[go: up one dir, main page]

JP3348104B2 - Can type electric motor for driving ammonia refrigerant compressor - Google Patents

Can type electric motor for driving ammonia refrigerant compressor

Info

Publication number
JP3348104B2
JP3348104B2 JP07820092A JP7820092A JP3348104B2 JP 3348104 B2 JP3348104 B2 JP 3348104B2 JP 07820092 A JP07820092 A JP 07820092A JP 7820092 A JP7820092 A JP 7820092A JP 3348104 B2 JP3348104 B2 JP 3348104B2
Authority
JP
Japan
Prior art keywords
wire
ammonia
coating layer
intermediate coating
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07820092A
Other languages
Japanese (ja)
Other versions
JPH05252680A (en
Inventor
和平 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP07820092A priority Critical patent/JP3348104B2/en
Publication of JPH05252680A publication Critical patent/JPH05252680A/en
Application granted granted Critical
Publication of JP3348104B2 publication Critical patent/JP3348104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アンモニア冷媒圧縮機
駆動用のキャン型電動機に係わり、特に前記キャン型電
動機の固定子線輪に使用される耐アンモニア巻線用絶縁
電線の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a can-type electric motor for driving an ammonia refrigerant compressor, and more particularly to an improvement of an insulated electric wire for ammonia-resistant winding used for a stator wire of the can-type electric motor.

【0002】[0002]

【従来の技術】近年、冷却装置等に使用の冷媒に社会の
関心が高まり、冷媒使用機器とその部品および工業材料
に、前記関心に添う技術的対応が求められるようになっ
た。従来、人体に無害で絶縁性に優れ、容易に分解しな
い安定した性質を持つフロン系物質が冷却装置に多用さ
れ、該冷却装置を駆動させる電動機も、耐フロン用絶縁
電線で形成する固定子線輪を、フロン雰囲気下で駆動可
能の、構造単純なハ−メチック型電動機が広く使用され
てきた。フロン系物質による地球環境の汚染が問題とな
ってからは、フロン系関連機器の使用と製造が制限され
るので、その冷却装置にフロン系に代わるべきものとし
て、アンモニア冷媒圧縮機が見直され始めている。アン
モニアは、地球汚染の欠点を持たず、アンモニアが有す
る技術的短所を克服できれば、その冷媒能力や安価であ
るなどの特長を広く活用できる有用な工業材料である
が、可燃性、有毒性であり、吸湿性が強く通常の汎用工
業材料の多くに、強い腐食性を現すガスであるとともに
導電性があるので、電気機器に対しては、慎重な取扱い
が必要であった。
2. Description of the Related Art In recent years, there has been an increasing public interest in refrigerants used for cooling devices and the like, and technical measures meeting the above-mentioned interests have been demanded for equipment using refrigerants and their components and industrial materials. Conventionally, a chlorofluorocarbon-based material that is harmless to the human body, has excellent insulation properties, and does not easily disassemble has been frequently used in a cooling device, and a motor for driving the cooling device is also a stator wire formed of a CFC-resistant insulated wire. Hermetic motors having a simple structure capable of driving wheels in a CFC atmosphere have been widely used. Since the use and production of CFC-related equipment has been restricted since the pollution of the global environment by CFC-based substances has become a problem, ammonia refrigerant compressors have begun to be reviewed as an alternative to CFC-based cooling equipment. I have. Ammonia is a useful industrial material that does not have the disadvantages of global pollution and can widely utilize its features such as its refrigerant capacity and low cost if it can overcome the technical disadvantages of ammonia, but it is flammable and toxic. In addition, many general-purpose industrial materials having high hygroscopicity are gases exhibiting strong corrosiveness and are electrically conductive, so that careful handling of electric equipment is required.

【0003】アンモニアを扱う装置に、例えばアンモニ
アを冷媒として長く使用してきた冷却装置があり、該装
置に適用する圧縮機駆動用電動機は、機外に冷媒を無漏
洩とする全密封型構造の、図4に図示の圧縮機駆動用の
キャン型電動機15があって、これは最も重要なアンモ
ニア用電気機器であった。前記キャン型電動機15の構
造は、アンモニアに線輪が接触しないように、モ−タフ
レ−ム13内部に、大気圧下の使用を前提とする該絶縁
電線18により成る固定子線輪7を保護可能に、固定子
鉄心と回転子鉄心との間にエアギャップ間に金属性のキ
ャン16を挿入して区分する特殊な内部構造を必要とす
る。前記絶縁電線18は通常、銅から成る導線1の表面
をアンモニアに対し耐性のない、電気絶縁性のある汎用
エナメル線4で被覆して形成する。前記構造によりアン
モニアの使用を可能としたが、前記電動機15の欠点
は、空隙増加で生ずる励磁電流増加による損失、前記固
定子線輪7による交番磁束の存在により、キャン16に
渦流損が発生して電動機効率を著しく低下させ、それ等
の損失により生ずる発生熱量は大きく、特殊な冷却装置
を必要とするなど、その冷却対策を含め、一般の汎用型
電動機が持っていない問題を抱えている。
[0003] As a device for handling ammonia, there is, for example, a cooling device which has long used ammonia as a refrigerant, and a compressor driving electric motor applied to the device has a completely hermetic structure in which the refrigerant does not leak outside the device. FIG. 4 shows a can-type motor 15 for driving the compressor, which was the most important electric device for ammonia. The structure of the can motor 15 protects the stator wire 7 composed of the insulated wire 18 inside the motor frame 13 under the atmospheric pressure so that the wire does not come into contact with the ammonia. If possible, a special internal structure is required which inserts and separates a metallic can 16 between the stator core and the rotor core between the air gaps. The insulated wire 18 is generally formed by covering the surface of a conductive wire 1 made of copper with a general-purpose enamel wire 4 having electrical resistance and non-ammonia resistance. Although the above structure allows the use of ammonia, the drawback of the electric motor 15 is that loss due to an increase in exciting current caused by an increase in the air gap and eddy current loss in the can 16 due to the presence of an alternating magnetic flux due to the stator wire ring 7. As a result, the motor efficiency is remarkably reduced, and the amount of heat generated due to the loss is large, and a special cooling device is required.

【0004】しかし前記キャン形電動機15の、保護さ
れた前記固定子線輪7にあっても、冷却装置の機器ある
いは配置などより、アンモニア冷媒の漏洩等によって前
記外側区分区域がアンモニア雰囲気下になれば、そこに
処置されていた前記導電材の固定子線輪7はアンモニア
ガスに接し、前記線輪用絶縁電線18は耐アンモニア巻
線用電線が使用されていないのでアンモニアの損傷を受
け、空気中の水分や、アンモニアが浸透し、必然的にア
ンモニアに耐性のない前記銅線1も腐食をし始め、つい
には前記固定子線輪7は、断線状態に至る。
However, even in the protected stator wire 7 of the can-type motor 15, the outer section area may be exposed to the ammonia atmosphere due to leakage of the ammonia refrigerant due to the equipment or arrangement of the cooling device. For example, the stator wire 7 of the conductive material treated there is in contact with the ammonia gas, and the insulated wire 18 for the wire is damaged by ammonia because the wire for the ammonia resistant winding is not used, and the air is damaged. The copper wire 1 which inevitably permeates the moisture and ammonia therein and which is not necessarily resistant to ammonia also starts to corrode, and finally the stator wire loop 7 is disconnected.

【0005】上記したように、アンモニア雰囲気下に使
用されるキャン型電動機は、機器や部品等をアンモニア
に曝さないような構造の中に隔離するという、アンモニ
アによる障害を回避する消極的な技術対策が主なもので
あって、加えて前述したフロン系冷媒が長期に亙って多
用されていた影響を受けて、積極的な耐アンモニア性キ
ャン型電動機の開発は、殆ど行われなかった。
[0005] As described above, a can-type motor used in an ammonia atmosphere is a passive technical measure for avoiding obstacles caused by ammonia by isolating devices and parts in a structure that is not exposed to ammonia. In addition, the development of ammonia-resistant can-type electric motors has hardly been actively carried out due to the influence of the above-mentioned chlorofluorocarbon-based refrigerants being frequently used for a long period of time.

【0006】[0006]

【発明が解決しようとする課題】しかしながらフロン系
物質使用規制要求がある中、フロン代替技術の開発は難
しく、また冷却技術においてもアンモニア冷媒を使用す
る冷却装置に代替しようとしても、冷却装置産業界の要
請による電動機容量の増大傾向に伴い、従来のキャンド
モーターではこれに対応することが困難になってくる。
ここにおいて、アンモニアの使用キャン型電動機に係わ
る基本技術、少なくとも第一にアンモニアに対する耐腐
食性、第二に良好な電気絶縁性に、特性を有する工業材
料ないし構成部材または部品に対して付与可能であれ
ば、それらを使用する前記電気機器の構造を簡単ないし
単純に構成することが出来て、ひいては前記電動機冷却
対策を合わせて解決するとともに、社会的にフロン規制
への対応策に通じ、産業界の電動機容量増大への要請に
対応可能となる。
However, in the face of the requirement to restrict the use of CFC-based substances, it is difficult to develop a CFC replacement technology. With the demand for the motor, the capacity of the motor has been increasing, and it has become difficult for the conventional canned motor to cope with this.
Here, the use of ammonia is a basic technology relating to a can-type electric motor, at least first to corrosion resistance to ammonia, and second to good electrical insulation, which can be provided to industrial materials or components or parts having characteristics. If there is, the structure of the electric equipment using them can be simply or simply configured, and by solving the above-mentioned electric motor cooling measures together, socially through measures to comply with Freon regulations, Can meet the demand for increased motor capacity.

【0007】本発明の目的は、従来技術の欠点に鑑み、
アンモニア冷媒雰囲気下に使用して、少なくとも耐アン
モニア性と電気絶縁性および耐久性に優れた、絶縁電線
を形成するとともに、アンモニア冷媒圧縮機駆動用のキ
ャン型電動機の巻線に使用して、その構造を簡単に構成
可能のアンモニア冷媒圧縮機駆動用のキャン型電動機を
提供することを目的とする。
[0007] The object of the present invention, in view of the disadvantages of the prior art,
Used under an ammonia refrigerant atmosphere to form an insulated wire with at least excellent ammonia resistance, electrical insulation and durability, and used for winding of a can-type motor for driving an ammonia refrigerant compressor. It is an object of the present invention to provide a can-type electric motor for driving an ammonia refrigerant compressor having a simple structure.

【0008】[0008]

【課題を解決するための手段】本第1発明は、モ−タフ
レ−ム内部に配置された、絶縁電線により成る固定子線
輪を保護可能に、固定子鉄心と回転子鉄心との間に金属
性のキャンを挿入してなるアンモニア冷媒圧縮機駆動用
のキャン型電動機において、前記絶縁電線は、銅から成
る導線の表面に、アルミニュ−ムを含む耐アンモニア性
金属の蒸着処理、アルマイト処理またはダイス引き法に
よる前記中間被覆層の形成と、該中間被覆層の表面に耐
アンモニア性の電気絶縁材の塗布層または焼き付け層の
形成を行って絶縁電線を形成するとともに、前記銅線の
直径に対し前記被覆層厚さtを10.96%以下に設定
したことを特徴とする。
SUMMARY OF THE INVENTION The first aspect of the present invention is to provide a method for protecting a stator wire loop composed of an insulated wire, which is disposed inside a motor frame, between a stator core and a rotor core. In a can-type electric motor for driving an ammonia refrigerant compressor having a metallic can inserted therein, the insulated wire is formed by vapor-depositing an ammonia-resistant metal containing aluminum, alumite treatment, or the like on the surface of a conductive wire made of copper. Forming the intermediate coating layer by a die drawing method, forming an application layer or a baked layer of an ammonia-resistant electric insulating material on the surface of the intermediate coating layer to form an insulated wire, and reducing the diameter of the copper wire. On the other hand, the thickness t of the coating layer is set to 10.96% or less.

【0009】第二に本発明は、モ−タフレ−ム内部に配
置された、絶縁電線により成る固定子線輪を保護可能
に、固定子鉄心と回転子鉄心との間に金属性のキャンを
挿入してなるアンモニア冷媒圧縮機駆動用のキャン型電
動機において、前記絶縁電線は、アルミニュ−ムからな
る導線の表面に、陽極酸化による酸化アルミニュ−ム金
属皮膜を被着して中間被覆層の形成と、該中間被覆層の
表面に耐アンモニア性の電気絶縁材の塗布層または焼き
付け層の形成を行って絶縁電線を形成したことを特徴と
する。
Secondly, the present invention provides a metal can between a stator core and a rotor core so as to protect a stator wire loop composed of insulated wires, which is disposed inside a motor frame. In the inserted can-type electric motor for driving the ammonia refrigerant compressor, the insulated wire is formed by coating an aluminum oxide metal film by anodic oxidation on a surface of a conductive wire made of aluminum to form an intermediate coating layer. And a step of forming a coating layer or a baking layer of an ammonia-resistant electric insulating material on the surface of the intermediate coating layer to form an insulated wire.

【0010】すなわち、アンモニアに対する所要の耐食
性が確保不能の場合や、限界比率以上の被覆厚さが、被
覆層厚さtを10.96%以下に設定出来ないような細
線の場合には、前記導線も銅に替えてアルミニュ−ム線
で形成する。この場合は、該アルミニュ−ム線の表面に
アルマイト処理層、すなわち陽極酸化による酸化アルミ
ニュ−ム金属皮膜を被着して、耐食性を高めるのがよ
い。
In other words, when the required corrosion resistance to ammonia cannot be ensured, or when the thickness of the coating layer exceeds the limit ratio, and the thickness t of the coating layer cannot be set to 10.96% or less, the above-mentioned thin line is used. The conductor is also made of aluminum wire instead of copper. In this case, it is preferable to improve the corrosion resistance by applying an alumite-treated layer, that is, an aluminum oxide metal film formed by anodic oxidation on the surface of the aluminum wire.

【0011】尚、前記限界比率とは、後述する計算例で
示すように、固有抵抗mを持つ金属Cから成る、直径D
を持つ前記導線と、固有抵抗nを持つ金属Aから成る、
被覆厚さtの中間被覆層とがある場合、前記中間被覆層
の金属Aを直径Dにした時の抵抗値を求め、その抵抗値
によって前記導線と前記中間被覆層との比抵抗が同じと
した時の、前記中間被覆層を含む外径(D)に対する前
記中間被覆層の前記被覆厚さtの比率をいう。従って前
記被覆厚さtが、計算された前記限界比率を超える場合
には、前記導線に使用した銅線を前記中間被覆層の金属
であるアルミニウムに置き換えて、前記導線ともアルミ
導線とする方が良いことを示す。例えば前記導線に銅、
前記中間被覆層にアルミニュ−ムとした場合、その被覆
厚さtが被覆層厚さtを10.96%以下にしか設定出
来ないために、その厚さtを超える場合、前記導線の芯
材としてアルミニュ−ム線を用いた方が技術的利得があ
ることを第2発明に示している。
The limit ratio is a diameter D made of a metal C having a specific resistance m as shown in a calculation example described later.
And a metal A having a specific resistance n.
When there is an intermediate coating layer having a coating thickness t, a resistance value when the metal A of the intermediate coating layer is made to have a diameter D is determined, and the specific resistance between the conductive wire and the intermediate coating layer is the same according to the resistance value. The ratio of the coating thickness t of the intermediate coating layer to the outer diameter (D) including the intermediate coating layer. Therefore, when the coating thickness t exceeds the calculated limit ratio, it is better to replace the copper wire used for the conductor with aluminum, which is the metal of the intermediate coating layer, so that the conductor is also an aluminum conductor. Show good things. For example, copper for the conductor,
When the intermediate coating layer is made of aluminum, the coating thickness t can be set only to 10.96% or less of the coating layer thickness. The second invention shows that the use of an aluminum wire has a technical advantage.

【0012】なお、前記アルマイト処理層の上に前記耐
アンモニア性の電気絶縁材の塗布層または焼付け層を二
重に被覆しても良い。
The above-mentioned alumite-treated layer may be double-coated with a coating layer or a baking layer of the above-mentioned ammonia-resistant electric insulating material.

【0013】[0013]

【作用】かかる技術手段によれば、前記従来発明のよう
に、アンモニア雰囲気下にあって、温度変化を受けると
きに、銅線に被覆する樹脂や塗料が銅線から分離、剥離
し、また樹脂が亀裂して腐食を受けたりする構造でな
く、少なくとも導線に中間被覆層を一体的に形成して柔
軟性を有して前記剥離障害を受けることなく、またアン
モニアのガスや液、潤滑油などに犯されないアルミニュ
−ムまたは他の金属やその合金を金属表面として、かつ
前記ガス中に混入する空気、該空気に含まれる水分によ
る腐食作用を受けることもない。
According to this technical means, as in the prior art, when subjected to a temperature change in an ammonia atmosphere, the resin or paint coating the copper wire separates and separates from the copper wire, Is not cracked or corroded, has at least an intermediate coating layer integrally formed on the conductor, has flexibility and does not suffer from the peeling failure, and is free from ammonia gas, liquid, lubricating oil, etc. Aluminum or other metal or an alloy thereof, which is not violated by the air, is used as a metal surface, and is not corroded by air mixed into the gas or moisture contained in the air.

【0014】そして前記第1の発明においては、銅線を
芯線に、その表面を中間被覆金属層とし、且つ、その表
面に耐アンモニア性の電気絶縁材の塗布層または焼き付
け層を形成して、高い電気絶縁性を保持したアルミニュ
−ムとその合金類等の耐食性金属層とすることでその銅
線の導電性を阻害することもない。すなわち、キャン型
電動機の固定子線輪の効率の良い設計は巻線の抵抗損を
最小に選ぶことであり、そのために実用的には導電率の
高い素材は銅線であるが、耐アンモニア絶縁材にポリエ
チレンやテフロン等の有機物を用いても、有機物の分子
の粗さから銅線を保護することはできないので、アルミ
ニュ−ム、ニッケルを含む耐アンモニア性金属の蒸着処
理、アルマイト処理またはダイス引き法による前記中間
被覆層を形成すればピンホールなしに中間被覆層の形成
が可能となる。
In the first aspect of the invention, a copper wire is used as a core wire, the surface of which is used as an intermediate coating metal layer, and a coating layer or a baking layer of an ammonia-resistant electric insulating material is formed on the surface. By forming a corrosion-resistant metal layer such as aluminum and its alloys having high electrical insulation, the conductivity of the copper wire is not hindered. In other words, an efficient design of the stator wire loop of the can type motor is to select the resistance loss of the winding to a minimum. Therefore, the material with high conductivity is copper wire in practice, but ammonia-resistant insulation Even if an organic material such as polyethylene or Teflon is used as the material, the copper wire cannot be protected from the molecular roughness of the organic material. Therefore, a vapor-depositing process, an anodizing process, or a die-drawing process of aluminum or nickel-containing ammonia-resistant metal. If the intermediate coating layer is formed by the method, the intermediate coating layer can be formed without pinholes.

【0015】しかしながらこのような加工時に銅線を芯
線に用いたのでは、その厚みの限界が自ら生じるので、
芯となる導線素材と中間被覆層の厚みとを電気特性との
両面より決定する基準をなすものであって重要な要素と
なる。この限界比率と芯となる導線素材と中間被覆層を
効果的に組み合わせたのが本第1及び第2発明である。
However, if a copper wire is used for the core wire during such processing, the thickness of the core wire itself is limited.
It is a crucial factor for determining the core wire material and the thickness of the intermediate coating layer from both aspects of electrical characteristics and is an important factor. The first and second inventions effectively combine the limit ratio, the core wire material and the intermediate coating layer.

【0016】[0016]

【実施例】以下、図面を参照して本発明の好適な実施例
を例示的に詳しく説明する。ただしこの実施例に記載さ
れている構成部品の寸法、材質、形状、その相対配置な
どは特に特定的な記載がない限りは、この発明の範囲を
それのみに限定する趣旨ではなく、単なる説明例に過ぎ
ない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be illustratively described in detail below with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. It's just

【0017】図1は、本発明の実施例の細部を示し、
(A)は実施例1の要部断面図、(C)は(A)の要部
斜視図、(B)は(C)のY−Y矢視の断面図で、導線
1の表面にアルミニュ−ム、ニッケル、鉄を含む耐アン
モニア性金属またはそれらからなる合金によって、蒸
着、被着またはダイス引き抜きにより形成する被覆厚さ
tの中間被覆層2を、直径Dに形成し、前記中間被覆層
2の表面を耐アンモニア性の電気絶縁材3一例として架
橋ポリエチレンなどを塗布または焼き付けにより形成し
て、線輪用絶縁電線10を構成する。前記被覆厚さt
は、前記耐アンモニア性の中間被覆層2に選んだ金属と
前記導線1の使用金属との、それぞれの比抵抗から定ま
る限界比率以下に形成する。
FIG. 1 shows details of an embodiment of the present invention,
(A) is a cross-sectional view of a main part of the first embodiment, (C) is a perspective view of a main part of (A), (B) is a cross-sectional view of FIG. Forming an intermediate coating layer 2 having a diameter D with a coating thickness t formed by vapor deposition, deposition or die drawing by using an ammonia-resistant metal containing iron, nickel, iron or an alloy thereof; The surface of the wire 2 is formed by applying or baking a cross-linked polyethylene or the like as an example of the ammonia-resistant electric insulating material 3 to form the insulated wire for wire 10. The coating thickness t
Is formed below the limit ratio determined by the specific resistance of the metal selected for the ammonia-resistant intermediate coating layer 2 and the metal used for the conductive wire 1.

【0018】通常は前記導線1に銅線を使用して、前記
耐アンモニア性金属による金属層から成る前記中間被覆
層2を形成する。しかし前記中間被覆層2がアルミニュ
−ムの場合で、限界比率以下にしても充分な被覆層厚さ
が得られないために、アンモニアに対する所要の耐食性
が確保不能の場合や、前記限界比率以上の被覆厚さが、
特定の理由で与えざるを得ないような細線の場合には、
前記導線も銅に替えてアルミニュ−ム線で形成する。該
アルミニュ−ム線の表面にアルマイト処理層、すなわち
陽極酸化による酸化アルミニュ−ム金属皮膜を被着し
て、耐食性を高めてもよい。
Normally, a copper wire is used for the conductive wire 1 to form the intermediate coating layer 2 made of a metal layer made of the ammonia-resistant metal. However, when the intermediate coating layer 2 is made of aluminum, a sufficient thickness of the coating layer cannot be obtained even if the intermediate coating layer 2 has a thickness lower than the limit ratio. The coating thickness is
In the case of a thin line that must be given for a specific reason,
The conductor is also made of aluminum wire instead of copper. An alumite-treated layer, that is, an aluminum oxide metal film formed by anodic oxidation may be applied to the surface of the aluminum wire to enhance corrosion resistance.

【0019】図2は、本発明の他の実施例を示す要部断
面図で、前記導線1が銅線であって、その表面にアルミ
ニュ−ムによる前記中間被覆層2を形成し、かつ前記中
間被覆層2の表面にアルマイト処理層2aの皮膜を被着
して、さらにその表面に前記耐アンモニア性の電気絶縁
材3を塗布または焼き付けにより形成して、絶縁電線1
0を構成する。
FIG. 2 is a sectional view showing a main part of another embodiment of the present invention, in which the conductive wire 1 is a copper wire, and the intermediate coating layer 2 made of aluminum is formed on the surface of the copper wire. The surface of the intermediate coating layer 2 is coated with a film of the alumite treatment layer 2a, and the above-mentioned ammonia-resistant electric insulating material 3 is formed on the surface by coating or baking.
0.

【0020】図3は、本発明の実施例に係わる使用電気
機器を示し、アンモニア圧縮機駆動用のキャン型電動機
の要部破断側面図で、前記電動機5は、アンモニア用の
圧縮機またはポンプなどの負荷6に軸受(図示せず)を
介して一端を連結し、他端を前記電動機5の外殻に嵌設
する軸受12に、回転自在に軸支する駆動軸11に、回
転子鉄心8を固設するとともに、前記外殻内側には前記
回転子鉄心8に対向して、エアギャップを介して固定子
鉄心9が、前記絶縁電線10(図示せず)によって固定
子線輪7を巻装して構成している。前記負荷6側と前記
電動機5内部構造の空間とは、均圧孔14を介して、ア
ンモニアガスGが流通自在になって、前記内部構造を冷
却可能とするとともに、前記外殻は全密封構造になって
前記内部アンモニアガスGは、外部に漏洩しないように
なっている。
FIG. 3 shows the electric equipment used in the embodiment of the present invention. FIG. 3 is a cutaway side view of a main part of a can-type electric motor for driving an ammonia compressor. The electric motor 5 includes a compressor or a pump for ammonia. One end is connected to the load 6 via a bearing (not shown), and the other end is mounted on a bearing 12 fitted to the outer shell of the electric motor 5, a drive shaft 11 rotatably supported on the rotor 6, and a rotor core 8. And a stator core 9 is wound inside the outer shell by an insulated wire 10 (not shown) and a stator core 9 is opposed to the rotor core 8 via an air gap. It is configured by mounting. The space between the load 6 and the internal structure of the electric motor 5 allows the ammonia gas G to freely flow through the pressure equalizing holes 14 so that the internal structure can be cooled and the outer shell has a completely sealed structure. Thus, the internal ammonia gas G does not leak to the outside.

【0021】次に本発明の動作とその適用について説明
する。前記導線1の表面にアルミニュ−ムを含む耐アン
モニア性金属の蒸着処理、アルマイト処理またはダイス
引き法による前記中間被覆層2の形成と、耐アンモニア
性の電気絶縁材の塗布層または焼き付け層の、各層の結
合は一体化したもので密着性があり、かつ前記形成金属
はそれぞれが軟質であるので、柔軟性があり、巻線形成
時の屈曲加工に充分対応して、前記各層間に剥離、亀裂
など生じない。またアンモニア雰囲気中にあって、第一
に第一層の耐アンモニア性電気絶縁材が接ガスし、その
下部に第二層の耐アンモニア性金属層または皮膜が形成
されて、アンモニアガスがその最下部の前記導線1に浸
透するのを妨げる。また前記第一層で絶縁性を確保し、
第二層で導線の導電性を阻害しないで前記導線1の作用
を保護している。なお、前記耐アンモニア性金属は、そ
の用途に対応して前記導線1との密着性、作業性および
その経済性によって選定する。
Next, the operation of the present invention and its application will be described. Forming the intermediate coating layer 2 on the surface of the conductive wire 1 by vapor-depositing an aluminum-containing metal containing aluminum, alumite treatment or die-drawing, and applying or baking a layer of an ammonia-resistant electric insulating material; Bonding of each layer is integrated and has adhesiveness, and since the forming metals are each soft, they are flexible and sufficiently cope with bending at the time of winding formation, peeling between the respective layers, There are no cracks. Also, in an ammonia atmosphere, the first layer of the ammonia-resistant electrical insulating material comes into contact with the gas, and the second layer of the ammonia-resistant metal layer or film is formed under the first layer. It prevents penetration into the lower conducting wire 1. Also, the first layer ensures insulation,
The second layer protects the operation of the conductor 1 without inhibiting the conductivity of the conductor. The ammonia-resistant metal is selected according to the adhesiveness with the conductive wire 1, the workability, and the economical efficiency in accordance with the application.

【0022】前記中間被覆層を前記限界比率以下に使用
する場合の例を、前記導線1が銅線であって、前記中間
被覆層2がアルミニュ−ムである場合について説明す
る。固有抵抗は、銅(軟銅)は20゜Cで、1.724
*10−6オ-ム/cm2、アルミニュ−ムは2.828*
10−6オ-ム/cm2であり、これから前記銅の比抵抗を
1としたときのアルミニュームの抵抗比は、1.640
(=1/0.6096)である。被覆層厚さt、銅線の
直径(D−2t)、被覆層を含めたアルミニューム線の
直径をDとするとき、 これから断面積は (π/4)×(D−2t)2=0.6096×(π/4)D2 D−2t=0.78076D 従って 2t/D =0.2192 すなわち、アルミニュ−ムから成る前記金属層3の厚み
tは、前記tを含む外径Dに対し、 t/D=0.2192/2 =0.1096 となり、前記銅線の直径(D−2t)に対し前記被覆層
厚さtが10.96%を占めるときに、前記厚さtが限
界比率となり、前記厚みtがこれ以下になるときに前記
銅線1に前記中間被覆層2を被覆する技術的利益が得ら
れ、これ以上の厚さの場合は、前記導線1にアルミニュ
−ム線が選定される。
An example in which the intermediate coating layer is used below the limit ratio will be described for the case where the conductive wire 1 is a copper wire and the intermediate coating layer 2 is aluminum. The specific resistance of copper (mild copper) is 20 ° C. and 1.724
* 10 -6 ohms / cm 2 , aluminum 2.828 *
10 −6 ohm / cm 2 , and when the specific resistance of copper is set to 1, the resistance ratio of aluminum is 1.640.
(= 1 / 0.6096). When the thickness t of the coating layer, the diameter of the copper wire (D-2t), and the diameter of the aluminum wire including the coating layer are D, the cross-sectional area is (π / 4) × (D-2t) 2 = 0. 6096 × (π / 4) D 2 D-2t = 0.78076D Therefore, 2t / D = 0.192 That is, the thickness t of the metal layer 3 made of aluminum is smaller than the outer diameter D including the t. T / D = 0.2192 / 2 = 0.1096, and when the thickness t of the coating layer occupies 10.96% of the diameter (D-2t) of the copper wire, the thickness t is limited. When the thickness t becomes less than this, the technical advantage of covering the copper wire 1 with the intermediate coating layer 2 is obtained, and when the thickness t is more than this, the conductor 1 is made of an aluminum wire. Is selected.

【0023】前記絶縁電線10を電気機器の巻線に用い
る場合、通常、該巻線の抵抗による銅損を少なくさせる
ためには、前記導線1は大きな断面積、すなわち直径D
が大きいことが望ましく、前記中間被覆層2の厚みtは
電気的には薄く、耐蝕対策には厚いことがよい。また形
成された前記中間被覆層の厚みtの薄さは、前記絶縁電
線10の有効断面積の確保に影響を与えることもなく、
また前記絶縁電線10を相互に接続する際の作業性は、
その絶対的厚さが薄いので前記被覆層を容易に剥離でき
て、前記導線1相互を容易に半田付け可能となり、極め
て良好となる。
When the insulated wire 10 is used for a winding of an electric device, usually, the conductor 1 has a large cross-sectional area, that is, a diameter D in order to reduce copper loss due to the resistance of the winding.
It is preferable that the thickness t of the intermediate coating layer 2 is electrically thin and thick for corrosion resistance. Further, the thinness of the thickness t of the formed intermediate coating layer does not affect the securing of the effective cross-sectional area of the insulated wire 10,
The workability of connecting the insulated wires 10 to each other is as follows:
Since the absolute thickness is small, the coating layer can be easily peeled off, and the conductive wires 1 can be easily soldered to each other, which is extremely good.

【0024】次に本発明の実施例に係わる使用電気機器
につきキャン型電動機に適用した場合の、前記絶縁電線
10について説明する。アンモニア冷媒を使用する前記
負荷6に、前記均圧管14を介して連通する前記電動機
5の前記駆動軸11が、駆動回転すると潤滑油ととも
に、アンモニアGが前記電動機5側の、前記固定子鉄心
9の内部にも侵入して前記固定子線輪7とともに、該電
動機5の内部構造の全てがアンモニア雰囲気下に曝され
る。しかし前記固定子線輪7は、その外側に耐アンモニ
ア電気絶縁材が、その下部の前記中間被覆層とともに一
体的に施された前記絶縁電線10によって、前記電動機
5は、結果的に前記アンモニアGに耐性を持った構造を
形成可能とするとともに、その前記導線1と前記中間被
覆層とが示す良導電性と、渦流損の発生のない、かつ発
熱量の少ない簡素な構造を持つキャン型電動機を、耐久
的で、電動機効率の高い、アンモニア圧縮機駆動用に開
発応用出来るようにした。
Next, a description will be given of the insulated wire 10 in the case where the used electric equipment according to the embodiment of the present invention is applied to a can-type motor. When the drive shaft 11 of the electric motor 5 that communicates with the load 6 using the ammonia refrigerant through the equalizing tube 14 is driven to rotate, the lubricant G and the ammonia G are supplied to the stator core 9 on the electric motor 5 side together with the lubricating oil. , And the entire internal structure of the electric motor 5 together with the stator wire loop 7 is exposed to an ammonia atmosphere. However, the stator wire 7 is provided with an insulated wire 10 on which an ammonia-resistant electric insulating material is integrally provided together with the intermediate coating layer under the stator wire 7. Motor having a simple structure that has a good electrical conductivity of the conductive wire 1 and the intermediate coating layer, that does not generate eddy current loss, and that generates a small amount of heat. Can be developed and applied for driving the ammonia compressor, which is durable and has high motor efficiency.

【0025】[0025]

【発明の効果】以上記載したごとく本発明によれば、電
気絶縁性を保持して耐アンモニア性とし、アンモニア、
油、水分による腐食障害を受けること無く、構造の一体
性、柔軟性、耐久性を保持して、アンモニア雰囲気下で
の絶縁電線の技術的課題を積極的に解決するアンモニア
冷媒圧縮機駆動用のキャン型電動機を提供しつつ、例え
ば、電動機効率、機器構造、発熱原因要素、電気容量対
応等に係わる技術的問題を満足させるアンモニア雰囲気
下での絶縁電線の技術的課題を積極的に解決するキャン
型電動機であって、本発明にして初めてフロン規制対応
を含む社会的要請に叶った、アンモニア雰囲気下に使用
して普及可能のアンモニア冷媒圧縮機駆動用のキャン型
電動機の提供が可能になり、その実用的価値は極めて大
である。
As described above, according to the present invention, it is possible to maintain electrical insulation and to make ammonia resistant.
For driving the ammonia refrigerant compressor, which actively solves the technical problems of insulated wires in an ammonia atmosphere while maintaining the integrity, flexibility, and durability of the structure without being affected by corrosion by oil and moisture. While providing a can-type electric motor, for example, a can-type motor that can solve the technical problems of the insulated wire in an ammonia atmosphere that satisfies the technical problems related to the motor efficiency, the device structure, the heat-generating element, the electric capacity, etc. It is possible to provide a can-type electric motor for driving an ammonia refrigerant compressor which is a type electric motor and which can meet the social demands including the chlorofluorocarbon regulation for the first time according to the present invention and can be used under an ammonia atmosphere, Its practical value is enormous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例の細部を示し、(A)は実施
例1の要部断面図、(C)は(A)の要部斜視図、
(B)は(C)のY−Y矢視の断面図である。
1A and 1B show details of an embodiment of the present invention, wherein FIG. 1A is a cross-sectional view of a main part of the first embodiment, FIG. 1C is a perspective view of a main part of FIG.
(B) is a sectional view taken along the line YY of (C).

【図2】 本発明の他の実施例を示す要部断面図であ
る。
FIG. 2 is a sectional view of a main part showing another embodiment of the present invention.

【図3】 本発明の実施例に係わる使用電気機器を示
し、アンモニア圧縮機駆動用のキャン型電動機の要部破
断側面図である。
FIG. 3 is a cutaway side view of a main part of a can type electric motor for driving an ammonia compressor, showing electric equipment to be used according to the embodiment of the present invention.

【図4】 キャン型電動機の従来技術を説明し、(A)
はキャンド型電動機の破断側面図、(B)はその電動機
の固定子線輪の要部断面図である。
4A and 4B illustrate a prior art of a can-type electric motor, and FIG.
FIG. 2 is a cutaway side view of the canned motor, and FIG. 2B is a sectional view of a main part of a stator wire loop of the motor.

【符号の説明】[Explanation of symbols]

1 導線(銅線またはアルミニュ−ム線) 2 中間被覆金属層 3 耐アンモニア性電気絶縁材の塗布層または焼付け
層 10 一般用絶縁電線 18 耐アンモニア巻線用絶縁電線
DESCRIPTION OF SYMBOLS 1 Conductor (copper wire or aluminum wire) 2 Intermediate coating metal layer 3 Coating or baking layer of ammonia-resistant electrical insulation material 10 General-purpose insulated wire 18 Insulated wire for ammonia-resistant winding

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02K 3/30 - 3/52 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02K 3/30-3/52

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 モ−タフレ−ム内部に配置された、絶縁
電線により成る固定子線輪を保護可能に、固定子鉄心と
回転子鉄心との間に金属性のキャンを挿入してなるアン
モニア冷媒圧縮機駆動用のキャン型電動機において、 前記絶縁電線は、銅から成る導線の表面に、アルミニュ
−ムを含む耐アンモニア性金属の蒸着処理、アルマイト
処理またはダイス引き法による前記中間被覆層の形成
と、該中間被覆層の表面に耐アンモニア性の電気絶縁材
の塗布層または焼き付け層の形成を行って絶縁電線を形
成するとともに、 前記銅線の直径に対し前記被覆層厚さtを10.96%
以下に設定したことを特徴とするアンモニア冷媒圧縮機
駆動用のキャン型電動機。
(1)Insulation placed inside the motor frame
The stator wire loop consisting of electric wires can be protected
An antenna with a metallic can inserted between the rotor core
In a can-type motor for driving a Monia refrigerant compressor, The insulated wire is an aluminum wire on the surface of a copper wire.
-Vapor deposition treatment of ammonia-resistant metal including aluminum, alumite
Of the intermediate coating layer by a treatment or die drawing method
And an ammonia-resistant electrical insulating material on the surface of the intermediate coating layer.
To form an insulated wire by forming a coating layer or baking layer.
Along with The thickness t of the coating layer is 10.96% with respect to the diameter of the copper wire.
Ammonia refrigerant compressor characterized by the following settings:
Can type motor for driving.
【請求項2】モ−タフレ−ム内部に配置された、絶縁電
線により成る固定子線輪を保護可能に、固定子鉄心と回
転子鉄心との間に金属性のキャンを挿入してなるアンモ
ニア冷媒圧縮機駆動用のキャン型電動機において、 前記絶縁電線は、アルミニュ−ムからなる導線の表面
に、陽極酸化による酸化アルミニュ−ム金属皮膜を被着
して中間被覆層の形成と、該中間被覆層の表面に耐アン
モニア性の電気絶縁材の塗布層または焼き付け層の形成
を行って絶縁電線を形成したことを特徴とするアンモニ
ア冷媒圧縮機駆動用のキャン型電動機。
(2)An insulated power supply located inside the motor frame
The stator wire loop consisting of wires can be protected so that the stator core
Ammo with metal can inserted between trochanter core
In a can-type motor for driving a near refrigerant compressor, The insulated wire is a surface of a conductive wire made of aluminum.
Aluminum oxide metal film by anodic oxidation
To form an intermediate coating layer, and the surface of the intermediate coating layer
Applying or baking layer of monic electrical insulation
Characterized by forming an insulated wire by performing
A Can type electric motor for driving the refrigerant compressor.
JP07820092A 1992-02-28 1992-02-28 Can type electric motor for driving ammonia refrigerant compressor Expired - Fee Related JP3348104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07820092A JP3348104B2 (en) 1992-02-28 1992-02-28 Can type electric motor for driving ammonia refrigerant compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07820092A JP3348104B2 (en) 1992-02-28 1992-02-28 Can type electric motor for driving ammonia refrigerant compressor

Publications (2)

Publication Number Publication Date
JPH05252680A JPH05252680A (en) 1993-09-28
JP3348104B2 true JP3348104B2 (en) 2002-11-20

Family

ID=13655376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07820092A Expired - Fee Related JP3348104B2 (en) 1992-02-28 1992-02-28 Can type electric motor for driving ammonia refrigerant compressor

Country Status (1)

Country Link
JP (1) JP3348104B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013017147A1 (en) * 2013-10-16 2015-04-16 Gea Refrigeration Germany Gmbh compressor
IT201800000473A1 (en) * 2018-01-03 2018-04-03 Gino Marinacci COMPRESSOR FOR R717 SEMI HERMETIC / HERMETIC DOUBLE COATED

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3357607B2 (en) * 1998-09-04 2002-12-16 株式会社前川製作所 Rotary electric machine combined with ammonia rotary machine
EP3421792B1 (en) 2012-11-05 2019-12-11 Johnson Controls Technology Company Semi-hermetic compressor motor for ammonia service
JP6331219B2 (en) * 2014-08-08 2018-05-30 株式会社安川電機 Movable electric machine, coil manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013017147A1 (en) * 2013-10-16 2015-04-16 Gea Refrigeration Germany Gmbh compressor
IT201800000473A1 (en) * 2018-01-03 2018-04-03 Gino Marinacci COMPRESSOR FOR R717 SEMI HERMETIC / HERMETIC DOUBLE COATED

Also Published As

Publication number Publication date
JPH05252680A (en) 1993-09-28

Similar Documents

Publication Publication Date Title
US6124660A (en) AC generator for vehicles
US7202579B2 (en) Corrosion protective coating for extending the lifetime of water cooled stator bar clips
RU2459190C2 (en) Method of testing rotor-stator assembly (versions)
KR101817144B1 (en) Hermetic terminal with fully insulated direct wire connection
JP3348104B2 (en) Can type electric motor for driving ammonia refrigerant compressor
US7019430B2 (en) Electric motor
US20140210302A1 (en) Motor for use in refrigerant environment
CN101676135B (en) Automobile engine cooling system and motor thereof
JP2003134712A (en) Rotating electric machine, method for manufacturing the same, and ammonia refrigerant compressor
JP2018186175A (en) Coil winding
US20140126956A1 (en) Solder joint structure and solder joining method
JP3357607B2 (en) Rotary electric machine combined with ammonia rotary machine
JP4601527B2 (en) Shield conductive path
JP2596474Y2 (en) Fully sealed motor
CN201320957Y (en) Automotive engine cooling system and motor thereof
WO2003028040A1 (en) Semi-rigid cable
JP2583789Y2 (en) Sealed terminal structure for ammonia fluid machinery
CN206389201U (en) Threephase motor
CA2572635C (en) Flexible high temperature cables
JP4091088B2 (en) AC generator for vehicles
JPH0498773A (en) Superconducting cable connection section
EP0881743B1 (en) AC generator for vehicles
JP2021055878A (en) Refrigeration cycle device
EP0825704A2 (en) Highly heat-resistant electric motor
JP2003244894A (en) Liquid circulation cooling type rotating machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees