG. 7 shows the scattering Brewster angle Θ B1
Embodiment 1 of a roughness measuring apparatus for an evaluation surface embodying a method for measuring the roughness of an evaluation surface using scattered waves to a laser as an electromagnetic wave irradiation means for irradiating an electromagnetic wave containing only a P polarization component A light source 21, a polarization beam splitter 23 arranged to receive the scattered light of the laser radiated from the laser light source 21 to the surface of the sample 22 at a scattering Brewster angle Θ B1 , and separated by the polarization beam splitter 23. The first photodetector 24 as a first scattered wave obtaining means for obtaining the S-polarized component, and the second photodetector 24 as a second scattered wave obtaining means for obtaining the P-polarized component separated by the polarization beam splitter 23. The correlation distance between the evaluation plane of the sample 22 and the photodetector 25 is determined based on the ratio between the intensity of the P polarization component and the intensity of the S polarization component acquired from the first and second photodetectors 24 and 25. And more A computer 26 as a roughness calculation means for obtaining a surface roughness on the basis of the electromagnetic scattering intensity from Seki distance and the sample 22 surface, made of.

【0037】上記コンピュータ26による相関距離や表
面粗さの演算には、予め記憶させた近似的な演算式を利
用させても良いし、評価対象の素材に応じた対照表を利
用するようにしても良い。また、表面粗さを求めるため
に必要となる試料表面からの電磁波散乱強度は、相関距
離を求める際に測定した値を利用しても良いし、これと
は別途に測定するようにしても良い。
In the calculation of the correlation distance and the surface roughness by the computer 26, an approximate calculation formula stored in advance may be used, or a comparison table corresponding to the material to be evaluated may be used. Is also good. Further, the electromagnetic wave scattering intensity from the sample surface required for obtaining the surface roughness may use the value measured when obtaining the correlation distance, or may be measured separately from this. .

【0038】なお、散乱ブリュースタ角Θ′B2の方向で
取得される散乱波も、共偏波成分と交差偏波成分の比
(例えば、S/P)が相関距離lのみに依存し、表面粗
さσには依存しないという現象が生ずる。従って、1次
散乱が支配的となって散乱ブリュースタ角Θ′B2におけ
る散乱光のP偏波成分の減少が顕著となる程度に表面の
粗さが小さい試料にP偏波成分の電磁波を照射し、P偏
波成分とS偏波成分とを散乱ブリュースタ角ΘBにおい
て取得すれば、P偏波成分の強度とS偏波成分の強度と
の比に基づいて、評価面の相関距離を直接測定すること
が可能となる。そして、この相関距離と試料内部への電
磁波散乱強度から表面粗さを求めることができるのも同
様である。
Note that the ratio of the co-polarized component to the cross-polarized component (for example, S / P) of the scattered wave obtained in the direction of the scattered Brewster angle Θ ′ B2 also depends only on the correlation distance l. There occurs a phenomenon that it does not depend on the roughness σ. Therefore, the sample having a small surface roughness is irradiated with the electromagnetic wave of the P polarization component to such an extent that the primary scattering becomes dominant and the reduction of the P polarization component of the scattered light at the scattering Brewster angle Θ ′ B2 becomes remarkable. Then, if the P polarization component and the S polarization component are obtained at the scattering Brewster angle Θ B , the correlation distance of the evaluation plane can be calculated based on the ratio between the intensity of the P polarization component and the intensity of the S polarization component. Direct measurement is possible. Similarly, the surface roughness can be obtained from the correlation distance and the intensity of electromagnetic wave scattering inside the sample.

【0039】図8に示すのは、散乱ブリュースタ角Θ′
B2への散乱波を利用した評価面の粗さ測定方法を具現化
する評価面の粗さ測定装置の第2実施形態であり、P偏
波成分のみを含む電磁波を照射する電磁波照射手段とし
てのレーザ光源31と、該レーザ光源31から試料32
の表面に対して照射されたレーザの散乱光を散乱ブリュ
ースタ角Θ′B2で受けるように配置した偏光ビームスプ
リッタ33と、該偏光ビームスプリッタ33により分離
されたS偏波成分を取得する第1散乱波取得手段として
の第1光検出器34と、上記偏光ビームスプリッタ33
により分離されたP偏波成分を取得する第2散乱波取得
手段としての第2光検出器35と、これら第1,第2光
検出器34,35より取得したP偏波成分の強度とS偏
波成分の強度との比に基づいて試料32の評価面の相関
距離を求め、更にその相関距離と試料22内部への電磁
波散乱強度とに基づいて表面粗さを求める粗さ演算手段
としてのコンピュータ36と、からなる。
FIG. 8 shows the scattering Brewster angle Θ '.
It is a second embodiment of the evaluation surface roughness measuring device that embodies the evaluation surface roughness measurement method using the scattered wave to B2 , and is used as an electromagnetic wave irradiation unit that irradiates an electromagnetic wave containing only a P polarization component. A laser light source 31 and a sample 32 from the laser light source 31
A polarizing beam splitter 33 arranged to receive the scattered light of the laser irradiated on the surface at a scattering Brewster angle Θ ′ B2 , and a first method for obtaining the S-polarized light component separated by the polarizing beam splitter 33 A first photodetector 34 as a scattered wave acquisition unit and the polarization beam splitter 33
A second photodetector 35 as a second scattered wave obtaining means for obtaining the P-polarized component separated by the first and second photodetectors 34, 35, and the intensity of the P-polarized component obtained from the first and second photodetectors 34, 35 and S Roughness calculating means for calculating the correlation distance of the evaluation surface of the sample 32 based on the ratio with the intensity of the polarization component, and further calculating the surface roughness based on the correlation distance and the intensity of electromagnetic wave scattering inside the sample 22. And a computer 36.

【0040】この第2実施形態に係る評価面の粗さ測定
装置においても、上述した第1実施形態と同様に、評価
面の粗さを示す2つのパラメータである「表面粗さ」と
「相関距離」とを個別に求めることができ、実質的に評
価面の粗さを測定することが可能となる。なお、この第
2実施形態においては、試料32の上面32aから入射
されて内部で散乱した散乱波は、試料32の下面32b
を透過することとなるため、下面32bでの散乱が無視
できる程度に滑らかであることが必要条件となる。
In the roughness measuring apparatus for the evaluation surface according to the second embodiment, similarly to the first embodiment described above, two parameters indicating the roughness of the evaluation surface, “surface roughness” and “correlation” are used. The distance can be determined individually, and the roughness of the evaluation surface can be substantially measured. In the second embodiment, the scattered wave incident from the upper surface 32a of the sample 32 and scattered inside is lower than the lower surface 32b of the sample 32.
Therefore, it is a necessary condition that scattering on the lower surface 32b is smooth enough to be ignored.

【0041】[0041]

【発明の効果】以上説明したように、請求項1に係る評
価面の粗さ測定方法によれば、数9の関係式が成り立つ
散乱ブリュースタ角ΘB1で取得される共偏波成分の強度
と交差偏波成分の強度は、表面粗さと相関距離に応じて
変化するが、共偏波成分の強度と交差偏波成分の強度と
の比は表面粗さに依存することなくほぼ一定となるとい
う基本的な性質を利用し、散乱ブリュースタ角ΘB1にお
いて取得される散乱波のP偏波成分の強度に対するS偏
波成分の強度の比に基づいて、評価面の相関距離を演算
できる。
As described above, according to the method for measuring the roughness of the evaluation surface according to the first aspect, the intensity of the co-polarization component obtained at the scattering Brewster angle Θ B1 where the relational expression of Expression 9 holds. And the intensity of the cross-polarization component changes according to the surface roughness and the correlation distance, but the ratio between the intensity of the co-polarization component and the intensity of the cross-polarization component becomes almost constant without depending on the surface roughness. Using the basic property described above, the correlation distance of the evaluation plane can be calculated based on the ratio of the intensity of the S-polarized component to the intensity of the P-polarized component of the scattered wave obtained at the scattered Brewster angle Θ B1 .

【0042】更に、請求項2に係る評価面の粗さ測定方
法によれば、散乱ブリュースタ角Θ B1において取得され
る散乱波のP偏波成分の強度に対するS偏波成分の強度
の比に基づいて演算した相関距離と、当該試料表面から
の電磁波散乱強度とに基づいて表面粗さを演算できる。
Further, the method for measuring the roughness of the evaluation surface according to claim 2 is provided.
According to the method, the scattering Brewster angle Θ B1Acquired at
Of the S-polarized component with respect to the P-polarized component of the scattered wave
From the correlation distance calculated based on the ratio of
The surface roughness can be calculated on the basis of the electromagnetic wave scattering intensity.

【0043】また、請求項3に係る評価面の粗さ測定方
法によれば、数10の関係式が成り立つ散乱ブリュース
タ角Θ′B2で取得される共偏波成分の強度と交差偏波成
分の強度は、表面粗さと相関距離に応じて変化するが、
共偏波成分の強度と交差偏波成分の強度との比は表面粗
さに依存することなくほぼ一定となるという基本的な性
質を利用し、散乱ブリュースタ角Θ′B2において取得さ
れる散乱波のP偏波成分の強度に対するS偏波成分の強
度の比に基づいて、評価面の相関距離を演算できる。
According to the method for measuring the roughness of the evaluation surface according to the third aspect, the intensity of the co-polarization component and the cross-polarization component obtained at the scattering Brewster angle Θ ′ B2 satisfying the relational expression (10) are satisfied. Varies depending on the surface roughness and the correlation distance,
Utilizing the basic property that the ratio of the intensity of the co-polarization component to the intensity of the cross-polarization component is almost constant without depending on the surface roughness, the scattering obtained at the scattering Brewster angle Θ ' B2 The correlation distance of the evaluation plane can be calculated based on the ratio of the intensity of the S polarization component to the intensity of the P polarization component of the wave.

【0044】更に、請求項4に係る評価面の粗さ測定方
法によれば、散乱ブリュースタ角Θ′B2において取得さ
れる散乱波のP偏波成分の強度に対するS偏波成分の強
度の比に基づいて演算した相関距離と、当該試料内部へ
の電磁波散乱強度とに基づいて表面粗さを演算できる。
Further, according to the method for measuring the roughness of the evaluation surface according to the fourth aspect, the ratio of the intensity of the S-polarized component to the intensity of the P-polarized component of the scattered wave obtained at the scattered Brewster angle Θ ′ B2 . The surface roughness can be calculated based on the correlation distance calculated on the basis of and the electromagnetic wave scattering intensity inside the sample.

【0045】また、請求項5に係る評価面の粗さ測定装
置によれば、数9の関係式が成り立つ散乱ブリュースタ
角ΘB1で取得される共偏波成分の強度と交差偏波成分の
強度は、表面粗さと相関距離に応じて変化するが、共偏
波成分の強度と交差偏波成分の強度との比は表面粗さに
依存することなくほぼ一定となるという基本的な性質を
利用し、P偏波の電磁波を電磁波照射手段から照射して
評価面で散乱した散乱波から、第1散乱波取得手段によ
りS偏波成分を、第2散乱波取得手段によりP偏波成分
を各々取得し、これらP偏波成分の強度とS偏波成分の
強度との比に基づいて粗さ演算手段が評価面の相関距離
を演算できる。
According to the apparatus for measuring the roughness of an evaluation surface according to claim 5, the intensity of the co-polarization component and the intensity of the cross-polarization component obtained at the scattering Brewster angle Θ B1 satisfying the relational expression 9 are satisfied. Although the intensity changes according to the surface roughness and the correlation distance, the basic property that the ratio between the intensity of the co-polarized component and the intensity of the cross-polarized component is almost constant without depending on the surface roughness. From the scattered waves scattered on the evaluation surface by irradiating the P-polarized electromagnetic wave from the electromagnetic wave irradiation means using the P-polarized electromagnetic wave, the S-polarized component is obtained by the first scattered wave obtaining means, and the P-polarized component is obtained by the second scattered wave obtaining means. The roughness calculating means can calculate the correlation distance of the evaluation plane based on the ratio between the intensity of the P-polarized component and the intensity of the S-polarized component.

【0046】更に、請求項6に係る評価面の粗さ測定装
置によれば、P偏波成分の強度とS偏波成分の強度との
比に基づいて粗さ演算手段が演算した相関距離と、当該
試料表面からの電磁波散乱強度とに基づいて、演算手段
が表面粗さを演算できる。
Further, according to the roughness measuring apparatus for the evaluation surface according to the sixth aspect, the correlation distance calculated by the roughness calculating means based on the ratio between the intensity of the P-polarized component and the intensity of the S-polarized component is calculated. The calculating means can calculate the surface roughness based on the electromagnetic wave scattering intensity from the sample surface.

【0047】また、請求項7に係る評価面の粗さ測定装
置によれば、数10の関係式が成り立つ散乱ブリュース
タ角Θ′B2で取得される共偏波成分の強度と交差偏波成
分の強度は、表面粗さと相関距離に応じて変化するが、
共偏波成分の強度と交差偏波成分の強度との比は表面粗
さに依存することなくほぼ一定となるという基本的な性
質を利用し、P偏波の電磁波を電磁波照射手段から照射
して試料内部で散乱した散乱波から、第1散乱波取得手
段によりS偏波成分を、第2散乱波取得手段によりP偏
波成分を各々取得し、これらP偏波成分の強度とS偏波
成分の強度との比に基づいて粗さ演算手段が評価面の相
関距離を演算できる。
According to the roughness measuring apparatus for an evaluation surface according to the seventh aspect, the intensity of the co-polarization component and the cross-polarization component obtained at the scattering Brewster angle Θ ′ B2 satisfying the relational expression 10 are satisfied. Varies depending on the surface roughness and the correlation distance,
Utilizing the fundamental property that the ratio of the intensity of the co-polarized component to the intensity of the cross-polarized component is almost constant without depending on the surface roughness, the P-polarized electromagnetic wave is irradiated from the electromagnetic wave irradiation means. From the scattered waves scattered inside the sample, an S-polarized component is obtained by the first scattered wave obtaining means, and a P-polarized component is obtained by the second scattered wave obtaining means. The roughness calculating means can calculate the correlation distance of the evaluation surface based on the ratio of the component to the intensity.

【0048】更に、請求項8に係る評価面の粗さ測定装
置によれば、P偏波成分の強度とS偏波成分の強度との
比に基づいて粗さ演算手段が演算した相関距離と、当該
試料内部への電磁波散乱強度とに基づいて、演算手段が
表面粗さを演算できる。
Further, according to the evaluation surface roughness measuring apparatus according to the eighth aspect, the correlation distance calculated by the roughness calculating means based on the ratio of the intensity of the P polarization component to the intensity of the S polarization component is obtained. The calculating means can calculate the surface roughness based on the intensity of the electromagnetic wave scattered into the sample.

【図面の簡単な説明】[Brief description of the drawings]

【図1】誘電体表面へ照射した電磁波により生ずる散乱
ブリュースタ角ΘB1と散乱ブリュースタ角Θ′B2の原理
説明図である。
1 is a diagram illustrating a principle of the scattering Brewster angle theta B1 caused by the electromagnetic wave irradiated to the dielectric surface scattering Brewster angle theta 'B2.

【図2】(a)粗さの小さい評価面で散乱した散乱波の
S偏波成分の散乱角に対する散乱強度分布図である。 (b)粗さの小さい評価面で散乱した散乱波のP偏波成
分の散乱角に対する散乱強度分布図である。
FIG. 2A is a scattered intensity distribution diagram with respect to a scattering angle of an S-polarized component of a scattered wave scattered on an evaluation surface having a small roughness. (B) is a scattering intensity distribution diagram with respect to the scattering angle of the P polarization component of the scattered wave scattered on the evaluation surface having a small roughness.

【図3】粗さの大きい評価面で散乱した散乱波のS偏波
成分およびP偏波成分の散乱角に対する散乱強度分布図
である。
FIG. 3 is a distribution diagram of scattering intensity with respect to the scattering angle of an S-polarized component and a P-polarized component of a scattered wave scattered on an evaluation surface having a large roughness.

【図4】第1評価方法による非接触表面粗さ評価装置の
概略ブロック図である。
FIG. 4 is a schematic block diagram of a non-contact surface roughness evaluation device according to a first evaluation method.

【図5】第2評価方法による非接触表面粗さ評価装置の
概略ブロック図である。
FIG. 5 is a schematic block diagram of a non-contact surface roughness evaluation device according to a second evaluation method.

【図6】(a)相関距離を一定として表面粗さを変えて
示した散乱角に対するS/P比の特性曲線図である。 (b)表面粗さを一定として相関距離を変えて示した散
乱角に対するS/P比の特性曲線図である。
FIG. 6A is a characteristic curve diagram of the S / P ratio with respect to the scattering angle, which is shown by changing the surface roughness while keeping the correlation distance constant. (B) is a characteristic curve diagram of the S / P ratio with respect to the scattering angle, which is shown by changing the correlation distance while keeping the surface roughness constant.

【図7】本発明に係る評価面の粗さ測定装置の第1実施
形態を示す概略ブロック図である。
FIG. 7 is a schematic block diagram showing a first embodiment of an evaluation surface roughness measuring apparatus according to the present invention.

【図8】本発明に係る評価面の粗さ測定装置の第2実施
形態を示す概略ブロック図である。
FIG. 8 is a schematic block diagram showing a second embodiment of an evaluation surface roughness measuring apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

21 レーザ光限 22 試料 23 ビームスプリッタ 24 第1光検出器 25 第2光検出器 26 コンピュータ Reference Signs List 21 laser beam limit 22 sample 23 beam splitter 24 first photodetector 25 second photodetector 26 computer

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 評価面の粗さ測定の試料である誘電体の
評価面へP偏波の電磁波を照射した際に、その入射角θ
0 と電磁波照射側媒質に対する誘電体の相対屈折率nに
応じて、電磁波の照射側媒質における散乱ブリュースタ
角ΘB1が、 【数1】 を満たす条件下で、散乱ブリュースタ角ΘB1において取
得される散乱波のP偏波成分の強度に対するS偏波成分
の強度の比に基づいて、評価面の相関距離を求めるよう
にしたことを特徴とする評価面の粗さ測定方法。
When an electromagnetic wave of P polarization is irradiated on an evaluation surface of a dielectric which is a sample for measuring roughness of an evaluation surface, an incident angle θ
In accordance with 0 and the relative refractive index n of the dielectric with respect to the electromagnetic wave irradiation side medium, the scattering Brewster angle Θ B1 in the electromagnetic wave irradiation side medium is expressed as follows. Under the conditions that satisfy the condition, the correlation distance of the evaluation plane is calculated based on the ratio of the intensity of the S-polarized component to the intensity of the P-polarized component of the scattered wave obtained at the scattering Brewster angle Θ B1 . Characteristic measurement method for the roughness of the evaluation surface.
【請求項2】 散乱ブリュースタ角ΘB1において取得さ
れる散乱波のP偏波成分の強度に対するS偏波成分の強
度の比に基づいて求めた相関距離と、試料表面からの電
磁波散乱強度に基づいて、評価面の表面粗さを求めるよ
うにしたことを特徴とする請求項1に記載の評価面の粗
さ測定方法。
2. A correlation distance obtained based on a ratio of an intensity of an S-polarized component to an intensity of a P-polarized component of a scattered wave obtained at a scattered Brewster angle 1 B1 and an electromagnetic wave scattering intensity from a sample surface. The method for measuring the roughness of an evaluation surface according to claim 1, wherein the surface roughness of the evaluation surface is determined based on the evaluation value.
【請求項3】 評価面の粗さ測定の試料である誘電体の
評価面へP偏波の電磁波を照射した際に、その入射角θ
0 と電磁波照射側媒質に対する誘電体の相対屈折率nに
応じて、電磁波が入射する誘電体側における散乱ブリュ
ースタ角Θ′ B2が、 【数2】 を満たす条件下で、散乱ブリュースタ角Θ′B2において
取得される散乱波のP偏波成分の強度に対するS偏波成
分の強度の比に基づいて、評価面の相関距離を求めるよ
うにしたことを特徴とする評価面の粗さ測定方法。
3. A method for measuring the roughness of a dielectric, which is a sample for measuring the roughness of an evaluation surface.
When an electromagnetic wave of P polarization is irradiated on the evaluation surface, the incident angle θ
0And the relative refractive index n of the dielectric with respect to the electromagnetic wave irradiation side medium
Accordingly, the scattering bruise on the dielectric side where the electromagnetic wave is incident
Star angle Θ ' B2But,Under the condition that satisfiesB2At
S-polarization component with respect to the intensity of the P-polarization component of the acquired scattered wave
Calculate the correlation distance of the evaluation surface based on the ratio of the intensity of the minute
A method for measuring the roughness of an evaluation surface, characterized in that:
【請求項4】 散乱ブリュースタ角Θ′B2において取得
される散乱波のP偏波成分の強度に対するS偏波成分の
強度の比に基づいて求めた相関距離と、試料内部への電
磁波散乱強度に基づいて、評価面の表面粗さを求めるよ
うにしたことを特徴とする請求項3に記載の評価面の粗
さ測定方法。
4. A correlation distance obtained based on a ratio of the intensity of the S-polarized component to the intensity of the P-polarized component of the scattered wave obtained at the scattering Brewster angle Θ ′ B2 , and the intensity of the electromagnetic wave scattered inside the sample. 4. The method for measuring the roughness of an evaluation surface according to claim 3, wherein the surface roughness of the evaluation surface is determined based on the following formula.
【請求項5】 評価面の粗さ測定の試料である誘電体の
評価面へP偏波の電磁波を照射する電磁波照射手段と、 上記電磁波照射手段から照射される電磁波の入射角θ0
と電磁波照射側媒質に対する誘電体の相対屈折率nに応
じて、電磁波の照射側媒質における散乱ブリュースタ角
ΘB1が、 【数3】 を満たす条件下で、散乱ブリュースタ角ΘB1において散
乱波のS偏波成分を取得する第1散乱波取得手段と、散
乱ブリュースタ角ΘB1において散乱波のP偏波成分を取
得する第2散乱波取得手段と、 上記第2散乱波取得手段により取得したP偏波成分の強
度と第1散乱波取得手段により取得したS偏波成分の強
度との比に基づいて、評価面の相関距離を演算する粗さ
演算手段と、からなることを特徴とする評価面の粗さ測
定装置。
5. An electromagnetic wave irradiating means for irradiating a P-polarized electromagnetic wave to an evaluation surface of a dielectric which is a sample for measuring the roughness of the evaluation surface, and an incident angle θ 0 of the electromagnetic wave irradiated from the electromagnetic wave irradiating means.
According to the relative refractive index n of the dielectric with respect to the electromagnetic wave irradiation side medium and the electromagnetic wave irradiation side medium, the scattering Brewster angle Θ B1 in the electromagnetic wave irradiation side medium is given by A first scattered wave obtaining means for obtaining an S-polarized wave component of the scattered wave at the scattered Brewster angle Θ B1 under the condition satisfying the second condition, and a second scattered wave obtaining means for obtaining the P-polarized wave component of the scattered wave at the scattered Brewster angle Θ B1 A scattered wave acquisition unit, and a correlation distance of an evaluation plane based on a ratio of the intensity of the P polarization component acquired by the second scattered wave acquisition unit to the intensity of the S polarization component acquired by the first scattered wave acquisition unit. And a roughness calculating means for calculating a roughness of the evaluation surface.
【請求項6】 上記粗さ演算手段は、P偏波成分の強度
に対するS偏波成分の強度の比に基づいて求めた相関距
離と、試料表面からの電磁波散乱強度とに基づいて、評
価面の表面粗さを演算するものとしたことを特徴とする
請求項5に記載の評価面の粗さ測定装置。
6. An evaluation surface based on a correlation distance obtained based on a ratio of an intensity of an S-polarized component to an intensity of a P-polarized component and an electromagnetic wave scattering intensity from a sample surface. The apparatus for measuring the roughness of an evaluation surface according to claim 5, wherein the surface roughness is calculated.
【請求項7】 評価面の粗さ測定の試料である誘電体の
評価面へP偏波の電磁波を照射する電磁波照射手段と、 上記電磁波照射手段から照射される電磁波の入射角θ0
と電磁波照射側媒質に対する誘電体の相対屈折率nに応
じて、電磁波の入射する誘電体側における散乱ブリュー
スタ角Θ′B2が、 【数4】 を満たす条件下で、散乱ブリュースタ角Θ′B2において
散乱波のS偏波成分を取得する第1散乱波取得手段と、
散乱ブリュースタ角Θ′B2において散乱波のP偏波成分
を取得する第2散乱波取得手段と、 上記第2散乱波取得手段により取得したP偏波成分の強
度と第1散乱波取得手段により取得したS偏波成分の強
度との比に基づいて、評価面の相関距離を演算する粗さ
演算手段と、からなることを特徴とする評価面の粗さ測
定装置。
7. An electromagnetic wave irradiating means for irradiating a P-polarized electromagnetic wave to an evaluation surface of a dielectric which is a sample for measuring the roughness of the evaluation surface, and an incident angle θ 0 of the electromagnetic wave irradiated from the electromagnetic wave irradiating means.
According to the relative refractive index n of the dielectric with respect to the electromagnetic wave irradiation side medium and the electromagnetic wave incident side medium, the scattered Brewster angle Θ ′ B2 on the dielectric side where the electromagnetic wave is incident is given by: A first scattered wave obtaining means for obtaining an S-polarized component of the scattered wave at the scattered Brewster angle Θ ′ B2 under the condition that:
A second scattered wave obtaining means for obtaining a P-polarized component of the scattered wave at the scattered Brewster angle Θ 'B2; and a P-polarized component intensity obtained by the second scattered wave obtaining means and the first scattered wave obtaining means. A roughness calculating means for calculating a correlation distance of the evaluation surface based on a ratio of the acquired intensity of the S-polarized component to the S surface polarization component;
【請求項8】 上記粗さ演算手段は、P偏波成分の強度
に対するS偏波成分の強度の比に基づいて求めた相関距
離と、試料内部への電磁波散乱強度とに基づいて、評価
面の表面粗さを演算するものとしたことを特徴とする請
求項7に記載の評価面の粗さ測定装置。
8. An evaluation surface based on a correlation distance obtained based on a ratio of an intensity of an S-polarized component to an intensity of a P-polarized component and the intensity of electromagnetic wave scattering inside the sample. The roughness measuring device for an evaluation surface according to claim 7, wherein the surface roughness is calculated.
JP32243399A 1999-11-12 1999-11-12 Evaluation surface roughness measurement method and evaluation surface roughness measurement device Expired - Lifetime JP3348198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32243399A JP3348198B2 (en) 1999-11-12 1999-11-12 Evaluation surface roughness measurement method and evaluation surface roughness measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32243399A JP3348198B2 (en) 1999-11-12 1999-11-12 Evaluation surface roughness measurement method and evaluation surface roughness measurement device

Publications (2)

Publication Number Publication Date
JP2001141436A JP2001141436A (en) 2001-05-25
JP3348198B2 true JP3348198B2 (en) 2002-11-20

Family

ID=18143627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32243399A Expired - Lifetime JP3348198B2 (en) 1999-11-12 1999-11-12 Evaluation surface roughness measurement method and evaluation surface roughness measurement device

Country Status (1)

Country Link
JP (1) JP3348198B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3358099B2 (en) * 1994-03-25 2002-12-16 オムロン株式会社 Optical sensor device
JP3010213B1 (en) * 1998-09-04 2000-02-21 郵政省通信総合研究所長 Non-contact surface roughness evaluation method and non-contact surface roughness evaluation device

Also Published As

Publication number Publication date
JP2001141436A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
Ma et al. Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm
US8654350B2 (en) Inspecting method and inspecting apparatus for substrate surface
KR20200079282A (en) Systems and methods for particle measurement
Lu et al. On-line measurement of surface roughness by laser light scattering
TW201447271A (en) Defect detection using surface enhanced electric field
Kanso et al. Roughness effect on the SPR measurements for an optical fibre configuration: Experimentaland numerical approaches
US6122047A (en) Methods and apparatus for identifying the material of a particle occurring on the surface of a substrate
JP3616380B2 (en) Method and apparatus for selecting defects occurring on or near the surface of a smooth substrate
WO2018216349A1 (en) Object detection device, object detection method, and program
CN105277131B (en) Measuring device and measuring method of three-dimensional pore structure
Wang et al. Laser integrated measurement of surface roughness and micro-displacement
Zhenrong et al. Roughness characterization of well-polished surfaces by measurements of light scattering distribution
JP3348198B2 (en) Evaluation surface roughness measurement method and evaluation surface roughness measurement device
CN106501279A (en) A kind of low sub-surface damage detection method of firmly crisp optical material
CN104849724B (en) A method and device for measuring aerosol lidar ratio
JP2003106979A (en) Dynamic light scattering measuring device using low coherence interferometry
JP3010213B1 (en) Non-contact surface roughness evaluation method and non-contact surface roughness evaluation device
JP3243525B2 (en) Non-contact surface roughness evaluation method and non-contact surface roughness evaluation device
Zhang et al. Coherent backscattering of light in a strong localization regime
JP5417793B2 (en) Surface inspection method
Wang et al. Study on scattering light field distribution of optical element in-surface defects based on Mueller matrix
Stover et al. Limitations of Rayleigh Rice perturbation theory for describing surface scatter
JP3476742B2 (en) Method and apparatus for identifying material of particles generated on the surface of a substrate
TW201418694A (en) Detecting apparatus and detecting method
JP6086050B2 (en) Wafer evaluation method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3348198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term