[go: up one dir, main page]

JP3345072B2 - Magnetoresistive element and magnetic recording / reproducing device - Google Patents

Magnetoresistive element and magnetic recording / reproducing device

Info

Publication number
JP3345072B2
JP3345072B2 JP02097593A JP2097593A JP3345072B2 JP 3345072 B2 JP3345072 B2 JP 3345072B2 JP 02097593 A JP02097593 A JP 02097593A JP 2097593 A JP2097593 A JP 2097593A JP 3345072 B2 JP3345072 B2 JP 3345072B2
Authority
JP
Japan
Prior art keywords
magnetic
film
magnetoresistive
oxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02097593A
Other languages
Japanese (ja)
Other versions
JPH06237022A (en
Inventor
健一 茶原
俊之 大野
昌弘 葛西
庸子 菅家
裕三 小園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP02097593A priority Critical patent/JP3345072B2/en
Publication of JPH06237022A publication Critical patent/JPH06237022A/en
Application granted granted Critical
Publication of JP3345072B2 publication Critical patent/JP3345072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気検出装置に関し、
特に高感度磁気検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic detection device,
In particular, it relates to a high-sensitivity magnetic detection device.

【0002】[0002]

【従来の技術】磁気抵抗効果膜を用いた磁気検出に関し
ては以下のような従来技術がある。アイ イー イー
トランスアクション オン マグネティクス 第18巻
第2号 3月(1982)707〜708頁 (IEEE T
ransaction on Magnetics,Vol.Mag-18,No.2March(198
2) p.707-708)にはNi/NiO/Ni3層膜による磁
気検出の記載がある。ジャーナル オブ ザ フィジカ
ル ソサイエティ オブジャパン 第59巻 3061
〜3064頁には、磁気特性の異なる金属磁性膜を非磁
性膜を介して積層したものが記載されている。フィジカ
ル レビューB43号 1297〜1300頁(Physic
al review,B43,1297〜1300)には、FeMn反強磁性膜
を強磁性/非磁性多層膜にしものが記載されている。第
69回日本応用磁気学会研究会資料(1991)の21
〜26頁には、Fe(30Å)/Cr(9Å)/Fe
(30Å)を用いた磁気検出が記載されている。また、
特開平2−61572号広報には、強磁性膜/非磁性膜/強
磁性膜/反強磁性膜を用いた磁気センサについての記載
がある。
2. Description of the Related Art There are the following conventional techniques for magnetic detection using a magnetoresistive film. I e i
Transaction on Magnetics Vol. 18, No. 2, March (1982) pp. 707-708 (IEEE T
ransaction on Magnetics, Vol.Mag-18, No.2 March (198
2) p.707-708) describes magnetic detection using a Ni / NiO / Ni three-layer film. Journal of the Physical Society of Japan Vol.59 3061
Pp. 3064 describe that metal magnetic films having different magnetic properties are laminated via a non-magnetic film. Physical Review B43, pages 1297-1300 (Physic
al review, B43, 1297-1300), describes the use of a FeMn antiferromagnetic film as a ferromagnetic / nonmagnetic multilayer film. 21 of the 69th meeting of the Japan Society of Applied Magnetics (1991)
~ 26 pages, Fe (30 °) / Cr (9 °) / Fe
Magnetic detection using (30 °) is described. Also,
Japanese Patent Laid-Open Publication No. 2-61572 discloses a magnetic sensor using a ferromagnetic film / non-magnetic film / ferromagnetic film / antiferromagnetic film.

【0003】[0003]

【発明が解決しようとする課題】従来、磁気抵抗効果素
子を有する磁気検出装置においては、十分な検出感度を
有する磁気抵抗効果膜が得られなかった。また、大きな
磁気抵抗効果を有する磁気抵抗効果多層膜においては、
多層膜各層の膜厚が数10Å以下と薄いことによるピン
ホール等により多層構造の作製,素子特性の安定性,制
御性に困難があった。
Heretofore, in a magnetic detection device having a magnetoresistive element, a magnetoresistive film having sufficient detection sensitivity has not been obtained. In a magnetoresistive multilayer film having a large magnetoresistance effect,
Because the thickness of each layer of the multilayer film is as thin as several tens of degrees or less, there were difficulties in manufacturing a multilayer structure, stability of element characteristics, and controllability due to pinholes and the like.

【0004】本発明の目的は、磁気抵抗効果素子を有す
る磁気検出装置に対して、高感度の磁気検出能力を有
し、かつ、単純な素子構造を有する磁気抵抗効果膜を提
供することである。
An object of the present invention is to provide a magnetoresistive film having a highly sensitive magnetic detection capability and a simple element structure for a magnetic detection device having a magnetoresistive element. .

【0005】[0005]

【課題を解決するための手段】本発明では、磁気抵抗効
果素子を有する磁気検出装置における課題として、磁気
検出感度の向上を目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to improve the magnetic detection sensitivity as a problem in a magnetic detection device having a magnetoresistance effect element.

【0006】本発明では第1に、磁気抵抗効果素子を構
成する磁気抵抗効果膜に酸化物磁気抵抗効果膜を用い
る。ここで、酸化物磁気抵抗効果膜とは、膜を使用する
温度で磁気抵抗効果を示す強磁性あるいは弱強磁性の酸
化物膜であって、その比抵抗が1〜500mΩcmと電気
伝導性の高いことが好ましい。
In the present invention, first, an oxide magnetoresistive film is used as a magnetoresistive film constituting a magnetoresistive element. Here, the oxide magnetoresistive film is a ferromagnetic or weakly ferromagnetic oxide film exhibiting a magnetoresistive effect at a temperature at which the film is used, and has a specific resistance of 1 to 500 mΩcm and a high electric conductivity. Is preferred.

【0007】本発明の酸化物磁気抵抗効果膜はまた、単
体磁性体であって磁場と電流の方向によらない等方的
な、あるいは異方性の小さい磁気抵抗効果を示す磁性材
料を用いる。ここで、等方的なあるいは異方性の小さい
磁気抵抗効果とは、磁気抵抗効果膜が単体磁性体からな
る磁気抵抗効果膜であって、磁気抵抗効果膜に流された
抵抗変化検出用の電流方向と、記録媒体あるいは磁界発
生体から漏洩する磁界方向とのなす角度に依存しない、
あるいは依存性の小さい磁気抵抗効果を示すことであ
る。これまで、単層磁性膜の磁気抵抗効果は抵抗変化検
出用の電流方向と、記録媒体あるいは磁界発生体から漏
洩する磁界方向とのなす角度に依存した異方性磁気抵抗
効果を示した。異方性磁気抵抗効果では、電流方向と磁
界方向が平行な場合、磁気抵抗変化率は−0.5% 以下
と小さかった。(ただし、磁気抵抗変化率の前に付けら
れた負号は磁場印加による抵抗の減少を表す。以下同
様。)しかし、本発明の等方的なあるいは異方性の小さ
い酸化物磁気抵抗効果では、電流方向と磁界方向の相対
角度に依らない−4〜−50%の大きな磁気抵抗効果が
得られる。単体磁性体であって等方的なあるいは異方性
の小さい磁気抵抗効果を示す磁性材料としては、単体磁
性体内部で、抵抗変化検出用の電流が単体磁性体のスピ
ン構造に起因したスピン依存散乱を受けている磁性材料
であることが望ましい。ここで、スピン依存散乱とは、
異なる2つのスピン方向を有する物質、あるいは、特に
人工的に異なる2つのスピン方向を有する状態を実現さ
せた金属強磁性膜/金属非磁性膜/金属強磁性膜のよう
な金属多層膜の磁気抵抗効果において生じるものであっ
て、抵抗変化検出用の電流の担い手である電子の前記ス
ピンによる散乱の度合いが、異なる2つの方向を有する
スピン間のなす角度に依存して変化するという伝導電子
の散乱である。つまり、スピン間のなす角度の変化が、
磁気抵抗変化を生じさせていることになる。また、単体
磁性体であって等方的なあるいは異方性の小さい磁気抵
抗効果を示す磁性材料としては、その単体磁性体が、そ
のスピン構造において、2つの異なるスピン方向を有
し、或るスピン方向を有する磁性層と、これと異なるス
ピン方向を有する磁性層が、非磁性層を介して磁性層/
磁性層からなる多層構造を有することが好ましい。上の
ような特性を有する磁性体に、キャント磁性体(あるい
は寄生強磁性体と呼ばれる)材料がある。ここで、キャ
ント磁性体(あるいは寄生強磁性体)とは、反強磁性整
列した原子のスピンが反平行から傾き、異なる2つのス
ピン方向が生じる。そして、このスピンのなす角度に対
応した自発磁化が現われる物質である。スピンが反平行
から傾く原因としては、スピン間の二重交換相互作用あ
るいは異方性超交換相互作用、また、あるいは磁性結晶
の磁気異方性が上げられる。二重交換相互作用に原因を
持つ材料は例えばLa1-xCaxMnO3(x=0〜1),
La1-xSrxMnO(x=0〜1),異方性超交換相互
作用に原因を持つ材料は例えばFe3,MnCO3
YFeO3,CrF3、磁気異方性に原因を持つ材料は例
えばNiF2が上げられる。ここでは特に、二重交換相
互作用に原因を持つキャント磁性体材料を用いることが
好ましい。
The oxide magnetoresistive film of the present invention also uses a magnetic material which is a simple magnetic substance and exhibits an isotropic or small anisotropic magnetoresistance effect independent of the direction of a magnetic field and current. Here, the isotropic or anisotropic small magnetoresistive effect is a magnetoresistive effect film in which the magnetoresistive effect film is made of a single magnetic material, and is used for detecting a resistance change flowing through the magnetoresistive effect film. Independent of the angle between the current direction and the direction of the magnetic field leaking from the recording medium or magnetic field generator,
Or, it is to exhibit a magnetoresistance effect with little dependence. Heretofore, the magnetoresistance effect of a single-layer magnetic film has shown an anisotropic magnetoresistance effect depending on the angle between the current direction for detecting a resistance change and the direction of a magnetic field leaking from a recording medium or a magnetic field generator. In the anisotropic magnetoresistance effect, when the current direction and the magnetic field direction were parallel, the magnetoresistance ratio was as small as -0.5% or less. (However, a minus sign before the magnetoresistance change rate indicates a decrease in resistance due to application of a magnetic field. The same applies hereinafter.) However, in the isotropic or small anisotropic oxide magnetoresistance effect of the present invention, As a result, a large magnetoresistance effect of -4 to -50% can be obtained regardless of the relative angle between the current direction and the magnetic field direction. As a magnetic substance that is a simple magnetic substance and exhibits a magnetoresistive effect with isotropic or small anisotropy, the current for detecting a change in resistance inside the simple magnetic substance is spin-dependent due to the spin structure of the simple magnetic substance. Desirably, the magnetic material is scattered. Here, the spin-dependent scattering is
Magnetoresistance of a material having two different spin directions, or a metal multilayer film such as a metal ferromagnetic film / metal non-magnetic film / metal ferromagnetic film in which a state having two artificially different spin directions is realized. The scattering of conduction electrons that occurs in the effect and that the degree of scattering of electrons, which are the bearers of the current for detecting a resistance change, due to the spins changes depending on the angle between spins having two different directions. It is. In other words, the change in angle between spins is
This means that a change in magnetoresistance has occurred. Further, as a magnetic material which is a simple magnetic material and exhibits an isotropic or low anisotropy magnetoresistance effect, the simple magnetic material has two different spin directions in its spin structure. A magnetic layer having a spin direction and a magnetic layer having a different spin direction are provided with a magnetic layer /
It preferably has a multilayer structure composed of magnetic layers. A magnetic material having the above characteristics is a canted magnetic material (also called a parasitic ferromagnetic material). Here, in the canted magnetic material (or parasitic ferromagnetic material), the spins of the atoms that are antiferromagnetically aligned are tilted from antiparallel, and two different spin directions are generated. And it is a substance in which spontaneous magnetization corresponding to the angle between the spins appears. The causes of the inclination of the spins from antiparallel are double exchange interaction between spins or anisotropic superexchange interaction, or magnetic anisotropy of a magnetic crystal. Material with the cause double exchange interaction is e.g. La 1-x Ca x MnO 3 (x = 0~1),
La 1-x Sr x MnO 3 (x = 0 to 1), materials that are responsible for the anisotropic super-exchange interaction include, for example, Fe 2 O 3 , MnCO 3 ,
YFeO 3 , CrF 3 , and a material having a cause for magnetic anisotropy include, for example, NiF 2 . Here, it is particularly preferable to use a canted magnetic material that is caused by the double exchange interaction.

【0008】本発明の酸化物磁気抵抗効果膜はまた、磁
気抵抗効果膜の元素組成比を変化させることによって、
室温を含む広い温度範囲で磁気転移温度を連続的に変化
できる磁性材料を用いる。ここで、磁気転移温度とは、
磁気的な相転移の起こる温度であって、磁性体原子のス
ピンが無秩序配列から秩序配列へ変化する際の臨界温度
である。そして、本発明の磁性材料としては、磁気転移
温度近傍で抵抗値に、臨界磁気散乱による抵抗成分が多
く含まれる磁性材料であることが好ましい。ここで、臨
界磁気散乱とは、臨界状態での大きなスピンのゆらぎの
ために伝導電子が異常に大きい散乱を受ける現象であっ
て、一般に比抵抗は臨界磁気散乱による抵抗成分が最大
となる温度である磁気転移温度にピークのある比抵抗−
温度特性を示す。また、磁気転移温度近傍はスピンのゆ
らぎの大きい温度領域であって、外部から磁性材料に印
加された磁場によって、臨界磁気散乱による抵抗成分が
大きく変化する磁気抵抗効果の大きな温度領域である。
本発明の磁性材料としては、磁気転移温度近傍で抵抗値
に臨界磁気散乱による抵抗成分が多く含まれる磁性材料
であって、磁気転移温度近傍で磁気検出を行うことによ
り、外部から磁性材料に印加された磁場によって臨界磁
気散乱による抵抗成分が大きく変化する、つまり大きな
磁気抵抗効果の生じる磁性材料であることが好ましい。
[0008] The oxide magnetoresistive film of the present invention can also be obtained by changing the element composition ratio of the magnetoresistive film.
A magnetic material capable of continuously changing the magnetic transition temperature in a wide temperature range including room temperature is used. Here, the magnetic transition temperature is
This is the temperature at which a magnetic phase transition occurs, and is the critical temperature at which the spin of a magnetic atom changes from disordered to ordered. The magnetic material of the present invention is preferably a magnetic material whose resistance near the magnetic transition temperature contains a large resistance component due to critical magnetic scattering. Here, critical magnetic scattering is a phenomenon in which conduction electrons are unusually scattered due to large spin fluctuations in the critical state.Generally, specific resistance is a temperature at which the resistance component due to critical magnetic scattering becomes maximum. Specific resistance with a peak at a certain magnetic transition temperature-
Shows temperature characteristics. The vicinity of the magnetic transition temperature is a temperature range where the fluctuation of the spin is large, that is, a temperature range where the resistance component due to the critical magnetic scattering is greatly changed by the magnetic field applied to the magnetic material from the outside.
The magnetic material of the present invention is a magnetic material whose resistance value contains a large amount of resistance component due to critical magnetic scattering near the magnetic transition temperature, and is applied to the magnetic material from outside by performing magnetic detection near the magnetic transition temperature. It is preferable to use a magnetic material in which the resistance component due to the critical magnetic scattering changes significantly due to the applied magnetic field, that is, a magnetic material that produces a large magnetoresistance effect.

【0009】また、酸化物磁性体は一般式ABO3
だし、Aは3価の元素、またはアルカリ土類金属であ
る。
The oxide magnetic material has the general formula ABO 3 , where A is a trivalent element or an alkaline earth metal.

【0010】BはFe,Co,Ni,Cr,Mn等の磁
性元素である。で表わされるものを用いることが好まし
い。本発明に用いられる酸化物磁性体は、具体的には、
(La,Ca)1Mn1y,(La,Sr)1Mn1y,Bi1
Mn1y,Ba1Fe1y,Sr1Co1y,(La,A)1
1y(AはBa,Sr,Pb,Cdの少なくとも1つの
元素、BはMn,Coの少なくとも1つの元素)、(L
a,A)111y(Aは少なくとも1種以上の希土類
元素、Bは少なくとも1種以上のアルカリ土類元素、C
はFe,Co,Mn,Ni,Cr,Coの少なくとも1
つの元素)、[(Pr,Nd),(Ba,Sr)]1Mn
1y,(Bi,Ca)1Mn1y,La1(M,Mn)1
y(MはCo,Ni,Cu,Crの少なくとも1つの元
素)、Gd1(Co,Mn)1y,A1(Fe,B)1y(A
はBa,Ca,Srの少なくとも1つの元素、BはM
o,Mnの少なくとも1つの元素)、Bi1Cr1y,C
1Ru1y,A1(B,C)1y(AはBa,Ca,S
r,Pbの少なくとも1つの元素、BはNi,Mn,C
r,Feの少なくとも1つの元素、CはW,Sb,Mo,U
の少なくとも1つの元素)、(Sr,La)1(C,D)1
Oy(CはCo,Niの少なくとも1つの元素、DはN
b,Sb,Taの少なくとも1つの元素で、yは2.7
〜3.3とする。)であることが好ましい。ここで、(A
B)とはAまたはBの少なくとも一方を含むという意味
である。
B is a magnetic element such as Fe, Co, Ni, Cr and Mn. It is preferable to use those represented by The oxide magnetic material used in the present invention is, specifically,
(La, Ca) 1 Mn 1 O y , (La, Sr) 1 Mn 1 O y , Bi 1
Mn 1 O y , Ba 1 Fe 1 O y , Sr 1 Co 1 O y , (La, A) 1 B
1 O y (A is at least one element of Ba, Sr, Pb and Cd, B is at least one element of Mn and Co), (L
a, A) 1 B 1 C 1 O y (A is at least one or more rare earth elements, B is at least one or more alkaline earth elements, C
Is at least one of Fe, Co, Mn, Ni, Cr, and Co.
Elements), [(Pr, Nd), (Ba, Sr)] 1 Mn
1 O y , (Bi, Ca) 1 Mn 1 O y , La 1 (M, Mn) 1 O
y (M is at least one element of Co, Ni, Cu, Cr), Gd 1 (Co, Mn) 1 O y , A 1 (Fe, B) 1 O y (A
Is at least one element of Ba, Ca and Sr, and B is M
o, Mn), Bi 1 Cr 1 O y , C
a 1 Ru 1 O y , A 1 (B, C) 1 O y (A is Ba, Ca, S
r, at least one element of Pb, B is Ni, Mn, C
r, at least one element of Fe, C is W, Sb, Mo, U
At least one element of), (Sr, La) 1 (C, D) 1
Oy (C is at least one element of Co and Ni, D is N
at least one element of b, Sb and Ta, and y is 2.7
To 3.3. ) Is preferable. Where (A
B) means that it contains at least one of A and B.

【0011】さらに、本発明は、基板上に形成した酸化
物磁気抵抗効果膜と、これの膜面方向に電流を流す手段
と発生電圧を検出する手段とを有し、酸化物磁気抵抗効
果膜が磁界を感じたときの抵抗値の変化によって磁気を
検出する磁気検出素子を提供するものである。このため
には、基板上の酸化物磁気抵抗効果膜に、膜面内長手方
向に電流を流すための2つの電流端子と、この時に発生
する電圧を検出するための2つの電圧端子を形成する。
さらに、これを支持体上に固定して、電流供給源及び電
圧検出手段に接続する。このようにして、磁界を外部か
ら酸化物磁気抵抗効果膜に印加すると、印加磁界の大き
さに応じて電圧端子間に発生する電圧が変化し、これに
よって磁界を検出することが出来る。上記端子は、電流
端子と電圧端子が同じものであってもかまわない。この
時の電圧変化率は、従来技術による磁気抵抗効果素子に
比べて一桁以上大きい−50%にも及ぶ値である。ま
た、酸化物磁性体の比抵抗は室温ではおおよそ10〜1
00ミリオームセンチメートルであり、発生する電圧の
絶対値も従来の磁気抵抗素子に比べて2桁以上大きな値
となる。このため、SN比の良い磁気検出素子が得られ
る。また、素子動作時の電流値を数十マイクロアンペア
程度にまで小さくすることができるので、電極部での発
熱をおさえることができ、かつ、発熱等による磁気抵抗
効果膜の劣化という問題点が解決される。
The present invention further comprises an oxide magnetoresistive film formed on a substrate, means for flowing a current in the direction of the film surface, and means for detecting a generated voltage. Is to provide a magnetic detection element that detects magnetism by a change in resistance value when a magnetic field is sensed. For this purpose, two current terminals for flowing a current in the longitudinal direction in the film plane and two voltage terminals for detecting a voltage generated at this time are formed in the oxide magnetoresistive film on the substrate. .
Further, it is fixed on a support and connected to a current supply source and a voltage detecting means. When a magnetic field is applied to the oxide magnetoresistive film from the outside in this manner, the voltage generated between the voltage terminals changes according to the magnitude of the applied magnetic field, whereby the magnetic field can be detected. The terminal may have the same current terminal and voltage terminal. The voltage change rate at this time is a value that is at least -50% larger than that of the magnetoresistance effect element according to the related art. The specific resistance of the oxide magnetic material is approximately 10 to 1 at room temperature.
00 milliohm-centimeters, and the absolute value of the generated voltage is at least two orders of magnitude larger than that of the conventional magnetoresistive element. For this reason, a magnetic detection element having a good SN ratio can be obtained. In addition, since the current value during element operation can be reduced to about several tens of microamps, heat generation at the electrode part can be suppressed, and the problem of deterioration of the magnetoresistive film due to heat generation is solved. Is done.

【0012】また、本発明を磁気記録装置に用いるため
には、次のようにする。本発明による少なくとも酸化物
磁気抵抗効果膜を有する磁気検出素子に、電流を供給す
るための手段と、素子の電圧を検出するための手段を接
続し、上記磁気検出素子とは別の磁気信号を磁気記録媒
体に書き込むための素子、いわゆる記録用磁気ヘッドを
同一の支持体上に設置する。支持体は、制御部によって
制御された駆動系により、磁気記録媒体の所定の位置に
磁気記録を書き込み、または読み取りが出来るようにす
る。これにより、高密度大容量で小型の磁気記録装置が
実現可能となる。
In order to use the present invention in a magnetic recording apparatus, the following is performed. A means for supplying a current and a means for detecting a voltage of the element are connected to a magnetic detection element having at least an oxide magnetoresistive film according to the present invention, and a magnetic signal different from the magnetic detection element is connected. An element for writing on a magnetic recording medium, a so-called recording magnetic head, is placed on the same support. The support allows a drive system controlled by the control unit to write or read magnetic recording at a predetermined position on the magnetic recording medium. Thus, a high-density, large-capacity, small-sized magnetic recording apparatus can be realized.

【0013】本発明の少なくとも酸化物磁気抵抗効果膜
を有する磁気検出素子は、大型計算機やパーソナルコン
ピューター等の演算システムの記録装置として用いるこ
とが出来る。また、光通信システムや光演算システムの
記録装置や、演算素子としての使用も可能である。
The magnetic sensing element having at least the oxide magnetoresistive film of the present invention can be used as a recording device of an arithmetic system such as a large computer or a personal computer. Further, it can be used as a recording device of an optical communication system or an optical arithmetic system, or as an arithmetic element.

【0014】また本発明の、少なくとも酸化物磁気抵抗
効果膜を有する磁気検出素子は、電磁石によって作られ
た高電磁界を使用する種々のシステム例えば、物理実験
用システム,MRIシステム,リニアモータカーシステ
ム等において、電磁石部分の消耗等による高電磁界の消
失,乱れ等を高感度で検出する保全システムを提供す
る。
The magnetic sensing element of the present invention having at least an oxide magnetoresistive film can be used in various systems using a high electromagnetic field generated by an electromagnet, for example, a physical experiment system, an MRI system, a linear motor car system, and the like. The present invention provides a maintenance system for detecting the disappearance or disturbance of a high electromagnetic field due to wear of an electromagnet portion or the like with high sensitivity.

【0015】本発明の磁気抵抗効果素子の構成の一例
は、酸化マグネシウム基板上に単層磁性膜を作製し、磁
性膜表面に電極を配してなる磁気抵抗効果素子である。
磁性膜は基板に対しエピタキシャルな方位関係で成長し
ていることが望ましい。磁性膜の磁気特性には結晶方位
依存性があるためである。本発明の磁性膜は例えば、L
1-xCaxMnOz のようなペロブスカイト型酸化物磁
性体である。ここでxはカルシウム組成であってx=0
〜〜0.6 である。磁性膜の膜厚は50〜5000Åであ
る。この構成は、その磁気転移温度近傍での大きな磁気
抵抗変化により、高感度の磁気検出を実現するものであ
る。
One example of the configuration of the magnetoresistive element of the present invention is a magnetoresistive element in which a single-layer magnetic film is formed on a magnesium oxide substrate and electrodes are arranged on the surface of the magnetic film.
It is desirable that the magnetic film is grown in an epitaxial orientation relationship with the substrate. This is because the magnetic properties of the magnetic film depend on the crystal orientation. The magnetic film of the present invention is, for example, L
a 1-x Ca x MnO z is a perovskite-type oxide magnetic material. Where x is the calcium composition and x = 0
.About.0.6. The thickness of the magnetic film is 50 to 5000 °. This configuration realizes high-sensitivity magnetic detection by a large change in magnetoresistance near the magnetic transition temperature.

【0016】本発明では第2に、磁気抵抗効果素子を構
成する磁気抵抗効果膜に、磁気抵抗効果膜/酸化物導電
性膜/磁気抵抗効果膜からなる磁気相互作用3層膜を用
いる。ここで、上下の磁気抵抗効果膜の少なくとも一方
は、酸化物磁性体からなる酸化物磁気抵抗効果膜であっ
て、上下の磁気抵抗効果膜の両方が酸化物磁性体である
全酸化物3層膜であっても構わない。ここで、酸化物導
電性膜とは、巨視的に自発磁化を有しない薄膜材料から
なり、磁気秩序を有しないが微視的に磁性スピンを有す
る薄膜材料、あるいは磁気秩序を有するが巨視的に自発
磁化を有しない反強磁性体材料等からなる。このような
磁気抵抗効果膜/酸化物導電性膜/磁気抵抗効果膜から
なる磁気相互作用3層膜とは、中間の酸化物導電性膜を
介した、上下の磁気抵抗効果膜に含まれる磁性元素(例
えば、マンガン,コバルト,鉄など)の間に働く磁気相
互作用を利用して高感度の磁気検出を実現するものであ
る。
Second, in the present invention, a three-layered magnetic interaction film consisting of a magneto-resistance effect film / an oxide conductive film / a magneto-resistance effect film is used as a magneto-resistance effect film constituting a magneto-resistance effect element. Here, at least one of the upper and lower magnetoresistive films is an oxide magnetoresistive film composed of an oxide magnetic material, and both of the upper and lower magnetoresistive films are oxide magnetic materials. It may be a film. Here, the oxide conductive film is made of a thin film material that does not have spontaneous magnetization macroscopically, has no magnetic order but has microscopically magnetic spin, or has a magnetic order but macroscopically It is made of an antiferromagnetic material having no spontaneous magnetization. Such a three-layer magnetic interaction film composed of a magnetoresistive effect film / an oxide conductive film / a magnetoresistive effect film means a magnetic layer contained in upper and lower magnetoresistive films via an intermediate oxide conductive film. It realizes high-sensitivity magnetic detection using magnetic interaction acting between elements (for example, manganese, cobalt, iron, etc.).

【0017】以下では、単層磁性膜内でのスピンの間の
相互作用をスピン間相互作用,空間的に離れた2枚の磁
性膜のスピンの間の相互作用を磁気相互作用として区別
する。磁性膜内には磁性原子のスピンの間にスピン間相
互作用が生じており、これにより磁性膜は、強磁性や反
強磁性を示す。ある一つのスピンの向きを「+」とし、
これと反対の向きのスピンの向きを「−」とすると、そ
れぞれのスピンが「+」と「−」の向きに整列するような
スピン間相互作用が働いたとき、この磁性膜は反強磁性
を示し、「+」と「+」の向きに整列するようにスピン
間相互作用が働いたときは強磁性を示す。しかし、2枚
の磁性膜が、空間的に離れて存在している場合には、本
発明における中間層のような、一方の磁性膜のスピン間
相互作用を他方の磁性膜へ伝えるような役目を果たすも
のが必要となる。この一例が、磁気抵抗効果膜/酸化物
導電性膜/磁気抵抗効果膜3層膜であり、中間の酸化物
導電性膜を介した上下の磁気抵抗効果膜における磁気相
互作用は通常、単層磁性膜内に働くスピン間相互作用よ
り弱く、印加磁場により抵抗は大きく変化し高感度磁気
検出を実現できる。また、中間層を介して2つの磁性膜
間に磁気相互作用が生じている状態では、外部から与え
られた磁界以外の光,圧力,音などの刺激に対しても、
上述の磁気相互作用が高い感度で反応を示す。このよう
な磁気相互作用の生じている状態に電流を流すと、電子
がスピンにより散乱を受け磁気相互作用の変化が電気抵
抗の変化として検出される。本発明の磁気相互作用3層
膜は、上記電気抵抗の変化を利用して、磁界,光,圧
力,音などに対する高感度検出を実現するものである。
In the following, the interaction between spins in a single-layer magnetic film is distinguished as a spin-to-spin interaction, and the interaction between spins of two spatially separated magnetic films is distinguished as a magnetic interaction. In the magnetic film, a spin-spin interaction occurs between the spins of the magnetic atoms, and the magnetic film exhibits ferromagnetism and antiferromagnetism. The direction of one spin is “+”,
Assuming that the opposite spin direction is "-", when a spin-to-spin interaction acts such that the spins are aligned in the "+" and "-" directions, this magnetic film becomes antiferromagnetic. When the spin-to-spin interaction acts so as to be aligned in the directions of “+” and “+”, the film exhibits ferromagnetism. However, when the two magnetic films are spatially separated from each other, they serve to transfer the spin-to-spin interaction of one magnetic film to the other magnetic film, such as the intermediate layer in the present invention. Is required. An example of this is a three-layered magnetoresistive film / oxide conductive film / magnetoresistive film, and the magnetic interaction between upper and lower magnetoresistive films via an intermediate oxide conductive film is usually a single layer. It is weaker than the spin-to-spin interaction acting in the magnetic film, and its resistance is greatly changed by the applied magnetic field, so that highly sensitive magnetic detection can be realized. In addition, in a state where a magnetic interaction occurs between the two magnetic films via the intermediate layer, stimuli such as light, pressure, and sound other than an externally applied magnetic field can be used.
The above-mentioned magnetic interaction shows a reaction with high sensitivity. When a current flows in a state where such magnetic interaction occurs, electrons are scattered by spin, and a change in magnetic interaction is detected as a change in electric resistance. The magnetic interaction three-layer film of the present invention realizes high-sensitivity detection for magnetic fields, light, pressure, sound, and the like by utilizing the change in electric resistance.

【0018】また、磁性膜間の中間酸化物導電性膜は、
微視的に磁性原子を有し巨視的に自発磁化を有しない材
料であって、磁性原子のスピンや電荷に揺らぎのある材
料であることが望ましい。例えば磁気秩序を有しないが
微視的に磁性スピンを有する材料、あるいは磁気秩序を
有するが巨視的に自発磁化を有しない反強磁性体材料な
どがある。磁性膜において、スピンに働く強磁性的な力
の大きさと反強磁性的な力の大きさがほぼ同程度である
場合、1つの原子スピンに着目した場合、この原子スピ
ンは「+」方向と、「−」方向のどちらの方向をとるか
は確定しない。このような状態を、スピンが揺らいでい
る状態という。あるいは、通常スピングラスとも呼ばれ
る状態であってもよい。本発明における磁気相互作用3
層膜は、このような中間酸化物導電性膜のスピンの揺ら
ぎが一方の磁性膜のスピン相互作用を、他方の磁性膜に
伝える作用を有することを利用したものである。
The intermediate oxide conductive film between the magnetic films is
It is desirable to use a material that has microscopically magnetic atoms and does not macroscopically have spontaneous magnetization, and that has a fluctuation in the spin and charge of the magnetic atoms. For example, there is a material having no magnetic order but having a microscopic magnetic spin, or an antiferromagnetic material having a magnetic order but having no macroscopic spontaneous magnetization. In a magnetic film, when the magnitude of the ferromagnetic force acting on the spin and the magnitude of the antiferromagnetic force are almost the same, when focusing on one atomic spin, this atomic spin is in the “+” direction. , "-" Direction is not determined. Such a state is called a state in which the spin fluctuates. Alternatively, it may be in a state usually called a spin glass. Magnetic interaction 3 in the present invention
The layer film utilizes the fact that such fluctuation of the spin of the intermediate oxide conductive film has a function of transmitting the spin interaction of one magnetic film to the other magnetic film.

【0019】中間の酸化物導電性膜は、ペロブスカイト
構造を有する酸化物からなることが好ましい。中間層に
用いられる材料は、一般式Ln12Cu37,A24
310,A23Cu28,A14Cu38, A1
3Cu111,M2-xxCu14(ただし、AはTl,B
i,Pbの少なくとも一つの元素。Bは少なくとも一種
類のアルカリ土類金属。MはLaまたはNdの何れか一
方の元素。NはCeまたはアルカリ土類金属の何れか一
種類の元素。LnはY,希土類金属,3価元素の何れか
一つの元素。wは0.05〜1.00である。)で表わさ
れるものを用いることが好ましい。更に、中間層に用い
られる材料は、具体的には、(La1-xx)Cu24(M
はBa,Ca,Srの少なくとも1つの元素),La1
2Cu37,La2NaCuO4,Bi0.1La1.8Sr
0.1CuO,La2CuO4,La2Ba3LuCu6O,Y
Ba2Cu37,Y2Ba4Cu820,Yb2Ba4Cu7
15,Bi2Sr2CuO6,Bi2Sr2Ca1Cu28
Bi2Sr2Ca2Cu310,Bi2Sr2Ca3Cu4
12,Ba(Pb1-xBix)O3,(Ba1-xx)BiO3
(Bi1-xPdx)2Sr2Ca2Cu3O, B
2Sr2.6Nd0.4CuO8,Tl2Ba2CuO6,Tl2
Ba2Ca1Cu28,Tl2Ba2Ca2Cu310,Tl
1Ba2Ca1Cu26,Tl1Ba2Ca3Cu48,Tl1
3Ca2Cu410,Tl1Sr2Cu3O,(Tl0.5Pb0.5)S
r2Ca2Cu38,Nd1.6Sr0.2Ce0.2CuO4,Pb
2Sr20.5Ca0.5Cu38,(Tl0.75Bi0.25)
1.3(Sr0.5Ca0.5)2.7Cu28、(ただし、xは0.0
5〜1.0とする。)であることが好ましい。ここで、
(AB)とはAまたはBの少なくとも一方を含むという意
味である。
The intermediate oxide conductive film is preferably made of an oxide having a perovskite structure. The material used for the intermediate layer is represented by the general formula Ln 1 B 2 Cu 3 O 7 , A 2 B 4 C
u 3 O 10, A 2 B 3 Cu 2 O 8, A 1 B 4 Cu 3 O 8, A 1 B
3 Cu 1 O 11 , M 2-x N x Cu 1 O 4 (where A is Tl, B
i, at least one element of Pb. B is at least one kind of alkaline earth metal. M is one of La and Nd. N is any one element of Ce or alkaline earth metal. Ln is any one of Y, rare earth metal and trivalent element. w is 0.05 to 1.00. ) Is preferably used. Further, specifically, the material used for the intermediate layer is (La 1-x M x ) Cu 2 O 4 (M
Is at least one element of Ba, Ca and Sr), La 1 B
a 2 Cu 3 O 7 , La 2 NaCuO 4 , Bi 0.1 La 1.8 Sr
0.1 CuO, La 2 CuO 4 , La 2 Ba 3 LuCu 6 O, Y
Ba 2 Cu 3 O 7 , Y 2 Ba 4 Cu 8 O 20 , Yb 2 Ba 4 Cu 7 O
15 , Bi 2 Sr 2 CuO 6 , Bi 2 Sr 2 Ca 1 Cu 2 O 8 ,
Bi 2 Sr 2 Ca 2 Cu 3 O 10 , Bi 2 Sr 2 Ca 3 Cu 4
O 12, Ba (Pb 1- x Bi x) O 3, (Ba 1-x K x) BiO 3,
(Bi 1-x Pd x ) 2 Sr 2 Ca 2 Cu 3 O, B
i 2 Sr 2.6 Nd 0.4 CuO 8 , Tl 2 Ba 2 CuO 6 , Tl 2
Ba 2 Ca 1 Cu 2 O 8 , Tl 2 Ba 2 Ca 2 Cu 3 O 10 , Tl
1 Ba 2 Ca 1 Cu 2 O 6 , Tl 1 Ba 2 Ca 3 Cu 4 O 8 , Tl 1 B
a 3 Ca 2 Cu 4 O 10 , Tl 1 Sr 2 Cu 3 O, (Tl 0.5 Pb 0.5 ) S
r 2 Ca 2 Cu 3 O 8 , Nd 1.6 Sr 0.2 Ce 0.2 CuO 4 , Pb
2 Sr 2 Y 0.5 Ca 0.5 Cu 3 O 8 , (Tl 0.75 Bi 0.25 )
1.3 (Sr 0.5 Ca 0.5 ) 2.7 Cu 2 O 8 (where x is 0.0
5 to 1.0. ) Is preferable. here,
(AB) means that at least one of A and B is included.

【0020】また、中間層は、この中間層に用いられる
材料の温度を下げた場合超電導特性を示す物質であるこ
とが好ましい。本発明者等は、酸化物超電導体と磁性体
を近接させたときの相互作用を調べることは、高温超電
導の発現機構を明らかにする上で重要であると考え、こ
れまで研究を進めてきた。その結果ぺロブスカイト構造
を有するマンガン系の酸化物磁性体であるところの、L
1-xCaxMnOz(LCMO)及びLa1-xSrxMn
z(LSMO)と酸化物高温超電導体 YBa2Cu3
y(YBCO)の間には、有る限られた磁性(x=0.2
〜0.3)の領域においてのみ磁性体中を超電導電流が流
れるという特異な近接効果が起こることを見出した。こ
の現象(近接効果)は、次の3つの点で新しい現象である
といえる。
Further, the intermediate layer is preferably a substance which exhibits superconducting properties when the temperature of the material used for the intermediate layer is lowered. The present inventors have considered that examining the interaction between an oxide superconductor and a magnetic body when approaching it is important in clarifying the mechanism of the manifestation of high-temperature superconductivity, and have been conducting research so far. . As a result, L, which is a manganese-based oxide magnetic material having a perovskite structure,
a 1-x Ca x MnO z (LCMO) and La 1-x Sr x Mn
O z (LSMO) and the oxide high-temperature superconductor YBa 2 Cu 3
O y (YBCO) has some limited magnetism (x = 0.2
It has been found that a peculiar proximity effect that a superconducting current flows in a magnetic material occurs only in the region of 0.3). This phenomenon (proximity effect) can be said to be a new phenomenon in the following three points.

【0021】(1)コヒーレント長をはるかに超えるバリ
ア層を介して超電導電流が流れる。
(1) A superconducting current flows through a barrier layer far exceeding the coherent length.

【0022】(2)半導体的な電気特性のバリア層を酸化
物超電導体で挟むと接合抵抗は金属的な振舞を示す。
(2) When a barrier layer having semiconductor-like electric characteristics is sandwiched between oxide superconductors, the junction resistance exhibits a metallic behavior.

【0023】(3)強磁性と超電導電流が共存している。(3) Ferromagnetic and superconducting currents coexist.

【0024】発明者等は、この特異な現象を解明する研
究を進めるうちに、酸化物超電導体と酸化物磁性体の間
には、室温においても既に磁気的な相互作用が生じてお
り、このため接合抵抗が金属的な特性を示すことを見出
すに至った。この発見により得られた知見をもとに本発
明の磁気相互作用3層膜を得たものである。素子として
の形成が容易であるためには、中間層の膜厚は100〜
2500Åと厚いことが好ましい。酸化物高温超電導体
(YBCO)は、このように厚く形成することができる
酸化物導電性材料である。そして、これは中間の膜に、
上述のスピン揺らぎがある材料を用いたことの効果であ
る。
As the inventors proceed with research to elucidate this peculiar phenomenon, a magnetic interaction has already occurred between the oxide superconductor and the oxide magnetic material even at room temperature. Therefore, it has been found that the junction resistance exhibits metallic characteristics. Based on the knowledge obtained by this discovery, a three-layer magnetic interaction film of the present invention was obtained. In order to facilitate the formation as an element, the thickness of the intermediate layer is 100 to
Preferably, it is as thick as 2500 °. Oxide high temperature superconductor (YBCO) is an oxide conductive material that can be formed in such a large thickness. And this is the intermediate film
This is an effect of using a material having the above-described spin fluctuation.

【0025】一方、中間層を挟む磁性体としては、酸化
物磁性体を用いることが好ましく、特に、ペロブスカイ
ト構造を有する酸化物磁性体を用いることが望ましい。
ここで、酸化物磁性体は、一般式ABO3 ただし、A
は3価の元素、またはアルカリ土類金属である。
On the other hand, as the magnetic material sandwiching the intermediate layer, an oxide magnetic material is preferably used, and particularly, an oxide magnetic material having a perovskite structure is preferably used.
Here, the oxide magnetic material is represented by the general formula ABO 3 where A
Is a trivalent element or an alkaline earth metal.

【0026】BはFe,Co,Ni,Cr,Mn等の磁
性元素である。で表わされるものを用いることが好まし
い。本発明に用いられる酸化物磁性体は、具体的には、
(La,Ca)1Mn1y,(La,Sr)1Mn1y,Bi
1Mn1y,Ba1Fe1y,Sr1Co1y,(La,
A)11y(AはBa,Sr,Pb,Cdの少なくとも
1つの元素、BはMn,Coの少なくとも1つの元
素)、(La,A)111y(Aは少なくとも1種以上の
希土類元素、Bは少なくとも1種以上のアルカリ土類元
素、CはFe,Co,Mn,Ni,Cr,Coの少なく
とも1つの元素)、[(Pr,Nd),(Ba,Sr)]1
1y,(Bi,Ca)1Mn1y,La1(M,Mn)1y
(MはCo,Ni,Cu,Crの少なくとも1つの元
素)、Gd1(Co,Mn)1y、A1(Fe,B)1y(Aは
Ba,Ca,Srの少なくとも1つの元素、BはMo,
Mnの少なくとも1つの元素)、Bi1Cr1y、Ca1
Ru1y、A1(B,C)1y(AはBa,Ca,Sr,P
bの少なくとも1つの元素、BはNi,Mn,Cr,F
eの少なくとも1つの元素、CはW,Sb,Mo,Uの少
なくとも1つの元素)、(Sr,La)1(C,D)1y(C
はCo,Niの少なくとも1つの元素、DはNb,S
b,Taの少なくとも1つの元素で、yは2.7〜3.3
とする。)であることが好ましい。ここで、(AB)とは
AまたはBの少なくとも一方を含むという意味である。
B is a magnetic element such as Fe, Co, Ni, Cr and Mn. It is preferable to use those represented by The oxide magnetic material used in the present invention is, specifically,
(La, Ca) 1 Mn 1 O y , (La, Sr) 1 Mn 1 O y , Bi
1 Mn 1 O y , Ba 1 Fe 1 O y , Sr 1 Co 1 O y , (La,
A) 1 B 1 O y (A is at least one element of Ba, Sr, Pb and Cd, B is at least one element of Mn and Co), (La, A) 1 B 1 C 1 O y (A is At least one or more rare earth elements, B is at least one or more alkaline earth elements, C is at least one element of Fe, Co, Mn, Ni, Cr, Co), [(Pr, Nd), (Ba, Sr)] 1 M
n 1 O y , (Bi, Ca) 1 Mn 1 O y , La 1 (M, Mn) 1 O y
(M is at least one element of Co, Ni, Cu, Cr), Gd 1 (Co, Mn) 1 O y , A 1 (Fe, B) 1 O y (A is at least one element of Ba, Ca, Sr) Element, B is Mo,
At least one element of Mn), Bi 1 Cr 1 O y , Ca 1
Ru 1 O y , A 1 (B, C) 1 O y (A is Ba, Ca, Sr, P
b is Ni, Mn, Cr, F
e, C is at least one element of W, Sb, Mo, U), (Sr, La) 1 (C, D) 1 O y (C
Is at least one element of Co and Ni, and D is Nb, S
b is at least one element of Ta, and y is 2.7 to 3.3.
And ) Is preferable. Here, (AB) means that at least one of A and B is included.

【0027】また、本発明の磁気相互作用3層膜は磁性
膜間に、ペロブスカイト構造の酸化物導電膜からなるカ
ップリング層を有することを特徴とする。ここで、カッ
プリング層とは磁性膜間に磁気相互作用が生じるよう
に、一方の磁性膜のスピンの状態を他方の磁性膜に伝え
る働きをする中間層のことである。本発明に用いた、カ
ップリング層であるところのぺロブスカイト構造を有す
る酸化物導電膜は、スピンの揺らぎを有するものであ
る。本発明者等は、酸化物超電導体を上記カップリング
層として用いることができることを、Mn系酸化物磁性
体La1-x(Sr,Ca)xMnO3を障壁層とし、YBa2
Cu3y(YBCO)でこれを挟んだ3層構造の接合にお
いて、5000Åと厚くかつ強磁性を示す障壁層を通し
て超伝導電流が流れるという近接効果を研究する過程に
おいてこれを見出した。この現象には、La1-x(Sr,
Ca)xMnO3のスピン状態が密接にかかわっている。
YBa2Cu3y/La0.8Sr0.2MnO3(LSMO)
/YBa2Cu3y3層膜と単層のLa0.8Sr0.2Mn
3 膜のMnのスピンの状態の違いを調べるために、強
磁性共鳴(FMR)ピーク幅の温度依存性を調べた。両者
の強磁性共鳴ピーク幅には以下のような顕著な違いが見
られた。LSMO単層膜では温度変化はほとんど見られ
ないが、3層膜の強磁性共鳴ピーク幅は温度に強く依存
し、150K付近で極大を示す。上記ピークの半値幅
は、スピンゆらぎの大きさを表すものであり、酸化物磁
性体が酸化物超電導体と積層されることにより、スピン
の動的性質に変化が生じていることを示す結果である。
本発明は、上記スピン状態の性質に基づいたものであ
る。
Further, the magnetic interaction three-layer film of the present invention is characterized in that a coupling layer formed of an oxide conductive film having a perovskite structure is provided between the magnetic films. Here, the coupling layer is an intermediate layer that functions to transmit the spin state of one magnetic film to the other magnetic film so that magnetic interaction occurs between the magnetic films. The oxide conductive film having a perovskite structure, which is a coupling layer, used in the present invention has spin fluctuations. The present inventors have concluded that an oxide superconductor can be used as the above-mentioned coupling layer by using a Mn-based oxide magnetic material La 1-x (Sr, Ca) x MnO 3 as a barrier layer and using YBa 2
In a process of studying the proximity effect that a superconducting current flows through a thick and ferromagnetic barrier layer having a thickness of 5000 ° in the junction of a three-layer structure sandwiching Cu 3 O y (YBCO), this was found. This phenomenon includes La 1-x (Sr,
The spin state of Ca) x MnO 3 is closely related.
YBa 2 Cu 3 O y / La 0.8 Sr 0.2 MnO 3 (LSMO)
/ YBa 2 Cu 3 O y Three-layer film and single-layer La 0.8 Sr 0.2 Mn
In order to investigate the difference in the spin state of Mn in the O 3 film, the temperature dependence of the ferromagnetic resonance (FMR) peak width was examined. The following remarkable differences were observed between the ferromagnetic resonance peak widths of the two. The LSMO single-layer film shows almost no change in temperature, but the ferromagnetic resonance peak width of the three-layer film strongly depends on the temperature and shows a maximum around 150K. The half width of the peak represents the magnitude of spin fluctuation, and is a result showing that the dynamic properties of spin are changed by stacking the oxide magnetic material with the oxide superconductor. is there.
The present invention is based on the properties of the spin state.

【0028】また、本発明の磁気相互作用3層膜は酸化
物導電性膜を磁気抵抗効果膜ではさんでなる3層構造の
3層膜と、前記磁気相互作用3層膜に電流を与える手段
と、これに発生する電圧を検出する手段とを有すること
を特徴とする。上記磁気相互作用3層膜は、酸化物超電
導体膜を酸化物磁性体膜ではさんだ3層膜を作製したも
のである。従来より、数10オングストローム程度の膜
厚の非超電導層を、超電導体ではさんだ3層構造の素子
が、ジョセフソン素子として知られていたが、本発明に
よる磁気相互作用3層膜は超電導体を非超電導体ではさ
んだ構造を持ち、構造的にもまた原理的にもこれとはま
ったく異なったものである。特に本発明においては、上
記ジョセフソン素子と違い、酸化物超電導体が超電導特
性を示す超電導遷移臨界温度よりも高い温度における、
超電導体の特性を利用することを特徴とする。特に室温
での使用が可能になる。
Further, the magnetic interaction three-layer film of the present invention has a three-layer structure in which an oxide conductive film is sandwiched by a magnetoresistance effect film, and means for applying a current to the magnetic interaction three-layer film. And means for detecting a voltage generated therefrom. The magnetic interaction three-layer film is a three-layer film in which an oxide superconductor film is sandwiched between oxide magnetic films. Conventionally, an element having a three-layer structure in which a non-superconducting layer having a thickness of about several tens of angstroms is sandwiched between superconductors has been known as a Josephson element. It has a structure sandwiched between non-superconductors, and is completely different from this both structurally and in principle. In particular, in the present invention, unlike the Josephson element, at a temperature higher than the superconducting transition critical temperature where the oxide superconductor exhibits superconducting properties,
It is characterized by utilizing characteristics of a superconductor. In particular, it can be used at room temperature.

【0029】また、本発明の磁気相互作用3層膜は酸化
物導電膜を磁気抵抗効果膜ではさんでなる3層膜と、前
記磁気相互作用3層膜に電流を与える手段と、これに発
生する電圧を検出する手段および外部からエネルギーを
与える手段とを有することを特徴とする。磁気相互作用
3層膜に電流を与える手段とは、一定の電流を流すこと
の出来る定電流源であり、金または銀などからなる電極
を通して、電流を供給するものである。この時に発生す
る電圧は、電圧計によってこれをモニターする。電圧を
検出するための端子と、電流を供給するための端子は同
一のものであっても構わない。上記磁気相互作用3層膜
に、外部から電磁波,磁界,光,音,圧力などのエネル
ギーを与えると、スピンの状態が高い感度を有して変化
する。この変化は、電圧の変化として読み取ることが出
来るので、高感度の検出素子としての利用が可能であ
る。また、電流を流したときに発生する電磁波を利用す
るような使用法も可能である。
The magnetic interaction three-layer film of the present invention comprises a three-layer film comprising an oxide conductive film sandwiched between magnetoresistive films, means for applying a current to the three-layer magnetic interaction film, And a means for externally applying energy. The means for supplying a current to the magnetic interaction three-layer film is a constant current source capable of flowing a constant current, and supplies a current through an electrode made of gold or silver. The voltage generated at this time is monitored by a voltmeter. The terminal for detecting the voltage and the terminal for supplying the current may be the same. When energy such as electromagnetic waves, magnetic fields, light, sound, and pressure is externally applied to the three-layer magnetic interaction film, the spin state changes with high sensitivity. Since this change can be read as a change in voltage, it can be used as a highly sensitive detection element. Further, a usage method utilizing an electromagnetic wave generated when a current is applied is also possible.

【0030】さらに、本発明は、基板上に形成した磁気
抵抗効果膜/酸化物導電性膜/磁気抵抗効果膜からなる
磁気相互作用3層膜と、これに電流を流す手段および発
生電圧を検出する手段とを有し、磁気相互作用3層膜が
磁界を感じたときの抵抗値の変化によって磁気を検出す
る磁気検出素子を提供するものである。上記の磁気相互
作用3層膜を磁気検出素子として用いる場合には、以下
のようにしてこれを用いる。磁気相互作用3層膜におい
て、上部磁気抵抗効果膜に対して電流を流すための電極
を設け、電流を供給するための手段に接続する。また、
さらに磁気相互作用3層膜に発生する電圧を検出するた
めの電極と、これを検出するための手段を接続する。上
記素子に対して、膜面に平行な磁場を印加すると、磁気
抵抗効果により発生電圧が変化する。上記発生電圧をモ
ニターすることにより、磁気検出素子としての利用が可
能である。
Further, the present invention provides a three-layer magnetic interaction film composed of a magnetoresistive film, an oxide conductive film and a magnetoresistive film formed on a substrate, means for flowing a current through the film, and detecting a generated voltage. A magnetic sensing element for detecting magnetism by a change in resistance value when the magnetic interaction three-layer film senses a magnetic field. When the three-layer magnetic interaction film is used as a magnetic sensing element, it is used as follows. In the magnetic interaction three-layer film, an electrode for supplying a current to the upper magnetoresistive effect film is provided and connected to a means for supplying a current. Also,
Further, an electrode for detecting a voltage generated in the magnetic interaction three-layer film and a means for detecting the voltage are connected. When a magnetic field parallel to the film surface is applied to the device, the generated voltage changes due to the magnetoresistance effect. By monitoring the generated voltage, it can be used as a magnetic detection element.

【0031】さらに、本発明は、基板上に形成した磁気
抵抗効果膜/酸化物導電性膜/磁気抵抗効果膜からなる
磁気相互作用3層膜と、これの膜面方向に電流を流す手
段と発生電圧を検出する手段とを有し、磁気相互作用3
層膜が磁界を感じたときの抵抗値の変化によって磁気を
検出する磁気検出素子を提供するものである。このため
には、基板上の磁気相互作用3層膜に、膜面内長手方向
に電流を流すための2つの電流端子と、この時に発生す
る電圧を検出するための2つの電圧端子を形成する。さ
らに、これを支持体上に固定して、電流供給源及び電圧
検出手段に接続する。このようにして、磁界を外部から
磁気相互作用3層膜に印加すると、印加磁界の大きさに
応じて電圧端子間に発生する電圧が変化しこれによって
磁界を検出することが出来る。上記端子は、電流端子と
電圧端子が同じものであってもかまわない。この時の電
圧変化率は、従来技術による磁気抵抗素子に比べて一桁
以上大きい−40%にも及ぶ値である。また、酸化物磁
性体の比抵抗は室温ではおおよそ1〜100ミリオーム
センチメートルであり、発生する電圧の絶対値も従来の
磁気抵抗素子に比べて2桁程度大きな値となる。このた
め、SN比の良い磁気検出素子が得られる。また、素子
動作時の電流値を数十マイクロアンペア程度にまで小さ
くすることができるので、電極部での発熱をおさえるこ
とが出来、かつ、発熱等による磁気抵抗膜の劣化という
問題点が解決される。
Further, the present invention provides a three-layered magnetic interaction film composed of a magnetoresistive film, an oxide conductive film and a magnetoresistive film formed on a substrate, and means for flowing a current in the direction of the film surface. Means for detecting the generated voltage.
An object of the present invention is to provide a magnetic detection element that detects magnetism by a change in resistance value when a layer film senses a magnetic field. To this end, two current terminals for flowing a current in the longitudinal direction in the film plane and two voltage terminals for detecting a voltage generated at this time are formed in the magnetic interaction three-layer film on the substrate. . Further, it is fixed on a support and connected to a current supply source and a voltage detecting means. When a magnetic field is externally applied to the magnetic interaction three-layer film in this manner, the voltage generated between the voltage terminals changes according to the magnitude of the applied magnetic field, and the magnetic field can be detected. The terminal may have the same current terminal and voltage terminal. At this time, the voltage change rate is a value that is at least -40% larger than that of the conventional magnetoresistive element by one digit or more. The specific resistance of the oxide magnetic material is approximately 1 to 100 milliohm-cm at room temperature, and the absolute value of the generated voltage is about two orders of magnitude larger than that of the conventional magnetoresistive element. For this reason, a magnetic detection element having a good SN ratio can be obtained. Also, since the current value during the operation of the element can be reduced to about several tens of microamps, it is possible to suppress heat generation at the electrode portion, and to solve the problems of deterioration of the magnetoresistive film due to heat generation. You.

【0032】磁気記録再生装置の高密度大容量化を目的
とした、読み出し・書き込み分離型ヘッドである従来型
磁気抵抗ヘッドは、強磁性薄膜において薄膜の面内方向
に一軸磁気異方性が付与されている場合に、外部磁界が
膜面に対して垂直に印加されると、素子の抵抗が変化す
る現象いわゆる「磁気抵抗効果」を利用したものであ
る。そして、従来型磁気抵抗ヘッドは、磁性膜中で磁化
の方向が異なるときに生じるところの磁壁が移動する際
に発生する、いわゆるバルクハウンゼン雑音の影響を受
けやすいという問題点があった。また、従来型磁気抵抗
ヘッドに用いる強磁性体膜、すなわち磁気抵抗膜には主
としてパーマロイ(Ni−Fe)などの金属強磁性体材
料が用いられているが、これら金属磁性体はその比抵抗
が数十マイクロオームセンチメートルと非常に小さいた
め、高い再生出力を得るためには素子の磁気抵抗膜の膜
厚を数百オングストローム以下の極めて薄いものにする
か、あるいは素子に流す電流値を出来るだけ大きくする
必要がある。しかし、このような薄い膜厚の薄膜を作製
することは困難であり、膜のピンホールによる保磁力の
増大に伴う感度の低下という問題点が有った。また、大
電流を流すことには発熱等により素子の劣化を早めると
いう問題点があった。
A conventional magnetoresistive head, which is a read / write separation type head for the purpose of increasing the density and capacity of a magnetic recording / reproducing apparatus, is provided with uniaxial magnetic anisotropy in the in-plane direction of the ferromagnetic thin film. In such a case, when an external magnetic field is applied perpendicularly to the film surface, the phenomenon that the resistance of the element changes, that is, a so-called “magnetoresistive effect” is used. The conventional magnetoresistive head has a problem that it is susceptible to so-called Barkhausen noise, which is generated when the domain wall moves when the direction of magnetization in the magnetic film is different. Further, a metal ferromagnetic material such as permalloy (Ni-Fe) is mainly used for a ferromagnetic film used for a conventional magnetoresistive head, that is, a magnetoresistive film, and these metal magnetic materials have a specific resistance. Since it is very small, several tens of micro-ohm centimeters, to obtain a high reproduction output, the thickness of the magnetoresistive film of the element must be extremely thin, less than several hundred angstroms, or the current flowing through the element should be as small as possible. Need to be bigger. However, it is difficult to manufacture such a thin film having a small thickness, and there is a problem in that the sensitivity decreases due to an increase in coercive force due to a pinhole in the film. In addition, flowing a large current has a problem that deterioration of the element is accelerated due to heat generation or the like.

【0033】上記問題点を解決するために、上記従来の
単層磁性膜磁気抵抗効果とは異なる現象であるところの
巨大磁気抵抗効果を利用した磁気検出素子が提案され
た。上記巨大磁気抵抗効果とは、強磁性体/非磁性体/
強磁性体のような3層膜あるいは強磁性体/非磁性体か
らなる多層膜において、極めて大きな磁気抵抗効果が現
れる現象である。この現象は、上部と下部の強磁性体が
非磁性層を介して磁気相互作用をするために起こるもの
とされている。しかし、非磁性層の膜厚を、数10オン
グストローム以下に薄くしなければ、巨大磁気抵抗効果
は起こらないため、ピンホール等により素子特性の制御
は困難であった。一方、本発明の磁気相互作用3層膜で
は、中間の酸化物導電性膜を500〜2500Åと厚く
できるため、ピンホール等による素子特性の乱れはな
い。
In order to solve the above problem, there has been proposed a magnetic sensing element utilizing a giant magnetoresistance effect which is a phenomenon different from the above-described conventional single-layer magnetic film magnetoresistance effect. The giant magnetoresistance effect refers to a ferromagnetic material / non-magnetic material /
This is a phenomenon in which an extremely large magnetoresistance effect appears in a three-layer film such as a ferromagnetic material or a multilayer film composed of a ferromagnetic / non-magnetic material. This phenomenon is said to occur because the upper and lower ferromagnetic materials interact magnetically via the nonmagnetic layer. However, unless the thickness of the nonmagnetic layer is reduced to several tens angstroms or less, the giant magnetoresistance effect does not occur, and it is difficult to control the element characteristics due to pinholes and the like. On the other hand, in the magnetic interaction three-layer film of the present invention, the thickness of the intermediate oxide conductive film can be as large as 500 to 2500 °, so that device characteristics are not disturbed by pinholes or the like.

【0034】さらにまた、上記磁気検出素子とは異なる
原理による磁気検出素子に、強磁性トンネル接合素子が
有る。これは、強磁性体薄膜で膜厚数十オングストロー
ムの極めて薄い絶縁物をはさんだもので、高感度かつ高
出力の磁気検出素子として利用が可能である。上記強磁
性トンネリング現象は、極低温でしか起こらないために
磁気検出素子としての応用は困難であったが、本発明に
よればこのような問題は解決し、室温での磁気検出も可
能である。
Further, a ferromagnetic tunnel junction element is a magnetic detection element based on a principle different from the above-described magnetic detection element. This is a ferromagnetic thin film sandwiched between extremely thin insulators having a thickness of several tens of angstroms, and can be used as a high-sensitivity and high-output magnetic detecting element. Since the ferromagnetic tunneling phenomenon occurs only at extremely low temperatures, it has been difficult to apply it as a magnetic detection element. However, according to the present invention, such a problem is solved, and magnetic detection at room temperature is also possible. .

【0035】発明者等は、高温超電導のメカニズムにつ
いての研究を進めるうちに、ぺロブスカイト構造を有す
る酸化物超電導体と酸化物磁性体の間には、1.0 ミク
ロン以上にも及ぶ長距離にわたって磁気相互作用が働く
こと、及びこの磁気相互作用は超電導体が超電導状態に
転移する超電導転移臨界温度より高い温度においても作
用していることを発見した。本発明は、上記の磁気相互
作用を利用し、高感度の磁気検出素子や、これを用いた
高密度大容量の磁気記録装置の実現を可能とするもので
ある。
As the inventors proceeded with research on the mechanism of high-temperature superconductivity, the inventors found that the distance between an oxide superconductor having a perovskite structure and an oxide magnetic material was as long as 1.0 μm or more. It has been discovered that magnetic interaction works and that this magnetic interaction also works at temperatures higher than the superconducting transition critical temperature at which the superconductor transitions to the superconducting state. The present invention makes it possible to realize a high-sensitivity magnetic detection element and a high-density, large-capacity magnetic recording apparatus using the same by using the above magnetic interaction.

【0036】また、本発明は、磁気記録媒体に記録され
た磁気信号を読み取る磁気記録再生装置であって、磁気
相互作用3層膜を有する磁気検出素子を具備し、これが
前記磁気記録媒体に記録された磁気信号を読み取る磁気
記録装置を提供するものである。また、磁気検出素子を
情報が記録された磁気記録媒体に接近させると、磁気記
録媒体からの磁界により、磁気検出素子の検出電圧が変
化し磁気記録媒体に書き込まれた情報を読み取ることが
できる。
The present invention also relates to a magnetic recording / reproducing apparatus for reading a magnetic signal recorded on a magnetic recording medium, comprising a magnetic detecting element having a three-layer film of magnetic interaction, which is recorded on the magnetic recording medium. And a magnetic recording device for reading the magnetic signal. When the magnetic sensing element is brought close to the magnetic recording medium on which information is recorded, the detection voltage of the magnetic sensing element changes due to the magnetic field from the magnetic recording medium, and the information written on the magnetic recording medium can be read.

【0037】また、本発明は、酸化物磁性膜間に超電導
膜を有する磁気相互作用素子の使用方法であって、前記
超電導体の超電導転移臨界温度よりも高い温度で使用す
る磁気相互作用素子の使用方法を提供するものである。
The present invention also relates to a method of using a magnetic interaction element having a superconducting film between oxide magnetic films, wherein the magnetic interaction element is used at a temperature higher than the superconducting transition critical temperature of the superconductor. It provides a method of use.

【0038】本発明の磁気相互作用素子は、大型計算機
やパーソナルコンピューター等の演算システムの記録装
置として用いることが出来る。また、光通信システムや
光演算システムの記録装置や、演算素子としての使用も
可能である。
The magnetic interaction element of the present invention can be used as a recording device of an arithmetic system such as a large computer or a personal computer. Further, it can be used as a recording device of an optical communication system or an optical arithmetic system, or as an arithmetic element.

【0039】また、本発明を磁気記録装置に用いるため
には、次のようにする。本発明による磁気検出素子に電
流を供給するための手段と、素子の電圧を検出するため
の手段を接続し、上記磁気検出素子とは別の磁気信号を
磁気記録媒体に書き込むための素子、いわゆる記録用磁
気ヘッドを同一の支持体上に設置する。支持体は、制御
部によって制御された駆動系により、磁気記録媒体の所
定の位置に磁気記録を書き込み又は読み取りが出来るよ
うにする。これにより、高密度大容量でかつ小型の磁気
記録装置が実現可能となる。
In order to use the present invention in a magnetic recording apparatus, the following is performed. A means for supplying a current to the magnetic detection element according to the present invention and a means for detecting a voltage of the element are connected, and an element for writing a magnetic signal different from the magnetic detection element to a magnetic recording medium, a so-called element. The recording magnetic head is placed on the same support. The support allows the drive system controlled by the control unit to write or read magnetic recording at a predetermined position on the magnetic recording medium. As a result, a high-density, large-capacity and small-sized magnetic recording device can be realized.

【0040】本発明による3層膜を素子に利用する場合
は、超電導体の超電導転移臨界温度よりも高い温度で使
用することが望ましい。この温度範囲においては、発明
者等の発見による特異な磁気相互作用が起きているから
である。本発明を、上記の温度で使用することにより、
従来になく高検出感度でかつ高出力の磁気検出素子を得
ることが出来る。
When the three-layer film according to the present invention is used for a device, it is desirable to use the film at a temperature higher than the superconducting transition critical temperature of the superconductor. This is because a unique magnetic interaction found by the inventors occurs in this temperature range. By using the present invention at the above temperature,
It is possible to obtain a magnetic detection element with a high detection sensitivity and a high output than ever before.

【0041】また本発明の、少なくとも酸化物磁気抵抗
効果膜を有する磁気検出素子は、電磁石によって作られ
た高電磁界を使用する種々のシステム例えば、物理実験
用システム,MRIシステム,リニアモータカーシステ
ム等において、電磁石部分の消耗等による高電磁界の消
失,乱れ等を高感度で検出する保全システムを提供す
る。
The magnetic sensing element of the present invention having at least an oxide magnetoresistive film can be used in various systems using a high electromagnetic field created by an electromagnet, for example, a physical experiment system, an MRI system, a linear motor car system, and the like. The present invention provides a maintenance system for detecting the disappearance or disturbance of a high electromagnetic field due to wear of an electromagnet portion or the like with high sensitivity.

【0042】これらの酸化物磁性膜及び酸化物超電導膜
を、積層して3層構造の積層膜を作製するときは、スパ
ッタリング法,イオンビームスパッタリング法,真空蒸
着法などの作製法を用い、チタン酸ストロンチウム単結
晶基板,酸化マグネシウム単結晶基板,酸化ジルコニウ
ム単結晶基板,硝子基板,シリコン単結晶基板,ガリウ
ムひ素単結晶基板,ガドリニウムガリウムガーネット単
結晶基板等の上に作製する。この時の超電導層の膜厚
は、100オングストローム以上であることが望まし
い。また、各磁性膜と各超電導膜は相互にエピタキシャ
ルな方位関係で成長していることが望ましい。磁気相互
作用の強さには、結晶方位依存性があるためである。3
層膜を作製するときは、基板温度を500から650℃
の間の最適な温度に設定し、酸化性雰囲気(O2,O3
2Oなど)を導入してこれを作製する。膜作製後はO
2 ガスを導入し、自然冷却する。スパッタリング法によ
るときは、所定の組成比の焼結体ターゲットを用い、真
空蒸着法によるときは、金属または所定の組成比の合金
蒸着源を用いる。本発明の磁気抵抗効果素子の構成の一
例は、酸化マグネシウム基板上に磁性膜/酸化物導電性
膜/磁性膜3層膜を作製し、上部磁性膜表面に電極を配
してなる磁気抵抗効果素子である。磁性膜は、La1-x
CaxMnOz ペロブスカイト型酸化物磁性体であり、
酸化物導電性膜はYBa2Cu3y ペロブスカイト型酸
化物導電体である。ここでxはカルシウム組成であって
x=0〜0.6 である。磁性膜の膜厚は50〜5000
Åであり、酸化物導電性膜の膜厚は100〜2500Å
である。この構成は、その磁気転移温度近傍での大きな
磁気抵抗変化により、高感度の磁気検出を実現するもの
である。
When the oxide magnetic film and the oxide superconducting film are laminated to form a three-layer laminated film, a sputtering method, an ion beam sputtering method, a vacuum deposition method or the like is used to form a titanium film. It is formed on a strontium acid single crystal substrate, a magnesium oxide single crystal substrate, a zirconium oxide single crystal substrate, a glass substrate, a silicon single crystal substrate, a gallium arsenide single crystal substrate, a gadolinium gallium garnet single crystal substrate, or the like. At this time, the thickness of the superconducting layer is desirably 100 Å or more. Further, it is desirable that each magnetic film and each superconducting film are grown in an epitaxial orientation relationship with each other. This is because the strength of the magnetic interaction depends on the crystal orientation. 3
When forming a layer film, the substrate temperature should be 500 to 650 ° C.
The temperature is set to the optimal value between the two and the oxidizing atmosphere (O 2 , O 3 ,
N 2 O) is produced. After film production,
2 Introduce gas and cool naturally. When a sputtering method is used, a sintered body target having a predetermined composition ratio is used. When a vacuum evaporation method is used, a metal or an alloy deposition source having a predetermined composition ratio is used. An example of the configuration of the magnetoresistive element of the present invention is a magnetoresistive effect in which a magnetic film / conductive oxide film / three-layer magnetic film is formed on a magnesium oxide substrate and electrodes are arranged on the upper magnetic film surface. Element. The magnetic film is La 1-x
A Ca x MnO z perovskite oxide magnetic material,
The oxide conductive film is a YBa 2 Cu 3 O y perovskite-type oxide conductor. Here, x is a calcium composition, and x = 0 to 0.6. The thickness of the magnetic film is 50 to 5000
、, and the thickness of the oxide conductive film is 100 to 2500Å.
It is. This configuration realizes high-sensitivity magnetic detection by a large change in magnetoresistance near the magnetic transition temperature.

【0043】[0043]

【作用】本発明の磁気検出装置は、上記手段によって、
単純な素子構造を有し、かつ、高感度な磁気検出を実現
する。
According to the magnetic detecting device of the present invention,
It has a simple element structure and realizes highly sensitive magnetic detection.

【0044】すなわち、本発明の磁気抵抗効果膜は、酸
化物磁性体を用いた酸化物磁気抵抗効果膜からなり、磁
気抵抗変化検出用の電流方向と記録媒体あるいは磁界発
生体から漏洩する磁界方向とに依らない等方的磁気抵抗
効果を示し、膜の元素組成を連続的に変化させることに
より、その磁気転移温度を室温を含む広い温度範囲で連
続的に変化できる磁性材料であることを特徴とする。
That is, the magnetoresistive film of the present invention is composed of an oxide magnetoresistive film using an oxide magnetic material. The current direction for detecting a change in magnetoresistance and the direction of a magnetic field leaking from a recording medium or a magnetic field generator. It is a magnetic material that exhibits an isotropic magnetoresistance effect that is independent of temperature and that can continuously change its magnetic transition temperature over a wide temperature range including room temperature by continuously changing the element composition of the film. And

【0045】この素子を記録媒体あるいは磁界発生体に
接近して配置し、記録媒体あるいは磁界発生体から磁気
抵抗効果素子に印加される磁界の大きさを、磁気抵抗効
果膜の磁気抵抗変化として検出する。また、磁気抵抗効
果素子はその磁気転移温度付近で動作させることによ
り、−50%以上の磁気抵抗変化を示し、高感度な磁気
検出を実現することができる。
This element is arranged close to the recording medium or the magnetic field generator, and the magnitude of the magnetic field applied from the recording medium or the magnetic field generator to the magnetoresistive element is detected as a change in the magnetoresistance of the magnetoresistive film. I do. When the magnetoresistive element is operated near its magnetic transition temperature, the magnetoresistive element exhibits a magnetoresistance change of −50% or more, and can realize high-sensitivity magnetic detection.

【0046】[0046]

【実施例】本発明の具体的な実施例を図に添って説明す
る。図1は、記録再生分離型ヘッドを有する磁気記録再
生装置において、磁気検出素子に少なくとも本発明の酸
化物磁気抵抗効果膜を用いた場合の実施例である。記録
再生分離型ヘッドは、本発明の磁気抵抗効果素子を用い
た再生ヘッドと、インダクティブ型の記録用ヘッドおよ
び、漏れ磁界による再生ヘッドの混乱を防止するための
シールド部からなる。ヘッドは基体40上に下部シール
ド32,酸化物磁気抵抗効果膜10,電極20および上
部シールド31からなる再生ヘッドと、下部磁性膜5
2,上部磁性膜51およびこれに起磁力を印加するコイ
ル60からなる記録ヘッドとを形成してなる。このヘッ
ドによって、記録媒体上に信号を書き込み、また記録媒
体から信号を読み取るのである。500〜600℃とい
う高温で酸化物磁気抵抗効果膜を作製した後に、インダ
クティブ型の記録用ヘッドを低温で作製することによ
り、記録再生分離型ヘッドの熱や応力による磁気特性の
乱れを低減できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment in which at least the oxide magnetoresistive film of the present invention is used as a magnetic detecting element in a magnetic recording / reproducing apparatus having a recording / reproducing separation type head. The read / write separation head includes a read head using the magnetoresistive element of the present invention, an inductive write head, and a shield portion for preventing the read head from being disrupted by a leakage magnetic field. The head is composed of a reproducing head comprising a lower shield 32, an oxide magnetoresistive film 10, an electrode 20, and an upper shield 31 on a substrate 40;
2. A recording head including an upper magnetic film 51 and a coil 60 for applying a magnetomotive force to the upper magnetic film 51 is formed. The head writes a signal on the recording medium and reads a signal from the recording medium. By fabricating an inductive recording head at a low temperature after fabricating an oxide magnetoresistive film at a high temperature of 500 to 600 ° C., it is possible to reduce disturbance of magnetic characteristics due to heat and stress of a recording / reproducing separation type head.

【0047】図2は本発明の、少なくとも酸化物磁気抵
抗効果膜を有する磁気抵抗効果素子を用いた、磁気記録
再生装置の再生部分の概念図である。基体40上に、磁
気抵抗効果膜(あるいは酸化物磁気抵抗効果膜/酸化物
導電性膜/酸化物磁気抵抗効果膜3層膜)10および電
極20を形成し、これを記録媒体を有するディスク円盤
71上に位置決めしてに近接し再生を行う。本発明の特
徴は、この磁気抵抗効果素子に少なくとも酸化物磁気抵
抗効果膜を用いることである。このような構成により、
記録媒体上に磁気的に記録された信号は、媒体上に漏れ
磁界80として磁気抵抗効果膜10に達し、−40〜−
50%という大きな磁気抵抗効果によって高感度な再生
出力を得ることができる。
FIG. 2 is a conceptual diagram of a reproducing portion of a magnetic recording / reproducing apparatus using a magnetoresistive element having at least an oxide magnetoresistive film according to the present invention. A magnetoresistive effect film (or oxide magnetoresistive effect film / oxide conductive film / oxide magnetoresistive effect film three-layer film) 10 and an electrode 20 are formed on a base 40, and are formed on a disk disk having a recording medium. Reproduction is performed by positioning on and close to. A feature of the present invention is that at least an oxide magnetoresistive film is used for the magnetoresistive element. With such a configuration,
The signal magnetically recorded on the recording medium reaches the magnetoresistive film 10 as a leakage magnetic field 80 on the medium, and reaches -40 to-.
A high-sensitivity reproduction output can be obtained by a large magnetoresistance effect of 50%.

【0048】図3は本発明の磁気記録再生装置の構成概
念図である。記録媒体を両面に有するディスク円盤71
をスピンドルモータ75で回転させ、アクチュエータ7
3によってヘッドスライダー72を記録媒体のトラック
上に誘導する。ヘッドスライダー上に形成した磁気抵抗
効果素子による再生ヘッド、および記録ヘッドはこの回
転によって記録媒体上に近接して相対運動し、信号を順
次書き込みまたは読み取る。記録信号は信号処理系74
を通じて、記録ヘッドにて媒体上に記録し、再生ヘッド
の出力を信号処理系74を経て記録信号として読み取
る。さらに、再生ヘッドを所望の記録トラック上へ移動
する場合、本発明の再生ヘッドからの高感度な出力を用
いてトラックの位置を検出し、アクチュエータを制御し
て、ヘッドスライダーの位置決めを行うことができる。
FIG. 3 is a conceptual diagram showing the configuration of a magnetic recording / reproducing apparatus according to the present invention. Disk disk 71 having recording media on both sides
Is rotated by the spindle motor 75, and the actuator 7
3, the head slider 72 is guided on the track of the recording medium. The read head and the recording head formed by the magnetoresistive element formed on the head slider move relatively close to the recording medium by this rotation, and write or read signals sequentially. The recording signal is sent to the signal processing system 74.
, The data is recorded on a medium by a recording head, and the output of the reproducing head is read as a recording signal via a signal processing system 74. Furthermore, when the reproducing head is moved onto a desired recording track, the position of the track can be detected by using the high-sensitivity output from the reproducing head of the present invention, and the actuator can be controlled to position the head slider. it can.

【0049】本発明の、磁気抵抗効果素子の構成要素で
ある磁気抵抗効果膜は、例えばLa1-xCaxMnOz
性膜(以下LCMOと略す)からなる。LCMOのスピン
構造を図4に示す。LCMOはペロブスカイト型の結晶
構造を有し、そのスピン構造はマンガンスピンがc−面
内で強磁性的に整列し、非磁性のLa,Ca−O層を介
したc−面間では反強磁性的に整列するものである。つ
まり、LCMOは単体磁性体であって、スピンを有する
Mn−O面と、磁性を持たないLn,Ca−O面が順次
積層し、かつ、隣りあったMn−O面のスピンが互いに
反平行を向いた、磁性層/非磁性層からなる多層構造を
有する系である。また、LCMOの磁化は、マンガンイ
オン間の電子のやり取りに起因した二重交換相互作用に
よって、反強磁性的に整列したマンガンスピンが傾くこ
とによって出現する。そして、出現した磁化の大きさ
は、異なる方向を向いたマンガンスピン間のなす角度に
対応し、スピン間のなす角度が小さいほど磁化は大きく
なる。
[0049] of the present invention, the magnetoresistance effect film is a component of the magnetoresistive element, for example, a La 1-x Ca x MnO z magnetic film (hereinafter abbreviated as LCMO). FIG. 4 shows the spin structure of LCMO. LCMO has a perovskite-type crystal structure, and its spin structure is such that manganese spins are ferromagnetically aligned in the c-plane and antiferromagnetic between the c-planes via the non-magnetic La and Ca-O layers. It is something which is arranged in order. That is, the LCMO is a simple magnetic substance, and the Mn-O surface having spin and the Ln and Ca-O surfaces having no magnetism are sequentially laminated, and the spins of the adjacent Mn-O surface are antiparallel to each other. This is a system having a multilayer structure composed of a magnetic layer and a non-magnetic layer. In addition, the magnetization of LCMO appears when the manganese spins arranged antiferromagnetically tilt due to double exchange interaction caused by the exchange of electrons between manganese ions. The magnitude of the emerged magnetization corresponds to the angle between the manganese spins oriented in different directions. The smaller the angle between the spins, the greater the magnetization.

【0050】本発明の、磁気抵抗効果素子の構成要素で
あるLCMO膜は、イオンビームスパッタ法により、厚
さ0.5mm ,一辺10mmの正方形をしたMgO(100)
単結晶基板上に、磁性膜がc軸配向する条件である基板
温度585℃で作製した。スパッタ用のターゲットに
は、径6インチ,厚さ5mmで、ランタン,カルシウム,
マンガン,酸素からなる焼結体を用いた。スパッタ用イ
オンビームにはキセノンイオンビームを用い、磁性膜作
製時の雰囲気ガス圧はキセノンガス圧が0.10mTor
r、酸素ガス圧が0.15mTorr である。磁性膜作製条
件の詳細を表1に示す。
The LCMO film, which is a component of the magnetoresistive element of the present invention, is made of MgO (100) having a thickness of 0.5 mm and a square of 10 mm on a side by ion beam sputtering.
The substrate was formed on a single crystal substrate at a substrate temperature of 585 ° C. under which the magnetic film was c-axis oriented. The target for sputtering has a diameter of 6 inches and a thickness of 5 mm.
A sintered body composed of manganese and oxygen was used. A xenon ion beam was used as the ion beam for sputtering, and the atmosphere gas pressure when producing the magnetic film was xenon gas pressure of 0.10 mTorr.
r, the oxygen gas pressure is 0.15 mTorr. Table 1 shows details of the conditions for forming the magnetic film.

【0051】[0051]

【表1】 [Table 1]

【0052】作製したLCMO膜はX線回折により結晶
の構造と配向性を評価した。X線回折の結果により、L
CMO膜はc−軸配向膜であり、c−軸長は膜厚に依ら
ない一定値で7.80Å となった。また、LCMO膜の
抵抗率−温度特性及び磁気抵抗効果特性は、4端子法で
測定し、磁気特性は振動試料型マグネットメータで測定
した。磁気抵抗効果特性測定時の磁場方向と磁気抵抗変
化検出用の電流方向との関係は、膜面内に磁場を印加し
磁場方向と電流方向が平行な場合(H)と、膜面内に磁
場を印加し磁場方向と電流方向が直行する場合(H)、
の2通りである。図5(a),(b)に作製したアズデポジ
ションLCMO膜の磁化と比抵抗の温度依存性の例を示
す。図5から分かるように、比抵抗は磁気転移温度近傍
で極大値をとった。磁気転移温度近傍で、比抵抗が極大
値をとるのは臨界状態での大きなスピンのゆらぎのため
に伝導電子が異常に大きい臨界磁気散乱を受けることに
よる。また、図6に、4.2K および200Kにおける
アズデポジションLCMO膜の磁気抵抗効果の磁場依存
性を、磁場方向と電流方向の関係が異なる2つの場合に
ついて示す。図6に示すように、アズデポジションLC
MO膜における磁気抵抗効果は、磁気抵抗変化の比較的
小さい4.2K 、および磁気抵抗変化の大きい200K
のいずれの場合でも1テスラの磁場では飽和せず、磁場
方向と電流方向のなす角度に依らない等方的な磁気抵抗
効果となった。図7にアズデポジションLCMO膜の磁
気抵抗効果の温度依存性の例を示す。比抵抗と同じよう
に、磁気抵抗効果も磁気転移温度近傍で最大値−50%
をとることが分かる。磁気転移温度近傍で磁気抵抗効果
が最大値をとるのは、磁気転移温度近傍はスピンのゆら
ぎの大きい温度領域であって、外部から磁性材料に印加
された磁場によって、臨界磁気散乱による抵抗成分が大
きく変化する温度領域であることによる。また、図8に
膜厚3000ÅのアズデポジションLCMO膜を酸素雰
囲気中で、580℃,2時間の酸素アニール処理をした
アニール処理LCMO膜の磁気抵抗効果の温度依存性を
示す。アニール処理LCMO膜の磁気転移温度は室温で
あり、磁気抵抗変化率は室温で最大値−15%を取る。
このように、アニール処理LCMO膜は室温に大きな磁
気抵抗効果を持ち、室温での高感度な磁気検出が可能で
ある。
The crystal structure and orientation of the produced LCMO film were evaluated by X-ray diffraction. According to the result of X-ray diffraction, L
The CMO film was a c-axis oriented film, and the c-axis length was 7.80 ° at a constant value independent of the film thickness. The resistivity-temperature characteristics and the magnetoresistance effect characteristics of the LCMO film were measured by a four-terminal method, and the magnetic characteristics were measured by a vibrating sample magnetometer. The relationship between the direction of the magnetic field and the direction of the current for detecting a change in the magnetoresistance when measuring the magnetoresistive effect characteristics is determined by applying a magnetic field in the film plane so that the magnetic field direction is parallel to the current direction (H ), and When a magnetic field is applied and the direction of the magnetic field is perpendicular to the direction of the current (H ),
There are two ways. FIGS. 5A and 5B show examples of the temperature dependence of the magnetization and specific resistance of the as-deposited LCMO film manufactured. As can be seen from FIG. 5, the specific resistance has a maximum value near the magnetic transition temperature. In the vicinity of the magnetic transition temperature, the specific resistance takes a maximum value because conduction electrons undergo an abnormally large critical magnetic scattering due to large spin fluctuations in the critical state. FIG. 6 shows the magnetic field dependence of the magnetoresistance effect of the as-deposited LCMO film at 4.2 K and 200 K for two cases where the relationship between the magnetic field direction and the current direction is different. As shown in FIG.
The magnetoresistive effect of the MO film is as follows: 4.2K having a relatively small magnetoresistance change and 200K having a large magnetoresistance change.
In either case, the magnetic field of 1 Tesla did not saturate, and an isotropic magnetoresistance effect independent of the angle between the magnetic field direction and the current direction was obtained. FIG. 7 shows an example of the temperature dependence of the magnetoresistance effect of the as-deposited LCMO film. Like the specific resistance, the magnetoresistance effect has a maximum value of -50% near the magnetic transition temperature.
You can see that The maximum value of the magnetoresistance effect near the magnetic transition temperature is in the temperature region where the spin fluctuation is large near the magnetic transition temperature, and the resistance component due to critical magnetic scattering is given by the magnetic field applied to the magnetic material from the outside. This is because the temperature range changes greatly. FIG. 8 shows the temperature dependence of the magnetoresistive effect of an annealed LCMO film obtained by subjecting an as-deposited LCMO film having a thickness of 3000 ° to oxygen annealing at 580 ° C. for 2 hours in an oxygen atmosphere. The magnetic transition temperature of the annealed LCMO film is room temperature, and the magnetoresistance ratio has a maximum value of −15% at room temperature.
As described above, the annealed LCMO film has a large magnetoresistance effect at room temperature, and enables highly sensitive magnetic detection at room temperature.

【0053】[0053]

【表2】 [Table 2]

【0054】表2に作製したアズデポジションLCMO
膜と、アズデポジションLCMO膜を酸素雰囲気中で、
580℃,2時間の酸素アニール処理をしたアニール処
理LCMO膜の印加磁場1テスラにおける77K,室
温,磁気転移温度(Tc)での磁気抵抗効果特性をまとめ
て示した。アニール処理LCMO膜では、膜中への酸素
の導入により、磁気転移温度は上昇しほぼ室温である。
表2に示すように、アズデポジションLCMO膜では、
磁気転移温度近傍に−50%前後の非常に大きな磁気抵
抗効果が生じる。一方、アニール処理LCMO膜では、
その磁気転移温度が室温へ移動し、室温で−15%前後
の大きな磁気抵抗効果が生じる。以上述べてきたよう
に、LCMO膜では、磁気転移温度付近で磁気検出を行
えば非常に高感度な磁気検出が可能になる。
As-deposition LCMO prepared in Table 2
The film and the as-deposited LCMO film are placed in an oxygen atmosphere.
The magnetoresistance effect characteristics of the annealed LCMO film subjected to oxygen annealing at 580 ° C. for 2 hours at 77 K, room temperature, and magnetic transition temperature (T c ) at an applied magnetic field of 1 Tesla are summarized. In the annealed LCMO film, the magnetic transition temperature rises to approximately room temperature due to the introduction of oxygen into the film.
As shown in Table 2, in the as-deposited LCMO film,
A very large magnetoresistance effect of about -50% occurs near the magnetic transition temperature. On the other hand, in an annealed LCMO film,
The magnetic transition temperature moves to room temperature, and a large magnetoresistance effect of about -15% occurs at room temperature. As described above, in the case of the LCMO film, if the magnetic detection is performed near the magnetic transition temperature, extremely high-sensitivity magnetic detection becomes possible.

【0055】本発明の、磁気抵抗効果素子の構成要素に
3層磁気抵抗効果膜を用いた場合の例は、例えば上下の
磁性膜にLCMO膜、非磁性膜に酸化物超伝導材料YB
2Cu3y膜(以下YBCOと略す)を用いる。磁気
抵抗効果素子の構成要素である多層磁気抵抗効果膜LC
MO/YBCO/LCMO3層膜はイオンビームスパッ
タ法により、前述のLCMO膜の作製方法と同様の方法
で行った。ただし、上下のLCMO膜の膜厚はともに1
500Åに固定し、中間のYBCO層の膜厚(dy)は5
00〜6000Åで変化させた。LCMO膜及びYBC
O膜の作製条件の詳細を表1に示す。ただし、YBCO
膜作製時のターゲットには、径6インチ,厚さ5mmで、
イットリウム,バリウム,銅,酸素からなる焼結体を用
いた。X線回折により、作製したLCMO/YBCO/
LCMO3層膜は各層ともc−軸配向膜であった。ま
た、断面SEM像の観察から、作製したLCMO/YBCO
/LCMO3層膜は中間の酸化物導電性YBCO膜の膜
厚が500Åと薄い場合でも、上下の磁気抵抗効果LC
MO膜の間にはピンホールはなかった。3層膜の磁気抵
抗測定,比抵抗測定,磁化測定等は、LCMO単層膜と
同様の方法で行った。図9にdy=1200Å の場合の
LCMO/YBCO/LCMO3層膜の比抵抗の温度依
存性を、LCMO単層膜とともに示す。LCMO/YB
CO/LCMO3層膜の比抵抗には、約30Kに超伝導の影
響が見られた。また、LCMO/YBCO/LCMO3層膜
の磁気抵抗効果はLCMO単層膜と同様に、1テスラの
磁場では飽和せず磁場方向と電流方向のなす角度に依ら
ない等方的な磁気抵抗効果となった。図10にdy=5
00Å,1500Å,2500Åの場合のLCMO/Y
BCO/LCMO3層膜の印加磁場1テスラにおける磁
気抵抗変化率の温度依存性を、LCMO単層膜とともに
示す。図10に示すように、LCMO/YBCO/LCMO
3層膜の磁気抵抗効果は、磁化が飽和した140K以下
ではLCMO単層膜に比べ増幅され、そして中間のYB
CO層の膜厚が薄くなるに従って増幅は大きくなる。図
11にLCMO/YBCO/LCMO3層膜の印加磁場
1テスラ,温度77Kにおける磁気抵抗変化率のYBC
O層の膜厚(dy)依存性を示す。図11に示すように、
LCMO/YBCO/LCMO3層膜の磁気抵抗効果
は、中間のYBCO層の膜厚が薄くなるに従って大きく
なり、中間のYBCO層の膜厚を厚くしていった場合に
は、2500Å付近を境に急峻に減少する。また、図1
2に温度77Kにおけるdy=500Å ,1500Å,
2500Åの場合のLCMO/YBCO/LCMO3層
膜の磁化の磁場依存性を示す。図12から、磁化の飽和
する飽和磁界は中間のYBCO層の膜厚が薄くなるに従
って大きくなる。これらの結果は、厚さ2500ÅのY
BCO層を介した2つのLCMO層間に磁気的な相互作
用が及んでいることを示している。以上述べてきたよう
に、LCMOの磁化が飽和した温度以下では、LCMO
/YBCO/LCMO3層膜の磁気抵抗効果はLCMO
単層膜に比べて増幅され高感度な磁気検出が可能であ
る。
In the case where a three-layered magnetoresistive film is used as a component of the magnetoresistive element of the present invention, for example, the upper and lower magnetic films are LCMO films, and the nonmagnetic film is an oxide superconductive material YB.
An a 2 Cu 3 O y film (hereinafter abbreviated as YBCO) is used. Multilayer magnetoresistive film LC which is a component of magnetoresistive element
The MO / YBCO / LCMO three-layer film was formed by an ion beam sputtering method in the same manner as the above-described method for producing the LCMO film. However, the thicknesses of the upper and lower LCMO films are both 1
The thickness of the intermediate YBCO layer (d y ) is 5
It varied between 00 and 6000 °. LCMO film and YBC
Table 1 shows details of the conditions for forming the O film. However, YBCO
The target at the time of film production is 6 inches in diameter and 5 mm in thickness.
A sintered body composed of yttrium, barium, copper, and oxygen was used. LCMO / YBCO /
Each of the LCMO three-layer films was a c-axis oriented film. The observation of the cross-sectional SEM image shows that the LCMO / YBCO
The / LCMO3 layer film has an upper and lower magnetoresistive effect LC even when the thickness of the intermediate oxide conductive YBCO film is as thin as 500 °.
There were no pinholes between the MO films. Magnetoresistance measurement, specific resistance measurement, magnetization measurement, and the like of the three-layer film were performed in the same manner as the LCMO single-layer film. FIG. 9 shows the temperature dependence of the specific resistance of the LCMO / YBCO / LCMO three-layer film when d y = 1200 °, together with the LCMO single-layer film. LCMO / YB
The effect of superconductivity was observed at about 30K on the specific resistance of the CO / LCMO three-layer film. In addition, the magnetoresistance effect of the LCMO / YBCO / LCMO three-layer film is not saturated with a magnetic field of 1 Tesla and is an isotropic magnetoresistance effect independent of the angle between the magnetic field direction and the current direction, like the LCMO single-layer film. Was. Dy = 5 in FIG.
LCMO / Y for 00, 1500 and 2500
The temperature dependence of the magnetoresistance ratio of the BCO / LCMO three-layer film at an applied magnetic field of 1 Tesla is shown together with the LCMO single-layer film. As shown in FIG. 10, LCMO / YBCO / LCMO
The magnetoresistive effect of the three-layer film is amplified below that of the LCMO single-layer film below 140K where the magnetization is saturated, and the intermediate YB
The amplification increases as the thickness of the CO layer decreases. FIG. 11 shows the YBC of the magnetoresistance ratio of the LCMO / YBCO / LCMO three-layer film at an applied magnetic field of 1 Tesla and a temperature of 77K.
The graph shows dependency on the thickness (d y ) of the O layer. As shown in FIG.
The magnetoresistance effect of the LCMO / YBCO / LCMO three-layer film increases as the thickness of the middle YBCO layer decreases, and when the thickness of the middle YBCO layer increases, the steepness starts at around 2500 °. To decrease. FIG.
2, d y = 500 °, 1500 ° at a temperature of 77K,
The magnetic field dependence of the magnetization of the LCMO / YBCO / LCMO three-layer film at 2500 ° is shown. As shown in FIG. 12, the saturation magnetic field at which the magnetization is saturated increases as the thickness of the intermediate YBCO layer decreases. These results indicate that the 2500 mm thick Y
This shows that a magnetic interaction is exerted between the two LCMO layers via the BCO layer. As described above, below the temperature at which the magnetization of LCMO is saturated, LCMO
/ YBCO / LCMO 3 layer film has a magnetoresistive effect of LCMO
Higher sensitivity magnetic detection is possible compared to a single layer film.

【0056】[0056]

【表3】 [Table 3]

【0057】また、表3に作製したアズデポジション3
層膜およびアニール処理3層膜の印加磁場1テスラにお
ける、77K,室温,磁気転移温度(Tc)の磁気抵抗効
果特性をまとめて示した。ただし、アニール処理は、酸
素雰囲気中で、580℃,2時間の酸素アニール処理で
ある。表3に示したように、アニール処理3層膜の室温
における磁気抵抗変化率は−6.4% と大きく、室温で
の高感度な磁気検出が可能である。
The as-deposition 3 prepared in Table 3
The magnetoresistance effect characteristics at 77 K, room temperature, and magnetic transition temperature (T c ) of the layer film and the three-layer film subjected to the annealing treatment at an applied magnetic field of 1 Tesla are shown. However, the annealing is an oxygen annealing at 580 ° C. for 2 hours in an oxygen atmosphere. As shown in Table 3, the magnetoresistance change of the three-layered annealing film at room temperature is as large as -6.4%, and high-sensitivity magnetic detection at room temperature is possible.

【0058】図13は、記録再生分離型ヘッドを有する
磁気記録再生装置において、磁気検出素子に少なくとも
本発明の酸化物磁気抵抗効果膜を用いた場合の実施例で
ある。記録再生分離型ヘッドは、本発明の磁気抵抗効果
素子を用いた再生ヘッドと、インダクティブ型の記録用
ヘッドおよび、漏れ磁界による再生ヘッドの混乱を防止
するためのシールド部からなる。ヘッドは基体40上に
下部磁性膜52,上部磁性膜51およびこれに起磁力を
印加するコイル60からなる記録ヘッドを形成し、その
後に下部シールド32,酸化物磁気抵抗効果単層膜(あ
るいは酸化物磁気抵抗効果膜/酸化物導電性膜/酸化物
磁気抵抗効果膜3層膜)10,電極20および上部シー
ルド31からなる再生ヘッドを形成する。
FIG. 13 shows an embodiment in which at least the oxide magnetoresistive film of the present invention is used as a magnetic detecting element in a magnetic recording / reproducing apparatus having a recording / reproducing separation type head. The read / write separation head includes a read head using the magnetoresistive element of the present invention, an inductive write head, and a shield portion for preventing the read head from being disrupted by a leakage magnetic field. As the head, a recording head including a lower magnetic film 52, an upper magnetic film 51, and a coil 60 for applying a magnetomotive force to the substrate is formed on a substrate 40, and then a lower shield 32, an oxide magnetoresistive single-layer film (or an oxide film). A read head composed of a magnetoresistive film / oxide conductive film / oxide magnetoresistive film three-layer film) 10, an electrode 20, and an upper shield 31 is formed.

【0059】[0059]

【発明の効果】本発明によれば、高感度の磁気検出能力
を有し、かつ、単純な素子構造を有する磁気抵抗効果膜
を得ることができる。
According to the present invention, it is possible to obtain a magnetoresistive film having a high sensitivity for magnetic detection and a simple element structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の酸化物磁気抵抗効果膜を用いた磁気記
録再生装置の実施例を示す図である。
FIG. 1 is a diagram showing an embodiment of a magnetic recording / reproducing apparatus using an oxide magnetoresistive film of the present invention.

【図2】本発明の酸化物磁気抵抗効果膜を用いた磁気記
録再生装置の再生部分の概念図である。
FIG. 2 is a conceptual diagram of a reproducing portion of a magnetic recording / reproducing apparatus using the oxide magnetoresistive film of the present invention.

【図3】本発明の磁気記録再生装置の構成概念図であ
る。
FIG. 3 is a conceptual diagram of a configuration of a magnetic recording / reproducing apparatus of the present invention.

【図4】Mn酸化物磁性体LCMOのスピン構造を示す
図である。
FIG. 4 is a diagram showing a spin structure of a Mn oxide magnetic material LCMO.

【図5】LCMO単層膜の磁化と比抵抗の温度依存性を
示す図である。
FIG. 5 is a diagram showing temperature dependence of magnetization and specific resistance of an LCMO single layer film.

【図6】LCMO単層膜の磁気抵抗効果の磁場依存性を
示す図である。
FIG. 6 is a diagram showing the magnetic field dependence of the magnetoresistance effect of an LCMO single layer film.

【図7】LCMO単層膜の磁気抵抗効果の温度依存性を
示す図である。
FIG. 7 is a diagram showing the temperature dependence of the magnetoresistance effect of the LCMO single layer film.

【図8】アニール処理LCMO単層膜の磁気抵抗効果の
温度依存性を示す図である。
FIG. 8 is a diagram showing the temperature dependence of the magnetoresistance effect of the annealing LCMO single layer film.

【図9】LCMO/YBCO/LCMO3層膜の比抵抗
の温度依存性を示す図である。
FIG. 9 is a diagram showing the temperature dependence of the specific resistance of the LCMO / YBCO / LCMO three-layer film.

【図10】LCMO/YBCO/LCMO3層膜および
LCMO単層膜の磁気抵抗効果の温度依存性を示す図で
ある。
FIG. 10 is a diagram showing the temperature dependence of the magnetoresistance effect of the LCMO / YBCO / LCMO three-layer film and the LCMO single-layer film.

【図11】LCMO/YBCO/LCMO3層膜の磁気
抵抗効果のYBCO層膜厚依存性を示す図である。
FIG. 11 is a diagram showing the dependence of the magnetoresistance effect of the LCMO / YBCO / LCMO three-layer film on the thickness of the YBCO layer.

【図12】LCMO/YBCO/LCMO3層膜の磁化
の磁場依存性を示す図である。
FIG. 12 is a diagram showing the magnetic field dependence of the magnetization of the LCMO / YBCO / LCMO three-layer film.

【図13】本発明の酸化物磁気抵抗効果膜を用いた磁気
記録再生装置の実施例を示す図である。
FIG. 13 is a view showing an embodiment of a magnetic recording / reproducing apparatus using the oxide magnetoresistive film of the present invention.

【符号の説明】[Explanation of symbols]

10…酸化物磁気抵抗効果膜(あるいは酸化物磁気抵抗
効果膜/酸化物導電性膜/酸化物磁気抵抗効果膜3層
膜)、20…電極、31…上部シールド、32…下部シ
ールド、40…基体、51…磁気記録用上部磁気抵抗効
果膜、52…磁気記録用下部磁気抵抗効果膜、60…コ
イル、71…ディスク円盤、72…ヘッドスライダー、
73…アクチュエータ、74…信号処理系、75…スピ
ンドルモータ、80…漏れ磁界。
10 ... Oxide magnetoresistive film (or oxide magnetoresistive film / oxide conductive film / oxide magnetoresistive film 3 layer film), 20 ... electrode, 31 ... upper shield, 32 ... lower shield, 40 ... Substrate, 51: Upper magnetoresistive film for magnetic recording, 52: Lower magnetoresistive film for magnetic recording, 60: Coil, 71: Disk, 72: Head slider,
73 ... actuator, 74 ... signal processing system, 75 ... spindle motor, 80 ... leakage magnetic field.

フロントページの続き (72)発明者 菅家 庸子 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 小園 裕三 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (56)参考文献 特開 昭61−77115(JP,A) 特開 平4−269878(JP,A) 特開 昭61−159778(JP,A) 特開 平6−140687(JP,A) 特開 平4−287381(JP,A) 特開 平3−105807(JP,A) 特開 平5−63249(JP,A) 小園裕三他,Mn系酸化物磁性体の超 伝導近接効果,日本応用磁気学会研究会 資料,Vol.75,pp.29−35 Appl.Phys.Lett.,V ol.64,No.22(1994,pp.3045 −3047 Phys.Rev.Lett.,Vo l.71,No.14(1993),pp.2331 −2333 Appl.Phys.Lett.,V ol.62,No.7(1993)pp.780 −782 Appl.Phys.Lett.,V ol.63,No.14(1993),pp. 1990−1992 Sov.J.Temp.Phys., Vol.16,No.12(1990),pp. 896−898 Physica B,Vol.155 (1989),pp.362−365 (58)調査した分野(Int.Cl.7,DB名) H01L 43/08 G01R 33/09 G11B 5/39 H01F 10/18 H01L 43/10 JICSTファイル(JOIS)Continued on the front page (72) Inventor Yoko Sugaya 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Yuzo Kozo 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Shares (56) References JP-A-61-77115 (JP, A) JP-A-4-269878 (JP, A) JP-A-61-159778 (JP, A) JP-A-6-140687 (JP, A) JP-A-4-287381 (JP, A) JP-A-3-105807 (JP, A) JP-A-5-63249 (JP, A) Yuzo Kozono et al. Conduction Proximity Effect, Japan Society of Applied Magnetics Research Group, Vol. 75, pp. 29-35 Appl. Phys. Lett. , Vol. 64, no. 22 (1994, pp. 3045-3047 Phys. Rev. Lett., Vol. 71, No. 14 (1993), pp. 2331-2333 Appl. Phys. Lett., Vol. 62, No. 7 (1993). Pp. 780-782 Appl. Phys. Lett., Vol. 63, No. 14 (1993), pp. 1990-1992 Sov. J. Temp. Phys., Vol. 16, No. 12 (1990), pp. 896-898 Physica B, Vol. 155 (1989), pp. 362-365 (58) Fields investigated (Int. Cl. 7 , DB name) H01L 43/08 G01R 33/09 G11B 5/39 H01F 10 / 18 H01L 43/10 JICST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 以下の材料からなる群から選ばれたいずれ
か1種からなる磁気抵抗効果膜を備えた磁気抵抗効果型
ヘッド。Bi1Mn1y,Ba1Fe1y,Sr1Co1
y,(La,A)1Co1y(但し、AはBa,Pb,Cd
の少なくとも1つの元素)、 (La,A)111y(但し、Aは少なくとも1種以上
の希土類元素、Bは少なくとも1種以上のアルカリ土類
元素、CはFe,Co,Mn,Ni,Cr,Coの少な
くとも1つの元素)、 [(Pr,Nd),(Ba,Sr)]1Mn1y,(Bi,C
a)1Mn1y,La1(M,Mn)1y(但し、MはCo,
Ni,Cu,Crの少なくとも1つの元素)、 Gd1(Co,Mn)1y、A1(Fe,B)1y(但し、A
はBa,Ca,Srの少なくとも1つの元素、BはM
o,Mnの少なくとも1つの元素)、 Bi1Cr1y、Ca1Ru1y、A1(B,C)1y(但
し、AはBa,Ca,Sr,Pbの少なくとも1つの元
素、BはNi,Mn,Cr,Feの少なくとも1つの元
素、CはW,Sb,Mo,Uの少なくとも1つの元素)、 (Sr,La)1(C,D)1y(但し、CはCo,Niの
少なくとも1つの元素、DはNb,Sb,Taの少なく
とも1つの元素で、yは2.7〜3.3とする)、Fe
、YFeO、CrF、NiF
1. A magnetoresistive head comprising a magnetoresistive film made of any one selected from the group consisting of the following materials. Bi 1 Mn 1 O y , Ba 1 Fe 1 O y , Sr 1 Co 1 O
y , (La, A) 1 Co 1 O y (where A is Ba, Pb, Cd
(La, A) 1 B 1 C 1 O y (where A is at least one or more rare earth elements, B is at least one or more alkaline earth elements, C is Fe, Co, At least one element of Mn, Ni, Cr, Co), [(Pr, Nd), (Ba, Sr)] 1 Mn 1 O y , (Bi, C
a) 1 Mn 1 O y , La 1 (M, Mn) 1 O y (where M is Co,
At least one element of Ni, Cu, and Cr), Gd 1 (Co, Mn) 1 O y , and A 1 (Fe, B) 1 O y (where A
Is at least one element of Ba, Ca and Sr, and B is M
o, Mn), Bi 1 Cr 1 O y , Ca 1 Ru 1 O y , A 1 (B, C) 1 O y (where A is at least one of Ba, Ca, Sr, Pb) Element, B is at least one element of Ni, Mn, Cr, Fe, C is at least one element of W, Sb, Mo, U), (Sr, La) 1 (C, D) 1 O y (however, C is at least one element of Co and Ni, D is at least one element of Nb, Sb and Ta, and y is 2.7 to 3.3), Fe
2 O 3 , YFeO 3 , CrF 3 , NiF 2
【請求項2】請求項1に記載の材料からなる第1の磁気
抵抗効果膜および第2の磁気抵抗効果膜と、前記第1の
磁気抵抗効果膜と第2の磁気抵抗効果膜との間に形成さ
れるペロブスカイト構造の酸化物導電膜とを有すること
を特徴とする磁気抵抗効果型ヘッド。
2. A first magneto-resistance effect film and a second magneto-resistance effect film made of the material according to claim 1, and between the first and second magneto-resistance effect films. And an oxide conductive film having a perovskite structure formed on the substrate.
【請求項3】請求項2に記載の磁気抵抗効果型ヘッドに
おいて、前記ペロブスカイト構造の酸化物導電膜は、Y
とBaとCuとOとを含有する材料からなることを特徴
とする磁気抵抗効果型ヘッド。
3. The magnetoresistive head according to claim 2, wherein the oxide conductive film having a perovskite structure is formed of Y.
A magnetoresistive head comprising a material containing Si, Ba, Cu and O.
【請求項4】請求項1から3のいずれか1項に記載の磁
気ヘッドを搭載した磁気記録装置。
4. A magnetic recording apparatus equipped with the magnetic head according to claim 1.
JP02097593A 1993-02-09 1993-02-09 Magnetoresistive element and magnetic recording / reproducing device Expired - Fee Related JP3345072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02097593A JP3345072B2 (en) 1993-02-09 1993-02-09 Magnetoresistive element and magnetic recording / reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02097593A JP3345072B2 (en) 1993-02-09 1993-02-09 Magnetoresistive element and magnetic recording / reproducing device

Publications (2)

Publication Number Publication Date
JPH06237022A JPH06237022A (en) 1994-08-23
JP3345072B2 true JP3345072B2 (en) 2002-11-18

Family

ID=12042170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02097593A Expired - Fee Related JP3345072B2 (en) 1993-02-09 1993-02-09 Magnetoresistive element and magnetic recording / reproducing device

Country Status (1)

Country Link
JP (1) JP3345072B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE383663T1 (en) * 1998-03-27 2008-01-15 Nat Inst Of Advanced Ind Scien APPLICATION OF A MAGNETORESISTANCE WITH ORDERED DOUBLE-PEROVSKI TEST STRUCTURE AND ITS PRODUCTION PROCESS
JP3097667B2 (en) 1998-06-30 2000-10-10 日本電気株式会社 Magnetic sensing element
JP3235572B2 (en) 1998-09-18 2001-12-04 日本電気株式会社 Magneto-resistance effect element, magneto-resistance effect sensor and system using them
JP4536210B2 (en) * 2000-05-23 2010-09-01 独立行政法人科学技術振興機構 Method for producing grain-free magnetoresistive material

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett.,Vol.62,No.7(1993)pp.780−782
Appl.Phys.Lett.,Vol.63,No.14(1993),pp.1990−1992
Appl.Phys.Lett.,Vol.64,No.22(1994,pp.3045−3047
Phys.Rev.Lett.,Vol.71,No.14(1993),pp.2331−2333
Physica B,Vol.155(1989),pp.362−365
Sov.J.Temp.Phys.,Vol.16,No.12(1990),pp.896−898
小園裕三他,Mn系酸化物磁性体の超伝導近接効果,日本応用磁気学会研究会資料,Vol.75,pp.29−35

Also Published As

Publication number Publication date
JPH06237022A (en) 1994-08-23

Similar Documents

Publication Publication Date Title
US5989690A (en) Magnetoresistance effect film, a method of manufacturing the same, and magnetoresistance effect device
US7116532B2 (en) Stability-enhancing underlayer for exchange-coupled magnetic structures, magnetoresistive sensors, and magnetic disk drive systems
EP0681338B1 (en) Magnetoresistance effect device and magnetoresistance effect type head, memory device, and amplifying device using the same
US5373238A (en) Four layer magnetoresistance device and method for making a four layer magnetoresistance device
US6387550B1 (en) Giant magnetoresistive material film, method of producing the same and magnetic head using the same
US20020101692A1 (en) Magnetic devices with perpendicular exchange biasing
Brug et al. Magnetic recording head materials
JP3697369B2 (en) Magnetic element, magnetic memory device, magnetoresistive head, magnetic head gimbal assembly, and magnetic recording system
KR100321956B1 (en) Magnetoresistance effect film and method for making the same
US5942309A (en) Spin valve magnetoresistive device
JP3344712B2 (en) Pinning layer for magnetic devices
JP3946355B2 (en) Magnetic element, magnetic sensor and magnetic storage device using the same
JP2956299B2 (en) Magnetic detecting element, energy detecting element, and energy detecting method
JP2025013618A (en) Magnetic Sensor
JP3345072B2 (en) Magnetoresistive element and magnetic recording / reproducing device
US6590268B2 (en) Magnetic control device, and magnetic component and memory apparatus using the same
US20020084453A1 (en) Hybrid oxide heterostructures and devices
JP2003318462A (en) Magnetoresistance effect element and magnetic head and magnetic memory using the element
JP2000357828A (en) Ferromagnetic oxide and magnetoresistance element wherein the same is used
JP2004200459A (en) Tunnel magnetoresistance effect element, magnetic head, magnetic recording device and magnetic memory
CN100369117C (en) Oxide giant magnet resistor spin valve, preparing process and its use
JPH097832A (en) Oxide magnetic material and magnetic detecting element using the material
Portier et al. Influence of current density on the magnetization process in active spin-valve elements
JP2000306375A (en) Magnetoresistance effect element and magnetic memory device
JP2000150236A (en) Switched connection film, magnetoresistive effect element, magnetoresistive effect head and manufacture of the switched connection film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees