JP3337802B2 - Direct plating method by metallization of copper(I) oxide colloid - Google Patents
Direct plating method by metallization of copper(I) oxide colloidInfo
- Publication number
- JP3337802B2 JP3337802B2 JP35510993A JP35510993A JP3337802B2 JP 3337802 B2 JP3337802 B2 JP 3337802B2 JP 35510993 A JP35510993 A JP 35510993A JP 35510993 A JP35510993 A JP 35510993A JP 3337802 B2 JP3337802 B2 JP 3337802B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- plating
- acid
- oxide
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Chemically Coating (AREA)
- Electroplating Methods And Accessories (AREA)
- Manufacturing Of Printed Wiring (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、酸化銅(I)コロイド
を含む銅触媒によって触媒付与された非電導性基材表面
上に金属銅を生成させるダイレクトプレーティング方法
に関する。FIELD OF THEINVENTION This invention relates to a direct plating method for producing metallic copper on a non-conductive substrate surface catalyzed by a copper catalyst comprising copper(I) oxide colloid.
【0002】[0002]
【従来の技術】従来、非電導性プラスチック基材上に銅
皮膜を析出させる方法としては、ホルムアルデヒドを用
いた無電解銅めっき浴が工業的に一般に用いられてい
た。例えばプリント回路基板の製造工程においては、無
電解銅めっきを使用してスルーホール内に銅の電導性皮
膜を形成した後に、これを素地として電気銅めっきが施
される。しかしながら、この無電解銅めっき浴には、発
ガン性を有するホルムアルデヒドの使用、分析管理の煩
雑さ、ベールアウト(稼働液体の交換)の必要性、バス
ロード(処理液の単位体積当たりの処理面積)における
制限、微小ホールへの水素ガスのトラップによるボイド
(めっきが施されない部分の発生)の問題、析出速度の
遅さ、コストの高さといった問題点を有している。2. Description of the Prior Art Conventionally, electroless copper plating baths using formaldehyde have been generally used industrially as a method for depositing a copper film on a non-conductive plastic substrate. For example, in the manufacturing process of a printed circuit board, a conductive copper film is formed in a through hole using electroless copper plating, and then electrolytic copper plating is performed using this as a base material. However, this electroless copper plating bath has problems such as the use of formaldehyde, which is carcinogenic, the complexity of analysis management, the need for bail-out (replacement of the working liquid), limitations on bath load (treatment area per unit volume of treatment liquid), the problem of voids (occurrence of non-plated areas) due to the trapping of hydrogen gas in microholes, slow deposition speed, and high cost.
【0003】例えば、関連するプリント基板の製造法の
従来技術としては、特開昭60−213085号に開示
されているプリント基板の製造方法がある。この製法
は、穴あけ、触媒付与、研磨、ドライフィルムを用いて
イメージングした後、無電解銅めっきを用いて銅の電導
性皮膜を形成し、続いて電気銅めっき、はんだめっきを
行うものである。この方法は、無電解銅めっきを用いる
ため、上述したいくつかの問題点を含んでいる。これら
の問題を解決するために、無電解銅めっきを使用しない
方法がいくつか提案されている。これらの方法は通称ダ
イレクトプレーティング法として知られており、大別し
てPd−Sn付与方式、カーボンブラック付与方式およ
び有機電導性皮膜付与方式の3つの方式がある。しかし
ながら、これらの方式によって製造されたプリント配線
基板は、銅箔とめっき皮膜の密着性の問題、耐熱試験の
信頼性等の問題があり、信頼性はまだ充分とは言えな
い。For example, a related prior art method for manufacturing printed circuit boards is disclosed in Japanese Patent Laid-Open Publication No. 60-213085. In this method, after drilling, providing a catalyst, polishing, and imaging using a dry film, a conductive copper film is formed using electroless copper plating, followed by electric copper plating and solder plating. This method involves the use of electroless copper plating, and therefore involves some of the problems mentioned above. In order to solve these problems, several methods that do not use electroless copper plating have been proposed. These methods are commonly known as direct plating methods, and are roughly divided into three types: a Pd-Sn providing method, a carbon black providing method, and an organic conductive film providing method. However, printed wiring boards manufactured by these methods have problems such as adhesion between the copper foil and the plating film, and reliability in heat resistance tests, and therefore their reliability is still not sufficient.
【0004】[0004]
【発明が解決しようとする課題】本発明の目的の一つ
は、従来使用されている無電解銅めっきおよび従来のダ
イレクトプレーティング方法の問題点を解決し、無電解
銅めっきの代替工程として使用できる方法を提供するこ
とである。酸化銅(I)コロイドを含む銅触媒は次に述
べる特徴を有するため、現在プリント配線基板のスルー
ホールめっきを形成する際の無電解銅めっきの触媒とし
て用いられている。 (1)酸化銅(I)コロイドのζ−電位が陽性であるた
め、デスミアした後の陰性を強く帯びた非導電性基材表
面上に、強く吸着しやすい(パラジウム触媒のζ−電位
は陰性であるため、陰性を強く帯びた基剤表面には吸着
しにくい。)。 (2)酸化銅(I)コロイド溶液の表面張力が低いた
め、微小ホールへの浸透、吸着性が良好である。 (3)酸化銅(I)コロイド溶液は中性であり、強酸を
含まないため装置を腐食せず、ピンクリングを成長させ
ない。 これに対し、パラジウムコロイド等を使用した場合は、
電導性を確保するために厚いコロイド膜が必要であり、
このような厚いコロイド膜は電気銅めっきとの密着性に
関して問題があり、従来技術の最大の欠点であった。従
って、本発明の別の目的の一つは極めて薄い薄膜であっ
ても次に行う電気銅めっきを可能にするような優れた電
導性を有する薄膜を形成することである。[0009] One of the objects of the present invention is to provide a method that can be used as an alternative process to electroless copper plating by solving the problems of conventional electroless copper plating and conventional direct plating methods. Copper catalysts containing copper (I) oxide colloids have the following characteristics, and are therefore currently used as catalysts for electroless copper plating when forming through-hole plating on printed wiring boards. (1) The ζ-potential of copper (I) oxide colloids is positive, so they are easily adsorbed on the surface of a non-conductive substrate that is strongly negative after desmearing (the ζ-potential of palladium catalysts is negative, so they are not easily adsorbed on the surface of a substrate that is strongly negative). (2) The surface tension of the copper (I) oxide colloidal solution is low, so it has good penetration and adsorption into micro-holes. (3) The copper (I) oxide colloidal solution is neutral and does not contain strong acids, so it does not corrode the equipment and does not cause pink rings to grow. In contrast, when palladium colloids or the like are used,
A thick colloidal film is required to ensure electrical conductivity,
Such a thick colloidal film has a problem in terms of adhesion to electrolytic copper plating, which is the biggest drawback of the prior art. Therefore, another object of the present invention is to form a thin film having excellent conductivity that enables subsequent electrolytic copper plating, even if it is an extremely thin film.
【0005】さらに、本発明のもう一つの目的は、下記
のようなプリント回路基板の製造法に適用することがで
きるようなダイレクトプレーティング方法を提供するこ
とである。 基材(銅張積層板) 穴明け スルーホールめっき脱脂、水洗 ソフトエッチ、水洗 酸化銅(I)コロイドを含む銅触媒 水洗 乾燥 研磨 アルカリ可溶性ドライフィルムイメージング(又はレジ
ストインク印刷) 脱脂 水洗 本発明によるダイレクトプレーティング 水洗 酸浸漬 水洗 硫酸銅めっき 水洗 酸浸漬 はんだめっき 水洗 アルカリ可溶性ドライフィルム剥離 エッチング はんだ剥離 ソルダーマスク塗布 HAL(ホットエアーレベラー) さらに、本発明のさらにもう一つの目的は、パネルめっ
き法にも応用できるダイレクトプレーティング方法を提
供することである。[0005] It is yet another object of the present invention to provide a direct plating method which can be applied to the following manufacturing method for printed circuit boards: Substrate (copper-clad laminate) Drilling Through-hole plating Degreasing, rinsing Soft etching, rinsing Copper catalyst containing copper (I) oxide colloid Rinsing Drying Polishing Alkali-soluble dry film imaging (or resist ink printing) Degreasing Rinsing Direct plating according to the present invention Rinsing Acid immersion Rinsing Copper sulfate plating Rinsing Acid immersion Solder plating Rinsing Alkali-soluble dry film peeling Etching Solder peeling Solder mask application HAL (hot air leveler) It is yet another object of the present invention to provide a direct plating method which can also be applied to panel plating.
【0006】[0006]
【課題を解決するための手段】本発明者らは、無電解銅
めっきおよび従来のダイレクトプレーティング方法の問
題点を解決するために、鋭意研究を重ねた結果、本発明
を完成した。本発明によるダイレクトプレーティング方
法の一つの態様は、酸化銅(I)コロイドを含む銅触媒
で触媒付与された非電導性の基材を、銅塩、銅を析出す
るための銅の還元剤および銅の錯化剤を含む溶液中に浸
漬することによって、酸化銅(I)コロイド表面に金属
銅を析出させ、銅の電導性皮膜を形成させる方法であ
る。本発明によるダイレクトプレーティング方法のもう
一つの態様は、酸化銅(I)コロイドを含む銅触媒で触
媒付与された非電導性の基材を、無機酸を含む溶液中に
浸漬することによって、酸化銅(I)の例えば反応式1
のような不均化反応により、非電導性基材表面上に銅の
電導性皮膜を形成させる方法である。 Cu2O+H2SO4 → Cu+CuSO4+H2O 反応式1[Means for Solving the Problems] The present inventors have completed the present invention as a result of extensive research in order to solve the problems associated with electroless copper plating and conventional direct plating methods. One embodiment of the direct plating method according to the present invention is a method in which a non-conductive substrate catalyzed with a copper catalyst containing copper oxide (I) colloid is immersed in a solution containing a copper salt, a copper reducing agent for depositing copper, and a copper complexing agent, thereby depositing metallic copper on the surface of the copper oxide (I) colloid to form a conductive copper film. Another embodiment of the direct plating method according to the present invention is a method in which a non-conductive substrate catalyzed with a copper catalyst containing copper oxide (I) colloid is immersed in a solution containing an inorganic acid, thereby forming a conductive copper film by reacting, for example, with copper oxide (I) according to reaction formula 1.
This is a method for forming a conductive copper film on the surface of a non-conductive substrate by a disproportionation reaction such as Cu 2 O + H 2 SO 4 → Cu + CuSO 4 + H 2 O Reaction formula 1
【0007】本発明のダイレクトプレーティング方法に
おいて、非電導性基材は酸化銅(I)コロイドを含む銅
触媒で触媒付与されている。触媒付与は一般的には銅濃
度が約1.3から約1.7g/1、pHが7.5から
8.0、温度が28から32℃である酸化銅(I)コロ
イド含有銅触媒溶液中で基板を7〜15分揺動させるこ
とによって行う。本発明では、酸化銅(I)コロイドの
金属化により銅の薄膜が形成されるが、銅の電導性はパ
ラジウムより約10倍優れていることにより極めて薄い
銅の薄膜を形成するだけで次に行われる電気銅めっきが
可能になる。本発明の一つの態様においては、触媒付与
された非電導性基材は銅塩、銅を析出するための銅の還
元剤および銅の錯化剤を含む溶液中に浸漬される。In the direct plating method of the present invention, the non-conductive substrate is catalyzed with a copper catalyst containing copper(I) oxide colloids. Catalysis is typically accomplished by rocking the substrate for 7-15 minutes in a copper catalyst solution containing copper(I) oxide colloids having a copper concentration of about 1.3 to about 1.7 g/l, a pH of 7.5 to 8.0, and a temperature of 28 to 32° C. In the present invention, a thin copper film is formed by metallization of the copper(I) oxide colloids, and because copper is about 10 times more conductive than palladium, only a very thin copper film is required for subsequent electrolytic copper plating. In one embodiment of the present invention, the catalyzed non-conductive substrate is immersed in a solution containing a copper salt, a copper reducing agent for depositing copper, and a copper complexing agent.
【0008】銅塩は、金属銅の供給源であって、アニオ
ンがめっき浴に有害とならないかぎり任意の銅塩化合物
をめっき液に添加することができる。適切な銅塩は硫酸
銅、塩化銅、硝酸銅、水酸化銅、スルファミン酸銅、炭
酸銅、酸化銅などである。めっき浴中の銅イオン濃度は
一般的には0.5〜5g/lの範囲で変動させることが
できるが、好ましくは1〜2g/lである。なお、錯化
剤の濃度が高い場合には、銅濃度が2g/l以上であっ
ても使用できる。銅の還元剤の種類は、銅イオンを金属
銅に還元できるものならば特に限定されないが、安全性
の観点からホルマリン以外が好ましい。本発明で使用さ
れる還元剤は、触媒付与された基材上に銅イオンの還元
反応により効果的に銅を析出させるために使用される。
本発明浴に添加される還元剤は、非導電性基材表面に吸
着した酸化銅(I)コロイドの表面に、銅を還元析出さ
せるのには十分な程度の濃度で使用される。最も好まし
い還元剤は、ジメチルアミンボランである。また、抱水
ヒドラジン、ヒドラジン塩酸塩、ヒドラジン酢酸塩のよ
うなヒドラジンおよびその塩、次亜リン酸、次亜リン酸
ナトリウムのような次亜リン酸およびその塩も好まし
い。還元剤の濃度は一般的には0.5〜20g/lの範
囲で変動できるが、好ましくは1〜10g/lである。
20g/l以上の濃度ではめっき浴が不安定となり、ま
た還元剤の消耗が激しくなるので好ましくない。Copper salts are a source of metallic copper, and any copper salt compound can be added to the plating solution as long as the anions are not harmful to the plating bath. Suitable copper salts include copper sulfate, copper chloride, copper nitrate, copper hydroxide, copper sulfamate, copper carbonate, copper oxide, etc. The copper ion concentration in the plating bath can generally be varied in the range of 0.5 to 5 g/l, but is preferably 1 to 2 g/l. When the concentration of the complexing agent is high, a copper concentration of 2 g/l or more can be used. The type of copper reducing agent is not particularly limited as long as it can reduce copper ions to metallic copper, but from the viewpoint of safety, it is preferable to use a reducing agent other than formalin. The reducing agent used in the present invention is used to effectively deposit copper on a substrate to which a catalyst has been applied by the reduction reaction of copper ions.
The reducing agent added to the bath of the present invention is used at a concentration sufficient to reduce and deposit copper on the surface of the copper(I) oxide colloid adsorbed on the surface of the non-conductive substrate. The most preferred reducing agent is dimethylamine borane. Also preferred are hydrazine and its salts, such as hydrazine hydrate, hydrazine hydrochloride, and hydrazine acetate, hypophosphorous acid and its salts, such as hypophosphorous acid and sodium hypophosphite. The concentration of the reducing agent can generally vary in the range of 0.5 to 20 g/l, but is preferably 1 to 10 g/l.
A concentration of 20 g/l or more is undesirable because it makes the plating bath unstable and also causes rapid consumption of the reducing agent.
【0009】銅の錯化剤は、銅イオンを錯化できるもの
であれば任意の公知の錯化剤を使用することができる。
例えば、ポリアミンおよびその塩、アミノカルボン酸お
よびその塩、アミンアルカノール化合物、オキシカルボ
ン酸およびその塩が使用できる。ポリアミンおよびその
塩の例としては、エチレンジアミンおよびその硫酸塩、
ジエチレンテトラミン、ジエチレントリアミン、トリエ
チレンテトラミンが挙げられる。本発明の溶液に好適な
ポリアミンおよびその塩の濃度は、一般的には1〜10
0g/lの範囲で変動させることができるが、好ましく
は5〜50g/lの範囲である。As the copper complexing agent, any known complexing agent can be used so long as it is capable of complexing copper ions.
For example, polyamines and their salts, aminocarboxylic acids and their salts, amine alkanol compounds, oxycarboxylic acids and their salts can be used. Examples of polyamines and their salts include ethylenediamine and its sulfate salt,
Examples of suitable polyamines and their salts in the solution of the present invention are diethylenetetramine, diethylenetriamine, and triethylenetetramine. The concentration of polyamines and their salts suitable for the solution of the present invention is generally 1 to 10
The concentration can range from 0 g/l, but is preferably in the range of 5 to 50 g/l.
【0010】アミノカルボン酸およびその塩の例として
は、イミノ二酢酸およびそのナトリウム塩、ニトリロ三
酢酸およびそのナトリウム塩、ヒドロキシエチルエチレ
ンジアミン三酢酸、テトラヒドロキシエチレンジアミン
あるいはジヒドロキシメチルエチレンジアミン二酢酸、
エチレンジアミン四酢酸およびそのナトリウム塩とカリ
ウム塩、ジエチレントリアミンペンタ酢酸およびそのナ
トリウム塩、トリエチレンテトラミンヘキサ酢酸、シク
ロヘキサン−1,2−ジアミンテトラ酢酸、エチレング
リコールジエチルエーテルジアミン四酢酸、エチレンジ
アミンテトラプロピオン酸、N,N,N′,N′−テト
ラキス−2(2−ヒドロキシプロピル)エチレンジアミ
ンなどが挙げられる。本発明の溶液に好適なアミノカル
ボン酸およびその塩の濃度は、一般的には1〜100g
/lの範囲で変動させることができるが、好ましくは5
〜50g/lの範囲である。Examples of aminocarboxylic acids and their salts include iminodiacetic acid and its sodium salt, nitrilotriacetic acid and its sodium salt, hydroxyethylethylenediaminetriacetic acid, tetrahydroxyethylenediamine or dihydroxymethylethylenediaminediacetic acid,
Examples of the aminocarboxylic acid and its salt include ethylenediaminetetraacetic acid and its sodium salt and potassium salt, diethylenetriaminepentaacetic acid and its sodium salt, triethylenetetraminehexaacetic acid, cyclohexane-1,2-diaminetetraacetic acid, ethyleneglycoldiethyletherdiaminetetraacetic acid, ethylenediaminetetrapropionic acid, N,N,N',N'-tetrakis-2(2-hydroxypropyl)ethylenediamine, etc. The concentration of the aminocarboxylic acid and its salt suitable for the solution of the present invention is generally 1 to 100 g.
The range of the amount of the ion exchange resin can be varied within a range of 5/l.
The range is 100-50 g/l.
【0011】アミンアルカノール化合物としては、モノ
−、ジ−、トリ−エタノールアミンが好ましい。本発明
の溶液に好適なアミンアルカノール化合物の濃度は、一
般的には5〜200ml/lの範囲で変動させることが
できるが、好ましくは50〜100ml/lの範囲であ
る。オキシカルボン酸の例としては、酒石酸、クエン
酸、グルコン酸が挙げられ、オキシカルボン酸塩の例と
しては酒石酸ナトリウム、酒石酸カリウム、酒石酸ナト
リウムカリウム、クエン酸ナトリウム、クエン酸カリウ
ム、クエン酸アンモニウム、グルコン酸ナトリウム、グ
ルコン酸カリウムが挙げられる。本発明の溶液に好適な
オキシカルボン酸の濃度は一般的には1〜100g/l
の範囲で変動させることができるが、好ましくは5〜5
0g/lの範囲である。上述した錯化剤は、単独でも使
用可能であるが、適宜混合して使用することによって、
めっき浴の安定性を向上させ、析出皮膜の特性を改善で
きる。本発明のもう一つの態様においては、触媒付与さ
れた非電導性基材は無機酸を含む溶液中に浸漬される。
無機酸としては、酸化銅(I)の不均化反応によって銅
および銅と無機酸の塩を形成し、析出した金属銅が溶解
しにくいものであればよい。例えば、硫酸、塩酸、ギ
酸、スルファミン酸、酢酸等が挙げられる。これ等の酸
の溶液中の濃度は、一般的には0.1〜10モル/lの
範囲で変動させることができるが、好ましくは1.0〜
4.0モル/lの範囲である。Preferred amine alkanol compounds are mono-, di- and tri-ethanolamines. The concentration of the amine alkanol compounds suitable for the solution of the present invention can generally vary in the range of 5 to 200 ml/l, but is preferably in the range of 50 to 100 ml/l. Examples of hydroxycarboxylic acids include tartaric acid, citric acid and gluconic acid, and examples of hydroxycarboxylic acid salts include sodium tartrate, potassium tartrate, sodium potassium tartrate, sodium citrate, potassium citrate, ammonium citrate, sodium gluconate and potassium gluconate. The concentration of the hydroxycarboxylic acid suitable for the solution of the present invention can generally vary in the range of 1 to 100 g/l.
The range can be varied within a range of 5 to 5
The above-mentioned complexing agents can be used alone, but by using them in appropriate mixtures,
The stability of the plating bath can be improved and the properties of the deposited film can be improved.In another embodiment of the present invention, the catalyzed non-conductive substrate is immersed in a solution containing an inorganic acid.
The inorganic acid may be any acid that forms copper or a salt of copper with an inorganic acid through the disproportionation reaction of copper(I) oxide, and the precipitated metallic copper is difficult to dissolve. Examples include sulfuric acid, hydrochloric acid, formic acid, sulfamic acid, and acetic acid. The concentration of these acids in the solution can generally be varied in the range of 0.1 to 10 mol/l, but is preferably 1.0 to 2.5 mol/l.
4.0 mol/l range.
【0012】従来技術で通常用いられている無電解銅め
っきの添加剤は、本発明のめっき浴においても浴特性や
析出物の皮膜特性を改善するために添加することができ
る。これらの添加剤には、種々の溶液溶解性シアン化
物、シアン酸塩、硫化物およびチオ化合物のような硫黄
含有化合物、ジピリジル化合物、およびエチレンオキサ
イド型の界面活性剤等が含まれる。めっき液のpHは、
水溶性レジストを塗布した基板のめっきでは特に重要で
あり、めっきのレジストへのアタックを最小限に維持す
るために、pH5〜8が好ましい。めっき液の温度は、
めっきのレジストへのアタックを最小限に維持するため
にpHとともに重要な要素である。本発明の場合、15
〜50℃の範囲で変動させることができるが、より好ま
しい温度範囲は20〜30℃である。めっき時間は適当
な厚さのめっきが施されるのに十分な時間である。Additives commonly used in electroless copper plating in the prior art can be added to the plating bath of the present invention to improve bath properties and film properties of the deposit. These additives include various solution-soluble cyanides, cyanates, sulfides, sulfur-containing compounds such as thio compounds, dipyridyl compounds, and ethylene oxide type surfactants. The pH of the plating solution is:
This is particularly important when plating a substrate coated with a water-soluble resist, and a pH of 5 to 8 is preferred to keep attack of the resist to a minimum.
This is an important factor along with pH to keep plating attack on the resist to a minimum. In the present invention, 15
The plating temperature can be varied in the range of 0° C. to 50° C., but the more preferred temperature range is 20° C. to 30° C. The plating time is sufficient to provide a plating of an appropriate thickness.
【0013】[0013]
実施例1 以下の組成の溶液を調製した。 硫酸銅 2g/l ヒドロキシエチレンジアミン四酢酸(HEDTA) 10g/l トリエタノールアミン 10ml/l ジメチルアミンボラン 6g/l 10%硫酸 pH7.0へ 25cm×33cm(板厚1.6mm、2.4mm、
3.2mm)の穴明き銅クラッドエポキシ積層板を銅濃
度1.5g/l、pHが8.0、温度が30℃の酸化銅
(I)コロイド含有銅触媒溶液中で10分間揺動させる
ことによって触媒付与し、アルカリ可溶型ドライフィル
ムを用いてイメージング処理した。この基板を、脱脂、
アクセレーター処理後、上記組成の溶液中で25℃で1
0分間銅めっきした。その後、硫酸銅めっきを25μm
施し、はんだめっきを10μm施した後、レジスト剥離
してエッチングを行った。この方法によって得られたプ
リント配線基板は、従来の方法により製造されたものと
比べても何等遜色が無く、MIL−P−55110D
(288℃/10秒、1サイクル)に従って行った耐熱
性試験結果も良好であった。また、アルカリ可溶型ドラ
イフィルムの代わりにアルカリ可溶性レジストインクを
印刷した基板についても同様の試験を行なった結果、従
来の方法により製造されたものと比べても何等遜色が無
く、MIL−P−55110D(288℃/10秒、1
サイクル)に従って行った耐熱性試験結果も良好であっ
た。 Example 1 A solution having the following composition was prepared: Copper sulfate 2 g/l Hydroxyethylenediaminetetraacetic acid (HEDTA) 10 g/l Triethanolamine 10 ml/l Dimethylamine borane 6 g/l 10% sulfuric acid pH 7.0
A copper-clad epoxy laminate with a hole (3.2 mm) was swung for 10 minutes in a copper catalyst solution containing copper (I) oxide colloids with a copper concentration of 1.5 g/l, pH of 8.0, and temperature of 30° C. to provide a catalyst, and was then imaged using an alkali-soluble dry film.
After the accelerator treatment, the sample was incubated at 25° C. for 1 hour in the solution of the above composition.
After that, copper sulfate plating was performed to a thickness of 25 μm.
After that, the resist was peeled off and etching was performed. The printed wiring board obtained by this method is in no way inferior to the one produced by the conventional method, and meets the standard of MIL-P-55110D.
The heat resistance test results were also good, which was performed according to MIL-P-55110D (288°C/10 seconds, 1 cycle). The same test was also performed on a board printed with an alkali-soluble resist ink instead of the alkali-soluble dry film, and the results were comparable to those produced by the conventional method.
The results of the heat resistance test performed according to the heat cycle were also good.
【0014】実施例2 以下の組成の溶液を調製した。 塩化銅 2g/l エチレンジアミンテトラ酢酸二ナトリウム 10g/l グリシン 10g/l ジメチルアミンボラン 6g/l 10%硫酸 pH7.0へ 25cm×33cm(板厚1.6mm、2.4mm、
3.2mm)の穴明き銅クラッドエポキシ積層板を実施
例1と同様に酸化銅(I)コロイド活性化処理によって
触媒付与し、アルカリ可溶型ドライフィルムを用いてイ
メージング処理した。この基板を、脱脂、アクセレータ
ー処理後、上記組成の溶液中で25℃で10分間銅めっ
きした。その後、硫酸銅めっきを25μm施し、はんだ
めっき10μm施した後、レジスト剥離してエッチング
を行った。この方法によって得られたプリント配線基板
は、従来の無電解銅めっきを用いた方法により製造され
たものと比べても何等遜色が無く、MIL−P−551
10D(288℃/10秒、1サイクル)に従って行っ
た耐熱性試験結果も良好であった。Example 2 A solution having the following composition was prepared: Copper chloride 2 g/l Disodium ethylenediaminetetraacetate 10 g/l Glycine 10 g/l Dimethylamineborane 6 g/l 10% sulfuric acid pH 7.0
A copper-clad epoxy laminate with holes (3.2 mm) was catalyzed by copper oxide (I) colloid activation treatment in the same manner as in Example 1, and was subjected to imaging treatment using an alkali-soluble dry film. This board was degreased and accelerator-treated, and then copper-plated for 10 minutes at 25°C in a solution of the above composition. Thereafter, copper sulfate plating was applied to a thickness of 25 μm, and solder plating was applied to a thickness of 10 μm, after which the resist was removed and etching was performed. The printed wiring board obtained by this method was in no way inferior to one manufactured by a conventional method using electroless copper plating, and was in accordance with MIL-P-551.
The heat resistance test results in accordance with 10D (288° C./10 seconds, 1 cycle) were also good.
【0015】実施例3 以下の組成の溶液を調製した。 硫酸銅 2g/l トリエタノールアミン 10g/l 次亜リン酸ソーダ 10g/l 10%硫酸 pH5.0へ 25cm×33cm(板厚1.6mm、2.4mm、
3.2mm)の穴明き銅クラッドエポキシ積層板を実施
例1と同様に酸化銅(I)コロイド活性化処理によって
触媒付与し、アルカリ可溶型ドライフィルムを用いてイ
メージング処理した。この基板を、脱脂、アクセレータ
ー処理後、上記組成の溶液中で25℃で10分間銅めっ
きした。その後、硫酸銅めっきを25μm施し、はんだ
めっき10μm施した後、レジスト剥離してエッチング
を行った。この方法によって得られたプリント配線基板
は、従来の無電解銅めっきを用いた方法により製造され
たものと比べても何等遜色が無く、MIL−P−551
10D(288℃/10秒、1サイクル)に従って行っ
た耐熱性試験結果も良好であった。Example 3 A solution having the following composition was prepared: Copper sulfate 2 g/l Triethanolamine 10 g/l Sodium hypophosphite 10 g/l 10% sulfuric acid pH 5.0
A copper-clad epoxy laminate with holes (3.2 mm) was catalyzed by copper oxide (I) colloid activation treatment in the same manner as in Example 1, and was subjected to imaging treatment using an alkali-soluble dry film. This board was degreased and accelerator-treated, and then copper-plated for 10 minutes at 25°C in a solution of the above composition. Thereafter, copper sulfate plating was applied to a thickness of 25 μm, and solder plating was applied to a thickness of 10 μm, after which the resist was removed and etching was performed. The printed wiring board obtained by this method was in no way inferior to one manufactured by a conventional method using electroless copper plating, and was in accordance with MIL-P-551.
The heat resistance test results in accordance with 10D (288° C./10 seconds, 1 cycle) were also good.
【0016】実施例4 以下の組成の溶液を調製した。 硫酸(36N) 100ml/l 25cm×33cm(板厚1.6mm、2.4mm、
3.2mm)の穴明き銅クラッドエポキシ積層板を実施
例1と同様に酸化銅(I)コロイドを用いて触媒付与処
理した。この基板を25℃の上記希硫酸溶液中に10分
間浸漬したところ、金属銅が生成した。その後、硫酸銅
めっきを25μm施し、ドライフィルムでイメージング
し、エッチングした。 この方法によって得られたプリ
ント配線基板は、従来の方法により製造されたものと比
べても何等遜色が無く、MIL−P−55110D(2
88℃/10秒、1サイクル)に従って行った耐熱試験
結果も良好であった。Example 4 A solution having the following composition was prepared: Sulfuric acid (36N) 100 ml/l 25 cm x 33 cm (plate thickness 1.6 mm, 2.4 mm,
A copper-clad epoxy laminate with holes (diameter 3.2 mm) was treated with a copper(I) oxide colloid as in Example 1 to provide a catalyst. The board was immersed in the above-mentioned dilute sulfuric acid solution at 25°C for 10 minutes, producing metallic copper. It was then plated with 25 μm of copper sulfate, imaged with a dry film, and etched. The printed wiring board obtained by this method was in no way inferior to those produced by conventional methods, and was found to be in good quality according to MIL-P-55110D (2
The results of the heat resistance test performed according to the method described above (88° C./10 seconds, 1 cycle) were also good.
【0017】[0017]
【発明の効果】本発明によると、酸化銅(I)コロイド
を含む銅触媒を用いてキャタライジングされた基材上
に、室温において浸漬のみによって極めて高純度の銅の
電導性皮膜を形成することができる。さらに本発明によ
ると、酸化銅(I)コロイドを含む銅触媒を用いてキャ
タライジングした後に乾燥、表面研磨を行い、次にアル
カリ性水溶液に可溶なドライフィルムを用いてイメージ
ングし(またはアルカリ性水溶液に可溶なレジストイン
ク印刷でも可)、その後パターン上とスルーホール内の
みに極めて高純度の銅皮膜を形成し、続いて電気銅めっ
き、はんだめっきを行う工程から成る、かって当業者が
成し得なかったプリント配線基板の製造方法が可能にな
る。According to the present invention, a highly pure conductive copper film can be formed on a substrate catalyzed with a copper catalyst containing copper oxide (I) colloid by simply immersion at room temperature.Furthermore, according to the present invention, a method of manufacturing a printed wiring board, which was not previously possible for those skilled in the art, is made possible, which comprises the steps of drying and surface polishing after catalyzing with a copper catalyst containing copper oxide (I) colloid, imaging with a dry film soluble in an alkaline aqueous solution (or printing with a resist ink soluble in an alkaline aqueous solution), forming a highly pure copper film only on the pattern and in the through-holes, and then electrolytic copper plating and solder plating.
【0018】そして、本発明のダイレクトプレーティン
グ方法を使用することによって、次のような優れた効果
を得ることができる。 (1)無電解銅めっきと異なり、煩雑な分析管理が不要
である(管理が容易)。 (2)発ガン性のあるホルムアルデヒドを使用しない
(作業環境が良好)。 (3)微小ホールへの水素ガスのトラップによる空間が
発生しにくい。 (4)無電解銅めっきに比べめっき時間が短く、めっき
のカバーリングが早い。 (5)コトスが安い(銅の分析が少なくて済む)。 (6)前述のPCB製造工程で処理すると、短納期化が
可能である。 (7)前処理工程が短縮でき、処理時間が短い。 (8)酸化銅(I)コロイド処理工程、金属化工程のい
ずれかが弱酸性〜中性溶液であるため、アルカリル可溶
性レジストが使用可能である。 以上述べたように、本発明のダイレクトプレーティング
法は迅速かつ安全であり、経済性、信頼性に極めて優れ
ており、プリント回路基板業界への貢献は極めて大であ
る。[0018] By using the direct plating method of the present invention, the following excellent effects can be obtained: (1) Unlike electroless copper plating, no complicated analysis management is required (easy management). (2) No carcinogenic formaldehyde is used (good working environment). (3) Spaces caused by hydrogen gas trapped in minute holes are unlikely to occur. (4) Plating time is shorter than electroless copper plating, and plating coverage is quick. (5) Cost is low (less copper analysis is required). (6) If processed in the above-mentioned PCB manufacturing process, delivery time can be shortened. (7) Pretreatment process can be shortened, and processing time is short. (8) Either the copper(I) oxide colloid processing process or the metallization process is a weakly acidic to neutral solution, so an alkali-soluble resist can be used. As described above, the direct plating method of the present invention is quick and safe, and is extremely excellent in economy and reliability, and will contribute greatly to the printed circuit board industry.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−7687(JP,A) 特開 昭57−32361(JP,A) 特開 昭62−30684(JP,A) 特開 平1−263278(JP,A) 特開 平5−156459(JP,A) 特開 平4−74870(JP,A) 特開 平5−331660(JP,A) 特開 平5−163577(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 18/28 C23C 18/40 H05K 3/18 ───────────────────────────────────────────────────────── Continued from the front page (56) References JP 62-7687 (JP, A) JP 57-32361 (JP, A) JP 62-30684 (JP, A) JP 1-263278 (JP, A) JP 5-156459 (JP, A) JP 4-74870 (JP, A) JP 5-331660 (JP, A) JP 5-163577 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) C23C 18/28 C23C 18/40 H05K 3/18
Claims (1)
媒付与された非電導性の基材を無機酸を含む溶液中に浸
漬することによって、酸化銅(I)の不均化反応により
非電導性基材表面上に銅の電導性皮膜を形成させるダイ
レクトプレーティング方法。[Claim 1] A direct plating method in which a non-conductive substrate catalyzed with a copper catalyst containing copper (I) oxide colloid is immersed in a solution containing an inorganic acid, thereby forming a conductive copper film on the surface of the non-conductive substrate through a disproportionation reaction of copper (I) oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35510993A JP3337802B2 (en) | 1993-12-28 | 1993-12-28 | Direct plating method by metallization of copper(I) oxide colloid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35510993A JP3337802B2 (en) | 1993-12-28 | 1993-12-28 | Direct plating method by metallization of copper(I) oxide colloid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07197266A JPH07197266A (en) | 1995-08-01 |
JP3337802B2 true JP3337802B2 (en) | 2002-10-28 |
Family
ID=18441994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35510993A Expired - Fee Related JP3337802B2 (en) | 1993-12-28 | 1993-12-28 | Direct plating method by metallization of copper(I) oxide colloid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3337802B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3054746B2 (en) * | 1997-02-03 | 2000-06-19 | 奥野製薬工業株式会社 | Electroplating method for non-conductive material |
DE69735999T2 (en) | 1997-04-07 | 2007-05-03 | Okuno Chemical Industries Co., Ltd. | METHOD FOR THE ELECTROCOATING OF A NON-LEADING SHAPED PLASTIC OBJECT |
JP2000173868A (en) * | 1998-12-01 | 2000-06-23 | Nichicon Corp | Electrolytic solution for driving aluminum electrolytic |
JP4646376B2 (en) * | 1999-11-22 | 2011-03-09 | 日本リーロナール有限会社 | Accelerator bath solution for direct plating and direct plating method |
JP2002348673A (en) * | 2001-05-24 | 2002-12-04 | Learonal Japan Inc | Electroless copper plating method using no formaldehyde and electroless copper plating solution used in the method |
JP4710204B2 (en) * | 2001-08-31 | 2011-06-29 | 株式会社村田製作所 | Method for forming end face electrode of electronic component |
JP4521345B2 (en) * | 2005-10-04 | 2010-08-11 | アルプス電気株式会社 | Catalyst treatment method, electroless plating method, and circuit forming method using electroless plating method |
JP4816052B2 (en) * | 2005-12-13 | 2011-11-16 | 東京エレクトロン株式会社 | Semiconductor manufacturing apparatus and semiconductor device manufacturing method |
JP4803549B2 (en) * | 2006-03-03 | 2011-10-26 | 地方独立行政法人 大阪市立工業研究所 | Method for forming a metallic copper layer on a cuprous oxide film |
KR101247431B1 (en) * | 2007-12-18 | 2013-03-26 | 히타치가세이가부시끼가이샤 | Copper conductor film and manufacturing method thereof, conductive substrate and manufacturing method thereof, copper conductor wiring and manufacturing method thereof, and treatment solution |
TWI546409B (en) | 2011-11-14 | 2016-08-21 | Ishihara Chemical Co Ltd | Electroless copper plating solution and electroless copper plating method |
JP6209770B2 (en) | 2015-02-19 | 2017-10-11 | 石原ケミカル株式会社 | Copper colloid catalyst solution for electroless copper plating and electroless copper plating method |
JP6343787B1 (en) | 2017-06-01 | 2018-06-20 | 石原ケミカル株式会社 | Copper colloid catalyst solution for electroless copper plating and electroless copper plating method |
JP6733016B1 (en) * | 2019-07-17 | 2020-07-29 | 上村工業株式会社 | Electroless copper plating bath |
US20230279553A1 (en) * | 2020-10-21 | 2023-09-07 | Asahi Kasei Kabushiki Kaisha | Method for Manufacturing Conductive Pattern-Provided Structure |
WO2022153995A1 (en) * | 2021-01-14 | 2022-07-21 | 長野県 | Material which is for underlying conductive layer and exhibits conductivity due to oxidation-reduction reaction, and manufacturing process, device, plated article, plated article manufacturing method, and coating liquid which use same |
-
1993
- 1993-12-28 JP JP35510993A patent/JP3337802B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07197266A (en) | 1995-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3337802B2 (en) | Direct plating method by metallization of copper(I) oxide colloid | |
US3962494A (en) | Sensitized substrates for chemical metallization | |
US6645557B2 (en) | Metallization of non-conductive surfaces with silver catalyst and electroless metal compositions | |
US4232060A (en) | Method of preparing substrate surface for electroless plating and products produced thereby | |
EP0176736B1 (en) | Process for selective metallization | |
US4639380A (en) | Process for preparing a substrate for subsequent electroless deposition of a metal | |
JPH0544075A (en) | Copper striking method substituted for electroless copper plating | |
JPS6321752B2 (en) | ||
CN110724943A (en) | Palladium-free activating solution before chemical nickel plating on copper surface, preparation method and nickel plating method | |
US4358479A (en) | Treatment of copper and use thereof | |
TWI767101B (en) | Method for forming metal film on polyimind resin | |
US3993848A (en) | Catalytic primer | |
JP3387507B2 (en) | Pretreatment solution and pretreatment method for electroless nickel plating | |
JP2001519477A (en) | Methods and solutions for producing a gold layer | |
US4325990A (en) | Electroless copper deposition solutions with hypophosphite reducing agent | |
JP3890542B2 (en) | Method for manufacturing printed wiring board | |
US20050042383A1 (en) | Colloidal seed formation for printed circuit board metallization | |
EP0163089B1 (en) | Process for activating a substrate for electroless deposition of a conductive metal | |
CN1428456A (en) | Plating method | |
JP5371465B2 (en) | Non-cyan electroless gold plating solution and conductor pattern plating method | |
KR20140019174A (en) | Method for manufacturing printed circuit board | |
JPS60184683A (en) | Metal adhesion | |
JP2001214278A (en) | Accelerator bath solution for direct plating and direct plating method | |
JP4081576B2 (en) | Method for forming electroless plating film, replacement catalyst solution used therefor, printed wiring board, and heat dissipation plating member | |
JP2000256866A (en) | Electroless nickel plating bath |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |