[go: up one dir, main page]

JP3344853B2 - Positive active material for non-aqueous lithium secondary battery and lithium secondary battery - Google Patents

Positive active material for non-aqueous lithium secondary battery and lithium secondary battery

Info

Publication number
JP3344853B2
JP3344853B2 JP29783794A JP29783794A JP3344853B2 JP 3344853 B2 JP3344853 B2 JP 3344853B2 JP 29783794 A JP29783794 A JP 29783794A JP 29783794 A JP29783794 A JP 29783794A JP 3344853 B2 JP3344853 B2 JP 3344853B2
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
positive electrode
active material
linio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29783794A
Other languages
Japanese (ja)
Other versions
JPH08138673A (en
Inventor
有一 伊藤
幸雄 平岡
教雄 芳賀
勝明 岡部
明伸 飯川
高 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP29783794A priority Critical patent/JP3344853B2/en
Publication of JPH08138673A publication Critical patent/JPH08138673A/en
Application granted granted Critical
Publication of JP3344853B2 publication Critical patent/JP3344853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水リチウム二次電池
の正極活物質として有効なLiNiO2 粒子と、該粒子
を主成分とする正極板を用いて充放電を高容量化し負荷
特性を向上させたリチウム二次電池に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention includes a valid LiNiO 2 particles as a positive electrode active material for non-aqueous lithium secondary battery, the charge and discharge using the positive electrode plate and high capacity load characteristics composed mainly of particles The present invention relates to an improved lithium secondary battery.

【0002】[0002]

【従来の技術】従来、LiNiO2 を製造する代表的な
技術としては、リチウム化合物とニッケル化合物との混
合物を750℃程度の温度で15時間酸素気流中で焼成
を行って所望のLiNiO2 を合成し、Liインターカ
レーション型の結晶構造を発達させ、リチウムイオンの
移動を容易にして電池容量を高める方法が知られてい
た。
2. Description of the Related Art Conventionally, as a typical technique for producing LiNiO 2 , a mixture of a lithium compound and a nickel compound is calcined at a temperature of about 750 ° C. for 15 hours in an oxygen stream to synthesize a desired LiNiO 2 . However, there has been known a method of developing a Li-intercalation type crystal structure, facilitating the movement of lithium ions, and increasing the battery capacity.

【0003】しかしながらこのような従来の技術にあっ
ては、初期の高容量化のための結晶構造を得る条件(例
えば出発原料や焼成条件)の検討はなされていたが、容
量の再現性が低く、また、二次電池の負荷特性が低い等
の問題があった。
However, in such a conventional technique, conditions (eg, starting materials and firing conditions) for obtaining an initial crystal structure for increasing the capacity have been studied, but the reproducibility of the capacity is low. Also, there are problems such as low load characteristics of the secondary battery.

【0004】[0004]

【発明が解決しようとする課題】上述のように、従来の
製造法によって得られた正極活物質には、得られた物質
の初期容量の再現性が悪い等の問題があり、LiNiO
2 を正極活物質として用いる非水リチウム二次電池にお
いて、初期容量の再現性を確保することと、負荷特性の
高い新規な正極活物質を開発することが望まれていた。
As described above, the positive electrode active material obtained by the conventional manufacturing method has problems such as poor reproducibility of the initial capacity of the obtained material.
In a non-aqueous lithium secondary battery using 2 as a positive electrode active material, it was desired to ensure reproducibility of the initial capacity and to develop a new positive electrode active material having high load characteristics.

【0005】[0005]

【課題を解決するための手段】本発明者等は斯かる課題
を解決するために鋭意研究した結果、従来公知のLiN
iO2 粉末であっても、細孔容積がある特定範囲のもの
であれば負荷特性が向上することを見いだし、本発明を
提供することができた。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, a conventionally known LiN
Even with iO 2 powder, it was found that the load characteristics were improved if the pore volume was within a certain range, and the present invention could be provided.

【0006】 すなわち、本発明の第一は、ニッケル源
として粒径3μm以上の水酸化ニッケルを使用して製し
た細孔容積が0.01〜0.04ml/gの範囲内にあ
るLiNiO粒子からなることを特徴とする非水リチ
ウム二次電池用正極活物質であり、第二は、ニッケル源
として比表面積50m/g以上かつ粒径3μm以上の
水酸化ニッケルを使用して製した細孔容積が0.01〜
0.04ml/gの範囲内にあるLiNiO粒子から
なることを特徴とする非水リチウム二次電池用正極活物
質であり、第三は、第一または第二に記載のLiNiO
粒子を導電剤および結着剤と混練して成形した成形体
を正極板として用いてなることを特徴とするリチウム二
次電池である。
That is, a first aspect of the present invention is a LiNiO 2 particle having a pore volume in the range of 0.01 to 0.04 ml / g produced using nickel hydroxide having a particle size of 3 μm or more as a nickel source. A second active material is a positive electrode active material for a non-aqueous lithium secondary battery characterized by comprising nickel hydroxide having a specific surface area of 50 m 2 / g or more and a particle size of 3 μm or more as a nickel source. Pore volume is 0.01 ~
A positive electrode active material for a non-aqueous lithium secondary battery, comprising LiNiO 2 particles in the range of 0.04 ml / g.
A lithium secondary battery characterized in that a molded body formed by kneading two particles with a conductive agent and a binder is used as a positive electrode plate.

【0007】[0007]

【作用】電池内のリチウムの移動をモデル的に見ると、
非水系の二次電池の場合は、充電時に正極活物質からリ
チウムが抜け出て電解液または電解質を通って負極に析
出する。放電時にはこの逆の変化が生じるが、これらの
時、リチウムはイオンあるいは錯体などの化合物の状態
で移動すると考えられている。
[Function] Looking at the movement of lithium in the battery as a model,
In the case of a non-aqueous secondary battery, lithium escapes from the positive electrode active material during charging and deposits on the negative electrode through the electrolyte or the electrolyte. At the time of discharge, the reverse change occurs. At these times, lithium is considered to move in a state of a compound such as an ion or a complex.

【0008】LiNiO2 活物質粉末は一次粒子の集ま
った二次粒子の構造を有し、その一次粒子は不完全では
あるが1個のLiNiO2 結晶粒子であると考えられて
おり、充放電にともない一次粒子内のリチウムは結晶格
子のインターカレーションした層をイオンの状態で固体
拡散により移動する。
[0008] The LiNiO 2 active material powder has a structure of secondary particles in which primary particles are gathered, and the primary particles are considered to be imperfect but one LiNiO 2 crystal particles, and are used for charging and discharging. The lithium in the primary particles migrates through the intercalated layer of the crystal lattice in the state of ions by solid diffusion.

【0009】この場合、一次粒子間には多少とも空間が
あり電解液か電解質が保持されるので液を満たした細孔
と考えられている。正極は、この活物質、導電剤、結着
剤および電解質を含む三次構造と考えられ、一般には一
次粒子内と三次粒子内外での移動において特性の良否の
検討がなされている。
In this case, since there is some space between the primary particles and the electrolyte or the electrolyte is held, it is considered that the pores are filled with the solution. The positive electrode is considered to have a tertiary structure including the active material, the conductive agent, the binder, and the electrolyte. In general, the quality of the transfer between the primary particles and the inside and outside of the tertiary particles is examined.

【0010】充放電時のリチウムの移動は、二次粒子中
の空間での液体拡散を伴うことから、細孔容積が大きな
影響を与えることが容易に推定でき、この場合、細孔容
積が大きくなれば電解液量が多くなり、物質移動を促進
する。
Since the movement of lithium during charge and discharge involves liquid diffusion in the space in the secondary particles, it can be easily estimated that the pore volume has a large effect. In this case, the pore volume becomes large. As the amount of electrolyte increases, mass transfer is promoted.

【0011】しかしながら、容積がより大きくなれば、
一次粒子の充填が疎となるため、体積当りエネルギー量
が低下するため自ずから上限が求められる。細孔容積が
0.04ml/g以上となれば、二次粒子そのものの密度は
20%以上低下してしまうことから、本発明において経
験的に求めた適正な細孔容積の範囲が0.01〜0.0
4ml/gであり、より好ましくは0.015〜0.03ml
/gである。
However, if the volume becomes larger,
Since the filling of the primary particles is sparse, the amount of energy per volume is reduced, so an upper limit is naturally determined. If the pore volume is 0.04 ml / g or more, the density of the secondary particles themselves decreases by 20% or more. Therefore, the range of the appropriate pore volume empirically obtained in the present invention is 0.01%. ~ 0.0
4 ml / g, more preferably 0.015 to 0.03 ml
/ g.

【0012】この場合、細孔容積は、ガス吸着法の吸着
・脱離等温線によって求めることが望ましく、従来の水
銀圧入式では、測定時に粉末間の空間も測定されてしま
うので粉粒子内の正確な測定と評価が困難である。
In this case, the pore volume is desirably determined by the adsorption / desorption isotherm of the gas adsorption method. In the conventional mercury intrusion method, the space between the powders is measured at the time of measurement, so that the space between the powders is not measured. It is difficult to measure and evaluate accurately.

【0013】本発明の製造法について、従来法と対比し
ながら説明する。一般にLiNiO2 の製造において、
ニッケル原料成分とリチウム原料成分とを混合し、加熱
により反応を行うが、必要によって粉砕を行う。この場
合、ニッケル原料としては水酸化物、塩基性炭酸塩、オ
キシ水酸化物、酸化物が使用可能とされており、リチウ
ム原料としては水酸化物が代表的である。
The production method of the present invention will be described in comparison with a conventional method. Generally, in the production of LiNiO 2 ,
The nickel raw material component and the lithium raw material component are mixed and reacted by heating, and pulverization is performed if necessary. In this case, hydroxides, basic carbonates, oxyhydroxides, and oxides can be used as nickel raw materials, and hydroxides are typical as lithium raw materials.

【0014】更に焼成時の反応性を高め、結果として得
られるLiNiO2 粉末を電池用活物質として良好な結
晶相とするため、ニッケルとリチウムの成分が相互に微
細かつ均質に分散することが望ましいと考えられてい
る。
In order to further enhance the reactivity during firing and to make the resulting LiNiO 2 powder a good crystalline phase as a battery active material, it is desirable that the components of nickel and lithium be finely and homogeneously dispersed in each other. It is believed that.

【0015】従って、従来法においては、ニッケル原料
とリチウム原料とを有機溶剤中で微粉砕・混合すること
によって、平均粒径が1μm前後の混合原料を得、これ
を乾燥した後、500℃程度の温度で仮焼し、圧密成形
するが、LiNiO2 の焼成温度を750℃前後とする
ことが多い。
Therefore, according to the conventional method, a nickel raw material and a lithium raw material are finely pulverized and mixed in an organic solvent to obtain a mixed raw material having an average particle size of about 1 μm. , And compaction molding, but the firing temperature of LiNiO 2 is often around 750 ° C.

【0016】上記のように水酸化ニッケルと水酸化リチ
ウムを用いた公知条件での試作品の容積は、0.005
ml/g程度であり、このようなLiNiO2 は二次粒子内
の電解液量が少なく負荷特性が劣っていた。
As described above, the volume of a prototype under known conditions using nickel hydroxide and lithium hydroxide is 0.005.
It was about ml / g, and such LiNiO 2 had a small amount of electrolyte in the secondary particles and was inferior in load characteristics.

【0017】この対策として、二次粒子径を小さくする
ことも考えられるが、その結果充填性が低下するので電
池としての容量が低下してしまう。
As a countermeasure to this, it is conceivable to reduce the secondary particle diameter, but as a result, the filling property is reduced, and the capacity of the battery is reduced.

【0018】本発明法において使用するリチウム原料は
公知の塩でよいが、水酸化リチウムで充分であり、Li
NiO2 は焼成によりニッケル原料を母胎として成長す
る。従って細孔を制御するには、Ni原料の特性が重要
である。
The lithium raw material used in the method of the present invention may be a known salt, but lithium hydroxide is sufficient.
NiO 2 grows from the nickel raw material by firing. Therefore, to control the pores, the characteristics of the Ni raw material are important.

【0019】この場合、水酸化ニッケルは比表面積50
m2/g以上の範囲のものを3μm以上の粒径で用いて、L
i原料と混合して用いることが効果的である。
In this case, nickel hydroxide has a specific surface area of 50.
m 2 / g or more with a particle size of 3 μm or more,
It is effective to use the mixture with the i raw material.

【0020】焼成条件として750℃付近の温度および
10〜20時間の保持時間で、酸化雰囲気、好ましくは
酸素気流中にて熱処理することは公知であるが、本発明
法においてはやや高温の条件で焼成できた。但し、細孔
容積が0.01〜0.04ml/gの範囲内のものであれ
ば、上記以外の温度で焼成することも可能である。
It is known that the heat treatment is carried out in an oxidizing atmosphere, preferably in an oxygen gas stream, at a temperature of about 750 ° C. and a holding time of 10 to 20 hours as a firing condition. It could be fired. However, if the pore volume is in the range of 0.01 to 0.04 ml / g, it is possible to perform firing at a temperature other than the above.

【0021】原料中のリチウムは、焼成によりその0.
5%程度が揮発するので、必要ならば、前もってこの分
を多く計量するとよい。焼成後の外観は黒色塊状となる
が、正極活物質として使用するにはこの塊を解砕して分
級する。
[0021] Lithium in the raw material is reduced to 0.1 by firing.
Since about 5% is volatilized, if necessary, it is advisable to measure this amount in advance. The appearance after firing becomes a black mass, but this mass is crushed and classified for use as a positive electrode active material.

【0022】一般に電池用の正極活物質粉末としては、
その成形方式や条件から、また短絡や保存中の放電を防
ぐ理由から、経験的に、その粒径が1μm以上100μ
m以下の範囲内のものが適切であるとされている。尚、
上記塊の解砕と分級には一般的な装置を使用できる。
Generally, as a positive electrode active material powder for a battery,
Empirically, from the molding method and conditions, and from the reason of preventing short-circuiting and discharge during storage, the particle size is from 1 μm to 100 μm.
Those within the range of m or less are considered appropriate. still,
A common device can be used for crushing and classifying the above-mentioned mass.

【0023】リチウム原料とニッケル原料の成分比が、
モル比においてLi/Ni=1/1でなくても、Li/
Ni=1±0.05/1の範囲内であれば、電池特性に
おいて同程度の結果が得られ、少量の添加物を用いた場
合であっても、その結果が本発明の効果と同様であれば
本発明の範囲に含まれる。
When the component ratio of the lithium raw material and the nickel raw material is
Even if the molar ratio is not Li / Ni = 1/1, Li / Ni
When Ni is within the range of 1 ± 0.05 / 1, the same result is obtained in the battery characteristics. Even when a small amount of additive is used, the result is the same as the effect of the present invention. If present, it is included in the scope of the present invention.

【0024】このようにして得られたLiNiO2 を正
極活物質として用い、これに導電剤としてケッチェンブ
ラック、結着剤としてポリテトラフルオロエチレン(P
TFE)を重量比で87:8:5の割合で加えて混練
し、2ton/cm2 の圧力で直径18mmの円盤状に加圧成形
を行った。
The thus obtained LiNiO 2 was used as a positive electrode active material, Ketjen black was used as a conductive agent, and polytetrafluoroethylene (P) was used as a binder.
TFE) was added at a weight ratio of 87: 8: 5, kneaded, and pressed into a disk having a diameter of 18 mm at a pressure of 2 ton / cm 2 .

【0025】この加圧成形体を図1に示す試験セル内の
正極2として用い、負極4には厚さ0.7mmのリチウム
金属を切り抜いたものを用いた。図中のセパレーター3
にはポリプロピレンのフィルムを切り抜いたものを使用
し、電解液には、プロピレンカーボネート(PC)と
1,2−ジメトキシエタン(DME)の体積比1:1の
混合液に6フッ化リン酸リチウム(LiPF6 )を1mo
l/l の濃度に溶解させたものを用いた。この場合、電解
液としては他の溶剤を用いてもよい。
This pressed product was used as the positive electrode 2 in the test cell shown in FIG. 1, and the negative electrode 4 was made by cutting out a 0.7 mm thick lithium metal. Separator 3 in the figure
A polypropylene film cut out is used as the electrolyte, and a mixture of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) at a volume ratio of 1: 1 is used as an electrolyte. LiPF 6 ) 1mo
A solution dissolved at a concentration of l / l was used. In this case, another solvent may be used as the electrolytic solution.

【0026】本発明リチウム二次電池では、充電電圧の
上限は4.2Vに設定すると共に、充放電容量について
の測定においては、2回目までの充放電容量は再現性が
低いので1mAで充放電した後に、3回目の充放電で容量
を測定し、充電容量に対する放電容量の比率にて良否を
比較した。この比率が高いほうが負荷特性が高いものと
判定した。尚、実施例1〜4において、3回目の0.2
Cでの放電容量は比較例より10%程高い170〜18
0mAH/g であることが判明した。
In the lithium secondary battery of the present invention, the upper limit of the charging voltage is set to 4.2 V, and in the measurement of the charging and discharging capacity, the charging and discharging capacity up to the second time is low in reproducibility. After that, the capacity was measured in the third charge / discharge, and the quality was compared by the ratio of the discharge capacity to the charge capacity. The higher this ratio, the higher the load characteristics. In Examples 1 to 4, the third 0.2
The discharge capacity at C is 170 to 18 which is about 10% higher than that of the comparative example.
It was found to be 0 mAH / g.

【0027】以下、実施例をもって本発明を詳細に説明
するが、本発明の範囲はこれらに限定されるものではな
い。
Hereinafter, the present invention will be described in detail with reference to examples, but the scope of the present invention is not limited thereto.

【0028】[0028]

【実施例1】原料として平均粒径1.5μmのLiOH
・H2 Oと、表1に示すように平均粒径を0.8、3.
5、5.2、7.2の4種からなる水酸化ニッケルをモ
ル比でLi/Ni=1.005/1となるように秤量
し、これらの粉末を液中で混合し、スプレードライヤー
で乾燥・造粒し、ふるい分けを行って約27μmの混合
粉末を得た(第1工程)。
EXAMPLE 1 LiOH having an average particle size of 1.5 μm as a raw material
-H 2 O, and as shown in Table 1, the average particle size is 0.8;
Nickel hydroxide consisting of four types of 5, 5.2, and 7.2 is weighed so that the molar ratio of Li / Ni is 1.005 / 1, and these powders are mixed in a liquid, and sprayed with a spray drier. The mixture was dried, granulated, and sieved to obtain a mixed powder of about 27 μm (first step).

【0029】[0029]

【表1】 [Table 1]

【0030】次いで、これらの混合粉を酸素気流中76
5℃で6時間熱処理を行い、焼成物を得た。
Next, these mixed powders were placed in an oxygen stream at 76.degree.
Heat treatment was performed at 5 ° C. for 6 hours to obtain a fired product.

【0031】次いで得られた焼成物を乳鉢内で粉砕する
ことによってLiNiO2 の粉末と成したものを分級し
たところ、表1に示す細孔容積を有することが判明し
た。得られたこれらの粉末をXRD測定したところ、従
来報告されている同形のパターンを得ると共に、LiN
iO2 以外の相は確認されなかった(図示せず)。
Next, the obtained calcined product was pulverized in a mortar to form a powder of LiNiO 2. The powder was classified and found to have the pore volume shown in Table 1. When the obtained powders were subjected to XRD measurement, the same pattern as previously reported was obtained.
No phases other than iO 2 were identified (not shown).

【0032】このようにして得られたLiNiO2 を正
極活物質として用い、これに導電剤としてケッチェンブ
ラック、結着剤としてポリテトラフルオロエチレンを重
量比で87:8:5の割合で混練して、2ton/cm2 の圧
力で直径18mmの円盤状に加圧成形を行った。
The thus obtained LiNiO 2 is used as a positive electrode active material, and Ketjen black as a conductive agent and polytetrafluoroethylene as a binder are kneaded at a ratio of 87: 8: 5 by weight. Then, pressure molding was performed at a pressure of 2 ton / cm 2 into a disk having a diameter of 18 mm.

【0033】この加圧成形体を図1に示す試験セル内の
正極として用い、負極4には厚さ0.7mmのリチウム金
属を切り抜いたものを用いた他、セパレーター3には、
ポリプロピレンのフィルムを切り抜いたものを、電解液
には、プロピレンカーボネート(PC)と1,2−ジメ
トキシエタン(DME)の体積比1:1の混合液に6フ
ッ化リン酸リチウム(LiPF6 )を1.0mol/l の濃
度に溶解させたものを用いた。
This pressed product was used as a positive electrode in the test cell shown in FIG. 1, a negative electrode 4 was obtained by cutting out a 0.7 mm thick lithium metal, and a separator 3 was used as a separator 3.
The polypropylene film was cut out, and lithium hexafluorophosphate (LiPF 6 ) was used as an electrolyte in a mixed solution of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) at a volume ratio of 1: 1. A solution dissolved at a concentration of 1.0 mol / l was used.

【0034】表1に示すLiNiO2 粉末を用いて、そ
れぞれ別個の正極体を作成して図1の試験セルに組み入
れ、充放電試験を行い、得られた(1C)と(2C)と
の効率を求め、その結果を表1に併せて示した。
Using the LiNiO 2 powders shown in Table 1, separate positive electrodes were prepared and assembled into the test cell shown in FIG. 1 and subjected to a charge / discharge test. The efficiency of the obtained (1C) and (2C) was obtained. And the results are shown in Table 1.

【0035】この結果、細孔容積が0.01〜0.04
ml/gの範囲に含まれているもの(No.2〜No.4)
が、1C、2C共、72%以上の効率を示していた。
As a result, the pore volume is 0.01 to 0.04
Included in the range of ml / g (No. 2 to No. 4)
However, both 1C and 2C showed an efficiency of 72% or more.

【0036】[0036]

【実施例2】水酸化リチウムと表2に示す平均粒径を有
する水酸化ニッケルとをモル比でLi/Ni=1.00
5/1となるように秤量した。次いで、これらの粉末を
クエン酸を水酸化ニッケルに対して35重量%に調整し
た液中に添加して混合、攪拌しながら60℃で乾固し
た。
EXAMPLE 2 Li / Ni = 1.00 in molar ratio between lithium hydroxide and nickel hydroxide having an average particle size shown in Table 2.
It was weighed to be 5/1. Next, these powders were added to a liquid in which citric acid was adjusted to 35% by weight with respect to nickel hydroxide, mixed, and dried at 60 ° C. with stirring.

【0037】次いで、得られる該乾固物を2cm程の塊に
し、大気気流中350℃にて3時間仮焼したものを60
メッシュパスに粉砕し、該粉砕物を酸素気流中720℃
にて5時間保持した後、続いて770℃にて5時間熱処
理を行った。
Then, the obtained dried product was formed into a lump of about 2 cm, and calcined at 350 ° C. for 3 hours in an air stream to form a lump of 60 cm.
The mixture is crushed into a mesh pass, and the crushed material is placed in an oxygen stream at 720 ° C.
, And then heat-treated at 770 ° C. for 5 hours.

【0038】次いで得られた焼成物を乳鉢内で粉砕する
ことによってLiNiO2 の粉末と成したものをふるい
分けして150メッシュアンダーの粉末を得、これらの
細孔容積を求め表2に示した。
Next, the obtained calcined product was pulverized in a mortar to form a LiNiO 2 powder, which was then sieved to obtain a powder of 150 mesh under.

【0039】[0039]

【表2】 [Table 2]

【0040】このようにして得たLiNiO2 粉末を実
施例1に示す手順で正極と成し、試験セルを作製して充
放電試験を行い、その結果を表2に併せて示したが、実
施例1と同様に細孔容積が0.01〜0.04ml/gの範
囲に入っており、放電条件も1C、2C共72%以上の
効率を有していた。
The thus obtained LiNiO 2 powder was formed into a positive electrode according to the procedure shown in Example 1, a test cell was prepared, and a charge / discharge test was performed. The results are also shown in Table 2. As in Example 1, the pore volume was in the range of 0.01 to 0.04 ml / g, and the discharge conditions had an efficiency of 72% or more for both 1C and 2C.

【0041】[0041]

【実施例3】水酸化リチウム−水和物(LiOH・H2
O)と水酸化ニッケルを700℃で熱処理して得た酸化
ニッケル(NiO)とをモル比においてLi/Ni=
0.97/1とLi/Ni=1.04/1となるように
秤量し、クエン酸をリチウムとニッケルの合量に対して
60重量%添加して水中にて90℃、4時間混合した
後、冷却した。
Example 3 Lithium hydroxide monohydrate (LiOH.H 2
O) and nickel oxide (NiO) obtained by heat-treating nickel hydroxide at 700 ° C. in a molar ratio of Li / Ni =
0.97 / 1 and Li / Ni = 1.04 / 1 were weighed, citric acid was added at 60% by weight based on the total amount of lithium and nickel, and mixed in water at 90 ° C. for 4 hours. Then, it was cooled.

【0042】次いで該混合物を攪拌容器から取り出し
て、乳鉢内で1mm以下に解砕して充分に、乾燥させたも
のを、直径約2cmの塊にして酸素気流中で760℃にて
10時間熱処理を行い、得られた焼成物を実施例1と同
様に処理して正極と成し、充放電試験を行い、その結果
を表3に示した。
Next, the mixture was taken out of the stirring vessel, crushed in a mortar to 1 mm or less, and dried sufficiently to form a lump having a diameter of about 2 cm, and heat-treated at 760 ° C. for 10 hours in an oxygen stream. And the obtained fired product was treated in the same manner as in Example 1 to form a positive electrode. A charge / discharge test was performed. The results are shown in Table 3.

【0043】[0043]

【表3】 [Table 3]

【0044】表3の結果から、本実施例によって得られ
たLiNiO2 粉末も細孔容積が0.01〜0.04ml
/gの範囲内にあり、充放電効率も2Cで80%以上を示
す等特性に優れているものであった。尚、本実施例で用
いた酸化ニッケルの平均径は約12μmのものを用い、
この結果、得られたLiNiO2 粒子の平均径もほぼこ
れと同等の大きさであることを確認した。
From the results shown in Table 3, the LiNiO 2 powder obtained in this example also has a pore volume of 0.01 to 0.04 ml.
/ g, and the charge / discharge efficiency was 80% or more at 2C, and the characteristics were excellent. The average diameter of the nickel oxide used in this example was about 12 μm,
As a result, it was confirmed that the average diameter of the obtained LiNiO 2 particles was almost the same.

【0045】[0045]

【実施例4】約4μmのLiOHと、Coを4%加えた
平均径が約18μmである水酸化ニッケルとをモル比で
Li/Ni+Co=1.005/1となるように秤量
し、少量の水を加えて混合して塊状体と成した。
Example 4 LiOH of about 4 μm and nickel hydroxide having an average diameter of about 18 μm to which Co was added by 4% were weighed such that Li / Ni + Co = 1.005 / 1 in a molar ratio, and a small amount of LiOH was weighed. Water was added and mixed to form a lump.

【0046】次いで、該塊状体を300℃大気雰囲気中
で乾燥した後に、50kg/cm2の圧力で加圧成形したもの
を乳鉢内で解砕して100メッシュパスした粉体の焼成
を、酸素気流中760℃において4時間行った後、機械
的に粉砕して平均径17μmの粉末を得た。
Next, the lump was dried in an air atmosphere at 300 ° C., and then molded under pressure at a pressure of 50 kg / cm 2 , crushed in a mortar, and baked with a 100 mesh-passed powder. After 4 hours at 760 ° C. in an air stream, the mixture was mechanically pulverized to obtain a powder having an average diameter of 17 μm.

【0047】該粉末を用いて実施例1と同様の手順で正
極体を形成して、充放電試験を行ったところ、細孔容積
は0.014ml/gで、充放電効率も1Cにおける効率は
85%、2Cにおける効率は78%であった。
A positive electrode body was formed using the powder in the same procedure as in Example 1, and a charge / discharge test was conducted. The pore volume was 0.014 ml / g, and the charge / discharge efficiency was 1 C. The efficiency at 85% and 2C was 78%.

【0048】[0048]

【比較例1】実施例1と同様にLiOH・H2 OとNi
(OH)2 とをモル比でLi/Ni=1.02/1とな
るように秤量し、これらの粉末をエタノール中で50時
間粉砕・混合したところ、平均径1.8μmの粉末を得
た。
Comparative Example 1 As in Example 1, LiOH.H 2 O and Ni
(OH) 2 was weighed such that Li / Ni = 1.02 / 1 in molar ratio, and these powders were ground and mixed in ethanol for 50 hours to obtain a powder having an average diameter of 1.8 μm. .

【0049】該粉末をを用いて1ton/cm2 の圧力で成形
したものを表4に示すように焼成温度を700℃、72
0℃、750℃と変え、酸素気流中で12時間熱処理を
行った後に粉砕し、7μmの粉末を得た。
The powder was molded at a pressure of 1 ton / cm 2 using the powder, and the firing temperature was 700 ° C. and 72
The temperature was changed to 0 ° C. and 750 ° C., followed by heat treatment in an oxygen stream for 12 hours, followed by pulverization to obtain a 7 μm powder.

【0050】[0050]

【表4】 [Table 4]

【0051】次いで上記粉末を用いて実施例1と同様な
手順で正極体を形成して、充放電試験を行い、その結果
を表4に併せて示した。
Next, a positive electrode body was formed using the above powder in the same procedure as in Example 1, and a charge / discharge test was performed. The results are also shown in Table 4.

【0052】表4から本比較例の細孔容積は、本発明範
囲の0.01ml/g以下であり、放電効率も本発明範囲の
2Cにおける下限値72%より低い値であり、負荷特性
においても劣っていた。
From Table 4, the pore volume of this comparative example is 0.01 ml / g or less in the range of the present invention, and the discharge efficiency is lower than the lower limit of 72% in 2C of the present invention. Was also inferior.

【0053】[0053]

【発明の効果】上述のように、本発明に示す特定細孔容
積範囲のLiNiO2 粒子を用いることにより、負荷特
性の高いリチウム二次電池用正極活物質が得られるよう
になった。
As described above, by using the LiNiO 2 particles having the specific pore volume range shown in the present invention, a positive electrode active material for a lithium secondary battery having high load characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1および比較例1において作製した試験
セルの断面概略図である。
FIG. 1 is a schematic sectional view of a test cell manufactured in Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 正極缶 2 正極 3 セパレーター 4 負極 5 負極缶 6 絶縁パッキン DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Positive electrode 3 Separator 4 Negative electrode 5 Negative electrode can 6 Insulating packing

フロントページの続き (72)発明者 岡部 勝明 東京都千代田区丸の内1丁目8番2号 同和鉱業株式会社内 (72)発明者 飯川 明伸 東京都千代田区丸の内1丁目8番2号 同和鉱業株式会社内 (72)発明者 小林 高 東京都千代田区丸の内1丁目8番2号 同和鉱業株式会社内 (56)参考文献 特開 平6−267539(JP,A) 特開 平6−111822(JP,A) 特開 平5−32968(JP,A) 特開 平1−304663(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 10/40 Continuing from the front page (72) Inventor Katsuaki Okabe 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Akinobu Iikawa 1-2-8 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Takashi Kobayashi 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (56) References JP-A-6-267539 (JP, A) JP-A-6-111822 (JP, A) JP-A-5-32968 (JP, A) JP-A-1-304663 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 H01M 4/02 H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ニッケル源として粒径3μm以上の水酸
化ニッケルを使用して製した細孔容積が0.01〜0.
04ml/gの範囲内にあるLiNiO粒子からなる
ことを特徴とする非水リチウム二次電池用正極活物質。
1. A hydroxyl source having a particle size of 3 μm or more as a nickel source.
The pore volume produced using nickel halide is 0.01 to 0.1.
A positive electrode active material for a non-aqueous lithium secondary battery, comprising LiNiO 2 particles in a range of 04 ml / g.
【請求項2】 ニッケル源として比表面積50m /g
以上かつ粒径3μm以上の水酸化ニッケルを使用して製
した細孔容積が0.01〜0.04ml/gの範囲内に
あるLiNiO粒子からなることを特徴とする非水リ
チウム二次電池用正極活物質。
2. A specific surface area of 50 m 2 / g as a nickel source.
And using nickel hydroxide with a particle size of 3 μm or more
A positive electrode active material for a non-aqueous lithium secondary battery, wherein the positive electrode active material comprises LiNiO 2 particles having a reduced pore volume in the range of 0.01 to 0.04 ml / g.
【請求項3】 請求項1または2に記載のLiNiO
粒子を導電剤および結着剤と混練して成形した成形体を
正極板として用いてなることを特徴とするリチウム二次
電池。
3. LiNiO 2 according to claim 1 or 2
A lithium secondary battery comprising a molded body formed by kneading particles with a conductive agent and a binder as a positive electrode plate.
JP29783794A 1994-11-07 1994-11-07 Positive active material for non-aqueous lithium secondary battery and lithium secondary battery Expired - Fee Related JP3344853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29783794A JP3344853B2 (en) 1994-11-07 1994-11-07 Positive active material for non-aqueous lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29783794A JP3344853B2 (en) 1994-11-07 1994-11-07 Positive active material for non-aqueous lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH08138673A JPH08138673A (en) 1996-05-31
JP3344853B2 true JP3344853B2 (en) 2002-11-18

Family

ID=17851803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29783794A Expired - Fee Related JP3344853B2 (en) 1994-11-07 1994-11-07 Positive active material for non-aqueous lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3344853B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277667A (en) * 2009-08-18 2009-11-26 Sumitomo Chemical Co Ltd Method of manufacturing active material for battery
JP5391934B2 (en) * 2009-09-01 2014-01-15 株式会社豊田中央研究所 Secondary battery and method for manufacturing positive electrode

Also Published As

Publication number Publication date
JPH08138673A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
EP0929111B1 (en) Secondary cell with nonaqueous electrolyte and process for preparing positive active material therefor
JPH11273678A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
JPWO2004030126A1 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP7230515B2 (en) Manufacturing method of positive electrode active material for lithium ion secondary battery, and formed body
JP7271848B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP4235702B2 (en) Positive electrode active material, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same
KR20040052463A (en) Positive plate material and cell comprising it
JP2022174094A (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and compact
JP4344359B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2022174097A (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and compact
CN111009656A (en) Preparation method of rare earth metal doped high-nickel ternary battery positive electrode material
JP2001243949A (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP3709446B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP3355102B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
JPH02139861A (en) Non-aqueous electrolyte secondary battery
JP4163410B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP3578503B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
JP7143611B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery
JP3344853B2 (en) Positive active material for non-aqueous lithium secondary battery and lithium secondary battery
JP3559934B2 (en) Positive active material for non-aqueous lithium secondary battery and lithium secondary battery
JPH10125324A (en) Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof
JP3610439B2 (en) Cathode active material for non-aqueous lithium secondary battery and lithium secondary battery
JP3610440B2 (en) Cathode active material for non-aqueous lithium secondary battery and lithium secondary battery
JP7159588B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and compact

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130830

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees