JP3335667B2 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor deviceInfo
- Publication number
- JP3335667B2 JP3335667B2 JP13297892A JP13297892A JP3335667B2 JP 3335667 B2 JP3335667 B2 JP 3335667B2 JP 13297892 A JP13297892 A JP 13297892A JP 13297892 A JP13297892 A JP 13297892A JP 3335667 B2 JP3335667 B2 JP 3335667B2
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- insulating film
- film
- cerium oxide
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000000034 method Methods 0.000 title claims description 11
- 238000005498 polishing Methods 0.000 claims description 61
- 239000002245 particle Substances 0.000 claims description 31
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 26
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 31
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 229910052814 silicon oxide Inorganic materials 0.000 description 12
- 229910052783 alkali metal Inorganic materials 0.000 description 11
- 150000001340 alkali metals Chemical class 0.000 description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 238000011109 contamination Methods 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 239000005380 borophosphosilicate glass Substances 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 239000008119 colloidal silica Substances 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007517 polishing process Methods 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000004380 ashing Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体装置の製造方法
に係わり、特に研磨により絶縁膜等の平坦化方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for planarizing an insulating film or the like by polishing.
【0002】[0002]
【従来の技術】従来、半導体装置の製造工程等におい
て、絶縁膜等を平坦化するための研磨工程では研磨剤と
してコロイダルシリカが一般的に用いられていた。2. Description of the Related Art Conventionally, colloidal silica has been generally used as a polishing agent in a polishing step for flattening an insulating film or the like in a semiconductor device manufacturing process or the like.
【0003】コロイダルシリカのシリカ粒子は、通常ケ
イ酸ナトリウムを原料として水溶液中で数十nmのシリ
カ粒子に成長させたものが用いられている。研磨剤とし
て用いる場合には通常これを水に懸濁させたものに、シ
リカ粒子を安定に分散させるための水素イオン濃度の調
整と研磨速度の増大という二つの目的により、KOHや
NaOHが添加されている。[0003] The colloidal silica silica particles are usually obtained by growing silica particles of several tens nm in an aqueous solution using sodium silicate as a raw material. When used as an abrasive, KOH or NaOH is usually added to a suspension of this in water for the two purposes of adjusting the hydrogen ion concentration for stably dispersing the silica particles and increasing the polishing rate. ing.
【0004】例えば、このような研磨剤として不二見研
磨剤工業株式会社のコンポール80という製品がある
が、このようにアルカリ金属を含む研磨剤を用いてシリ
コン酸化膜等を研磨すると、研磨剤中のアルカリ金属が
シリコン酸化膜中に拡散し、MOSデバイスにおいては
しきい値電圧を変動させるなど半導体装置の信頼性を著
しく低下させることになってしまうという問題がある。[0004] For example, there is a product called Compol 80 manufactured by Fujimi Abrasives Co., Ltd. as such an abrasive. When a silicon oxide film or the like is polished using an abrasive containing an alkali metal as described above, the abrasive in the abrasive becomes Alkali metal diffuses into the silicon oxide film, and in MOS devices, there is a problem that the reliability of the semiconductor device is remarkably reduced, for example, by changing the threshold voltage.
【0005】別のコロイダルシリカ系の研磨剤として、
シリカ粒子を四塩化ケイ酸を熱分解したり有機シランを
加水分解したりして成長させ、アンモニアやアミンで水
素イオン濃度の調整を行った、アルカリ金属を含まない
研磨剤もあるが、この様な研磨剤では、シリコン酸化膜
等の研磨速度は著しく遅く実用できないという問題があ
った。As another colloidal silica-based abrasive,
There are also polishing agents that do not contain alkali metals.Silica particles are grown by pyrolyzing silicic acid tetrachloride or hydrolyzing organosilane and adjusting the hydrogen ion concentration with ammonia or amine. With such an abrasive, there is a problem that the polishing rate of a silicon oxide film or the like is extremely slow and cannot be used practically.
【0006】また、従来よりフォトマスク用ガラスの表
面研磨においては、一次研磨として酸化アルミニウム懸
濁液でガラス表面を研磨し、仕上げ研磨として平均粒径
数μmの酸化セリウム粒子を含む懸濁液で研磨するとい
う方法がとられている。しかしながら、通常、半導体装
置の製造工程においては、絶縁膜の研磨量は高々数μm
程度で、この様な2段階以上の研磨は好ましくない。さ
らに、半導体装置の製造工程においては、通常、図3
(a)に示すように数百nmから数千nm程度の段差5
1上に形成された表面に段差を有する絶縁膜52を被覆
し、この際段差51の段差形状は絶縁膜52の表面形状
に反映される。さらに、図3(b)に示すように絶縁膜
52の表面段差を研磨により平坦化しなければならない
が、平均粒径数μmの酸化セリウム粒子で、数百nmか
ら数千nm程度の段差を平坦化しながら研磨することが
できるかどうか、また、絶縁膜表面に傷を発生させるこ
となく研磨することが可能かどうか、さらにコロイダル
シリカを用いた場合のようなアルカリ金属汚染があるか
どうかについては、全く知られておらず、上記方法を半
導体装置の製造工程中の研磨工程に対して適用すること
などは全く考慮されていなかった。[0006] Conventionally, in the surface polishing of glass for photomasks, the glass surface is polished with an aluminum oxide suspension as primary polishing, and a suspension containing cerium oxide particles having an average particle size of several μm is used as final polishing. Polishing has been used. However, usually, in the manufacturing process of a semiconductor device, the polishing amount of the insulating film is several μm at most.
However, such two or more stages of polishing are not preferred. Further, in the manufacturing process of the semiconductor device, usually, FIG.
(A) As shown in FIG.
The surface formed on the first substrate 1 is covered with an insulating film 52 having a step. At this time, the step shape of the step 51 is reflected on the surface shape of the insulating film 52. Further, as shown in FIG. 3B, the surface steps of the insulating film 52 must be flattened by polishing. However, with cerium oxide particles having an average particle size of several μm, steps of about several hundred nm to several thousand nm are flattened. Whether it can be polished while forming, whether it can be polished without causing scratches on the surface of the insulating film, and whether there is alkali metal contamination as in the case of using colloidal silica, It was not known at all, and no consideration was given to applying the above method to a polishing step in a semiconductor device manufacturing process.
【0007】[0007]
【発明が解決しようとする課題】上述の如く、半導体装
置の製造工程等において、研磨剤としてコロイダルシリ
カを用いた従来の研磨工程においては、アルカリ金属に
よる汚染や研磨速度が遅いなどの問題があり、実用が困
難であった。As described above, the conventional polishing process using colloidal silica as a polishing agent in the manufacturing process of a semiconductor device or the like has problems such as contamination by an alkali metal and a low polishing rate. It was difficult to use.
【0008】また、フォトマスク用ガラスの表面研磨に
おいて、酸化セリウム粒子が含まれた懸濁液を用いる方
法があるが、絶縁膜表面に傷を発生することなく、数百
nmから数千nm程度の段差を平坦化しながら研磨でき
るかどうか、また、アルカリ金属汚染があるかどうかに
ついては、全く知られておらず、上記方法を半導体装置
の製造工程における研磨工程に対して適用することなど
は全く考慮されていなかった。In addition, there is a method of using a suspension containing cerium oxide particles for polishing the surface of the glass for a photomask. However, the surface of the insulating film is not scratched and has a thickness of several hundred nm to several thousand nm. It is not known at all whether or not polishing can be performed while flattening the step, and whether or not there is alkali metal contamination, and it is not at all possible to apply the above method to a polishing step in a semiconductor device manufacturing process. Was not taken into account.
【0009】本発明は、上記事情を鑑みてなされたもの
で、その目的とするところは、アルカリ金属による汚染
がなく、高速で研磨できる研磨剤を使用することによ
り、半導体装置の製造工程への研磨工程の実用化を容易
にしようとするものである。The present invention has been made in view of the above circumstances, and an object of the present invention is to use a polishing agent which can be polished at a high speed without being contaminated by an alkali metal. It is intended to facilitate the practical use of the polishing process.
【0010】[0010]
【課題を解決するための手段】前述した問題を解決する
ため本発明は、半導体基板上に絶縁膜を形成する工程
と、該絶縁膜の少なくとも一部を酸化セリウムを含む所
定の研磨剤によって研磨し、取り除く工程とを有するこ
とを特徴とする半導体装置の製造方法を提供する。ま
た、本発明は、表面に段差が形成された基板上に絶縁膜
を形成する工程と、該絶縁膜を酸化セリウムを含む所定
の研磨剤によって研磨して平坦化する工程とを有するこ
とを特徴とする半導体装置の製造方法を提供する。[SUMMARY OF] To solve the problems described above the present invention includes the steps of forming an insulating film on a semiconductor substrate, at least a portion of the insulating film where containing cerium oxide
And a step of polishing and removing with a fixed abrasive. Further, the present invention, the predetermined comprising forming an insulating film <br/> on a substrate a step is formed on the surface, the the insulating film of cerium oxide
It is polished by abrasive to provide a method of manufacturing a semiconductor device characterized by a step of flattening.
【0011】[0011]
【作用】本発明による半導体装置の製造方法であれば、
絶縁膜、例えばシリコン酸化膜やシリコン窒化膜等を酸
化セリウムを含む所定の研磨剤によって研磨するので、
該絶縁膜を高速で研磨することができる。According to the semiconductor device manufacturing method of the present invention,
Since the insulating film, for example, a silicon oxide film or a silicon nitride film is polished with a predetermined abrasive containing cerium oxide,
The insulating film can be polished at high speed.
【0012】また、上記絶縁膜を研磨した際にも該絶縁
膜の内部にアルカリ金属汚染を引き起こす事もないこと
がわかった。さらに、絶縁膜表面に傷を発生させること
なく数百nmから数千nm程度の段差を平坦化しながら
研磨することが可能である事もわかった。Further, it has been found that even when the insulating film is polished, no alkali metal contamination is caused inside the insulating film. Further, it was also found that polishing can be performed while flattening steps of about several hundred nm to several thousand nm without causing scratches on the surface of the insulating film.
【0013】[0013]
【実施例】以下、本発明による半導体装置の製造方法を
図面を参照しながら詳細に説明する。図1には本発明の
実施例に係わる層間絶縁膜平坦化の工程断面図が示され
ている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a semiconductor device according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing a step of planarizing an interlayer insulating film according to an embodiment of the present invention.
【0014】図1(a)に示す如く、表面に素子(不図
示)が形成されたSi基板1上に、厚さ1μmのSiO
2 膜2を形成する。次いで、このSiO2 膜2上に厚さ
500nmのポリシリコン膜3を形成する。As shown in FIG. 1A, a 1 μm-thick SiO 2 film is formed on a Si substrate 1 on which elements (not shown) are formed.
2 A film 2 is formed. Next, a polysilicon film 3 having a thickness of 500 nm is formed on the SiO 2 film 2.
【0015】次に、図1(b)に示す如く、ポリシリコ
ン膜3上に厚さ1.5μmのフォトレジスト(感光性樹
脂層)4を塗布し、マスクパターン(図示せず)を用い
てこのフォトレジスト4を露光し現像を行うことによ
り、フォトレジストパターン4を形成する。Next, as shown in FIG. 1B, a photoresist (photosensitive resin layer) 4 having a thickness of 1.5 μm is applied on the polysilicon film 3, and a mask pattern (not shown) is used. The photoresist 4 is exposed and developed to form a photoresist pattern 4.
【0016】次に、図1(c)に示す如く、このフォト
レジストパターン4をマスクとして、CF4 ガスを使用
したRIE法によりポリシリコン膜3をパターニングす
る。Next, as shown in FIG. 1C, using the photoresist pattern 4 as a mask, the polysilicon film 3 is patterned by RIE using CF 4 gas.
【0017】次に、図1(d)に示す如く、CF4 とO
2 の混合ガスをマイクロ波放電させた下流でフォトレジ
ストを灰化処理するダウンフロータイプの灰化処理装置
により、フォトレジストパターン4を剥離した後、図1
(e)に示す如く、全面に層間絶縁膜として厚さ1μm
のSiO2 膜5を形成する。ここで、SiO2 膜5の表
面にはポリシリコン配線3に対応して段差が生じた。Next, as shown in FIG. 1D, CF 4 and O
The down-flow type ashing apparatus ashing a photoresist mixed gas of 2 downstream obtained by microwave discharge, after removing the photoresist pattern 4, Fig. 1
As shown in (e), the entire surface is 1 μm thick as an interlayer insulating film.
Forming a SiO 2 film 5. Here, a step was formed on the surface of the SiO 2 film 5 corresponding to the polysilicon wiring 3.
【0018】最後に、SiO2膜5を研磨したのが、図
1(f)である。研磨は、図2の概略図に示すような装
置を用いた。この図に示されるように、ターンテーブル
21上の研磨クロス22の中心に研磨剤供給パイプ23
の先端が位置しており、ターンテーブル21は前記中心
を通る軸のまわりに100rpmで矢印の方向に回転す
るとともに、前記先端から研磨剤が研磨クロス22上に
供給される。また、ウェーハ24は荷重40kgfで研
磨クロス22上に押し付けられると共に、100rpm
で矢印の方向に回転せしめられる。研磨剤中、平均粒径
1.2μm、最大粒径4.0μmの酸化セリウムを含む粉
体は、バストネサイトを粉砕、焼成したもので、その組
成は、酸化セリウム50wt%、その他の希土類金属の
酸化物37wt%程度のものである。本実施例で用いた
酸化セリウムを含む粉体の組成を表1に示す。Finally, the SiO 2 film 5 is polished as shown in FIG. For polishing, an apparatus as shown in the schematic diagram of FIG. 2 was used. As shown in this figure, an abrasive supply pipe 23 is provided at the center of the polishing cloth 22 on the turntable 21.
The turntable 21 is rotated around the axis passing through the center in the direction of the arrow at 100 rpm, and the abrasive is supplied onto the polishing cloth 22 from the tip. Further, the wafer 24 is pressed onto the polishing cloth 22 with a load of 40 kgf, and
To rotate in the direction of the arrow. The powder containing cerium oxide having an average particle diameter of 1.2 μm and a maximum particle diameter of 4.0 μm in the abrasive is obtained by pulverizing and firing bastnaesite, and has a composition of cerium oxide of 50 wt% and other rare earth metals. Oxide of about 37 wt%. Table 1 shows the composition of the powder containing cerium oxide used in this example.
【0019】[0019]
【表1】 [Table 1]
【0020】この様に、酸化セリウムを含む研磨剤で研
磨した後の絶縁膜表面は、平坦化がされていた。また、
微分干渉型顕微鏡で絶縁膜表面を観察しても、傷は観察
されなかった。As described above, the surface of the insulating film after being polished with the abrasive containing cerium oxide has been flattened. Also,
When the surface of the insulating film was observed with a differential interference microscope, no damage was observed.
【0021】図1と同様の方法で、平均粒径2.5μ
m、最大粒径12.0μmの酸化セリウムを含む粉体1
wt%を水に懸濁させたものを用いた場合にも、研磨し
た後の絶縁膜表面は平坦化がなされていたが、微分干渉
方顕微鏡で絶縁膜表面を観察すると、10cm2 あたり4
個の傷が観察された。In the same manner as in FIG.
m, powder 1 containing cerium oxide having a maximum particle size of 12.0 μm
In the case of using a suspension of wt% in water, the surface of the insulating film after polishing was flattened. However, when the surface of the insulating film was observed with a differential interference microscope, 10 cm 2 was observed. 4 per
Individual wounds were observed.
【0022】また、図1と同様の方法で、平均粒径2.
5μm、最大粒径12.0μmの酸化セリウムを含む粉
体で、上記したように粉砕後焼成を行った粉末1wt%
を水に懸濁させたものを用いた場合には、微分干渉型顕
微鏡で絶縁膜表面を観察すると、10cm 2 あたりの傷
の数は1個であった。Further, in the same manner as in FIG.
A powder containing cerium oxide having a particle size of 5 μm and a maximum particle size of 12.0 μm.
Was suspended in water, the surface of the insulating film was observed with a differential interference microscope, and the number of scratches per 10 cm 2 was 1.
【0023】この結果より、酸化セリウムを含む研磨剤
で研磨することにより、絶縁膜表面の平坦化が可能であ
る事、酸化セリウムを含む研磨剤は、粒径が小さいも
の、好ましくは最大粒径4μm以下のものが傷の発生を
抑えられる事、さらに同じ粒径の研磨剤においても焼成
条件を変え粒子の硬さを軟らかくすることにより傷の発
生を抑えられる事がわかる。The results show that the surface of the insulating film can be planarized by polishing with a polishing agent containing cerium oxide, and that the polishing agent containing cerium oxide has a small particle size, preferably a maximum particle size. It can be seen that when the particle size is 4 μm or less, the generation of scratches can be suppressed, and the generation of scratches can be suppressed by changing the firing conditions and softening the hardness of the particles even with an abrasive having the same particle size.
【0024】次に、表2にシリコンを熱酸化した膜厚1
μmのシリコン酸化膜およびリンとホウ素を高濃度に含
む膜厚1μmのシリコン酸化膜(以下BPSGと呼ぶ)
を平均粒径2.5μm、最大粒径12.0μmの酸化セ
リウムを含む粉体1wt%を水に懸濁させた研磨剤を用
いて0.5μm研磨した後の、原子吸光法による不純物
分析の結果を示す。参考のため、コンポール80で研磨
した場合の結果も示す。Next, Table 2 shows the film thickness 1 obtained by thermally oxidizing silicon.
μm silicon oxide film and 1 μm thick silicon oxide film containing high concentrations of phosphorus and boron (hereinafter referred to as BPSG)
Was polished with an abrasive in which 1 wt% of a powder containing cerium oxide having an average particle size of 2.5 μm and a maximum particle size of 12.0 μm was suspended in water, and then 0.5 μm was polished. The results are shown. For reference, the results of polishing with Compol 80 are also shown.
【0025】[0025]
【表2】 [Table 2]
【0026】コンポール80で研磨した場合には、シリ
コン熱酸化膜ではRef.の研磨を行っていないものの
値(文献に記載されている通常の値)に比べ1桁程度ナ
トリウムのレベルが高くなっており、BPSG膜におい
ては2桁以上もナトリウムのレベルが高くなっている。When polished by Compol 80, Ref. The level of sodium is about one digit higher than that of a sample not polished (normal value described in the literature), and the level of sodium is higher by two digits or more in the BPSG film.
【0027】これに対し、酸化セリウムを含む研磨剤で
研磨したものでは、シリコン熱酸化膜、BPSG膜、共
にナトリウムのレベルは、Ref.の研磨を行っていな
いものの値(文献に記載されている通常の値)と同等
で、他の元素についても汚染は観察されなかった。ま
た、Ceは1×1010atoms/cm2 以下であっ
た。酸化セリウムを含む研磨剤は、先に述べたようにバ
ストネサイトを粉砕、焼成したもので、特にアルカリ金
属等を取り除く事は行っていないが、それでもアルカリ
金属汚染は観察されず、バストネサイトを原料とする研
磨剤でも半導体装置の製造に支障ない事が分かる。On the other hand, in the case of polishing with a polishing agent containing cerium oxide, the silicon thermal oxide film and the BPSG film both have a sodium level of Ref. Was not polished, and was equivalent to the value (normal value described in the literature), and no contamination was observed for other elements. Ce is 1 × 10 10 atoms / cm 2 It was below. The polishing agent containing cerium oxide is obtained by pulverizing and firing bastnaesite as described above, and does not particularly remove alkali metals, but no alkali metal contamination is observed. It can be understood that the polishing agent made of the raw material does not hinder the manufacture of the semiconductor device.
【0028】次に、表3にシリコンの熱酸化シリコン酸
化膜、シリコン窒化膜、及びBPSG膜を平均粒径2.
5μm、最大粒径12.0μmの酸化セリウムを含む粉
体1wt%を水に懸濁させた研磨剤を用いて研磨した際
の研磨速度を示す。参考のため、コンポール80および
粒径12nmのシリカ粒子5wt%を水に懸濁させたも
の、さらにこれにアンモニアを10wt%加えたもの、
および水酸化ナトリウムを0.2wt%加えたものも合
わせて示す。Table 3 shows a thermally oxidized silicon oxide film, a silicon nitride film, and a BPSG film of silicon having an average particle size of 2.
It shows the polishing rate when polishing is performed using an abrasive in which 1 wt% of a powder containing cerium oxide having a maximum particle size of 5 μm and a maximum particle diameter of 12.0 μm is suspended in water. For reference, Compol 80 and 5 wt% silica particles having a particle size of 12 nm are suspended in water, and further, 10 wt% of ammonia is added thereto.
And the case where 0.2 wt% of sodium hydroxide is added is also shown.
【0029】[0029]
【表3】 [Table 3]
【0030】熱酸化したシリコン酸化膜の場合、コンポ
ール80の研磨速度は110nm/min程度である。
また、粒径12nmシリカ粒子5wt%を水に懸濁させ
ただけのものでは、研磨速度は6nm/minと非常に
小さい。これに、水酸化ナトリウムを0.2wt%加え
たものでは研磨速度は50nm/min、アンモニアを
10wt%加えたものでは18nm/minと増大する
が、アンモニアの効果は水酸化ナトリウムの効果に比べ
て小さい。さらにまた、コンポール80でシリコン窒化
膜、BPSG膜を研磨した時の研磨速度はそれぞれ40
nm/min、200nm/minである。In the case of a thermally oxidized silicon oxide film, the polishing rate of Compol 80 is about 110 nm / min.
In addition, when only 5 wt% of silica particles having a particle diameter of 12 nm are suspended in water, the polishing rate is as low as 6 nm / min. In addition, when 0.2 wt% of sodium hydroxide is added, the polishing rate increases to 50 nm / min, and when 10 wt% of ammonia is added, the polishing rate increases to 18 nm / min. However, the effect of ammonia is larger than that of sodium hydroxide. small. Furthermore, when the silicon nitride film and the BPSG film are polished by Compol 80, the polishing speed is 40
nm / min and 200 nm / min.
【0031】例えば500nmの熱酸化したシリコン酸
化膜を研磨によって除去する場合、コンポール80では
約5分、粒径12nmのシリカ粒子5wt%を水に懸濁
させたものに水酸化ナトリウムを0.2wt%加えたも
のでは約10分であるが、アンモニアを10wt%加え
たものでは30分程度もかかり実用できるものではな
い。For example, when removing a thermally oxidized silicon oxide film having a thickness of 500 nm by polishing, the Compol 80 is prepared by suspending 5 wt% of silica particles having a particle diameter of 12 nm in water for about 5 minutes and adding 0.2 wt% of sodium hydroxide to water. % Is about 10 minutes, while adding 10 wt% of ammonia takes about 30 minutes and is not practical.
【0032】これに対し、平均粒子2.5μm、最大粒
径12.0μmの酸化セリウムを含む粉体1wt%を水
に懸濁させた研磨剤で研磨した場合には、シリコン酸化
膜の研磨速度が1000nm/min、シリコン窒化膜
の研磨速度が300nm/min、BPSG膜の研磨速
度が1200乃至1300nm/minと非常に早く、
500nmの膜を研磨によって除去するのにそれぞれ
0.5分、2分程度と生産への実用に有効な速度が得ら
れる。On the other hand, when 1 wt% of a powder containing cerium oxide having an average particle size of 2.5 μm and a maximum particle size of 12.0 μm is polished with an abrasive suspended in water, the polishing rate of the silicon oxide film is reduced. There 1000 nm / min, the polishing rate of the silicon nitride film is 300 nm / min, the polishing rate of the BPSG film is very fast and 1200 to 1300 nm / min,
The removal rate of the 500 nm film by polishing is about 0.5 minutes and 2 minutes, respectively, which is a practically effective speed for production.
【0033】本実施例では、研磨剤はバストネサイトを
粉砕、焼成したもので、その組成は、酸化セリウム50
wt%、その他の希土類金属の酸化物37wt%程度の
ものを水に懸濁させたものについて述べたが、酸化セリ
ウムを含む研磨剤は原料、製法、懸濁液の濃度など変更
可能である。また、研磨する絶縁膜についてはシリコン
熱酸化膜を中心に述べたが、化学的気相成長法で形成し
たシリコン酸化膜、窒化膜など他の絶縁膜、さらに、絶
縁膜の一部に導体膜が形成されているものにおいても有
効である。さらに、研磨装置の構造も実施例に述べたも
のに限られるものではない。その他、本発明の要旨を逸
脱しない範囲で、種々変形して実施できる。In this embodiment, the polishing agent is obtained by pulverizing and firing bastnasite, and its composition is cerium oxide 50
In the above description, a suspension containing about 37% by weight of a rare earth metal oxide in water was used. However, the abrasive containing cerium oxide can be changed in raw material, production method, concentration of the suspension, and the like. The description of the insulating film to be polished mainly focuses on the silicon thermal oxide film. However, other insulating films such as a silicon oxide film and a nitride film formed by a chemical vapor deposition method, and a conductive film as a part of the insulating film. Is also effective in the case where is formed. Further, the structure of the polishing apparatus is not limited to that described in the embodiment. In addition, various modifications can be made without departing from the scope of the present invention.
【0034】[0034]
【発明の効果】本発明によれば、酸化セリウムを含む研
磨剤を用いることにより、シリコン酸化膜やシリコン窒
化膜等の絶縁膜を高速で研磨することができる。また、
研磨の際に上記絶縁膜の内部にアルカリ金属汚染を引き
起こす事もない。さらに、絶縁膜表面に傷を発生させる
ことなく段差を平坦化しながら研磨することが可能であ
る。従って、半導体装置の製造において、絶縁膜の研磨
工程を実用化する事が容易になる。According to the present invention, an insulating film such as a silicon oxide film or a silicon nitride film can be polished at high speed by using a polishing agent containing cerium oxide. Also,
During the polishing, no alkali metal contamination occurs inside the insulating film. Furthermore, polishing can be performed while flattening a step without causing scratches on the surface of the insulating film. Therefore, in manufacturing a semiconductor device, it becomes easy to put the insulating film polishing process into practical use.
【図1】 本発明による半導体装置の製造方法の一実施
例を示す工程断面図。FIG. 1 is a process sectional view showing one embodiment of a method for manufacturing a semiconductor device according to the present invention.
【図2】 本発明に用いた研磨装置を示す概略図。FIG. 2 is a schematic view showing a polishing apparatus used in the present invention.
【図3】 従来の研磨工程を示す断面図。FIG. 3 is a cross-sectional view showing a conventional polishing step.
1 Si基板、 2 SiO2 膜、 3 ポリシリコン膜、 4 フォトレジスト(感光性樹脂層)、 5 SiO2 膜、 21 ターンテーブル、 22 研磨クロス、 23 研磨剤供給パイプ、 24 ウェーハ、 51 段差、 52 絶縁膜。Reference Signs List 1 Si substrate, 2 SiO 2 film, 3 polysilicon film, 4 photoresist (photosensitive resin layer), 5 SiO 2 film, 21 turntable, 22 polishing cloth, 23 abrasive supply pipe, 24 wafer, 51 step, 52 Insulating film.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 利一郎 神奈川県川崎市幸区堀川町72番地 株式 会社東芝 堀川町工場内 (56)参考文献 特開 昭58−61663(JP,A) 特開 昭64−87146(JP,A) 特開 昭59−201756(JP,A) 特開 昭64−45566(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/304 B24B 37/00 C09K 3/14 550 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Riichiro Aoki 72 Horikawacho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture In-house Horikawacho Plant (56) References JP-A-58-61663 (JP, A) JP-A Sho 64-87146 (JP, A) JP-A-59-201756 (JP, A) JP-A-64-45566 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/304 B24B 37/00 C09K 3/14 550
Claims (5)
該絶縁膜の少なくとも一部を、酸化セリウムを含みNa
濃度100ppm以下の粒子を水に懸濁させた研磨剤に
よって研磨し、取り除く工程とを有することを特徴とす
る半導体装置の製造方法。A step of forming an insulating film on a semiconductor substrate;
At least a part of the insulating film is made of Na containing cerium oxide.
A step of polishing and removing particles having a concentration of 100 ppm or less with an abrasive suspended in water .
該絶縁膜の少なくとも一部を、酸化セリウムを含みFeAt least a part of the insulating film is made of Fe containing cerium oxide.
濃度10000ppm以下の粒子を水に懸濁させた研磨Polishing with particles of 10,000 ppm or less suspended in water
剤によって研磨し、取り除く工程とを有することを特徴Polishing and removing with a chemical
とする半導体装置の製造方法。Manufacturing method of a semiconductor device.
形成する工程と、該絶縁膜を、酸化セリウムを含みNa
濃度100ppm以下の粒子を水に懸濁させた研磨剤に
よって研磨して平坦化する工程とを有することを特徴と
する半導体装置の製造方法。3. A step of forming an insulating film on a substrate having a step formed on its surface, and forming the insulating film on a substrate containing cerium oxide containing Na.
A step of polishing and flattening with an abrasive in which particles having a concentration of 100 ppm or less are suspended in water .
形成する工程と、該絶縁膜を、酸化セリウムを含みFeForming the insulating film and forming the insulating film using Fe containing cerium oxide.
濃度10000ppm以下の粒子を水に懸濁させた研磨Polishing with particles of 10,000 ppm or less suspended in water
剤によって研磨して平坦化する工程とを有することを特Polishing and flattening with an agent.
徴とする半導体装置の製造方法。A method for manufacturing a semiconductor device.
とを特徴とする請求項1乃至4のいずれかに記載の半導
体装置の製造方法。5. A method of manufacturing a semiconductor device according to any one of claims 1 to 4, wherein the maximum particle size of the particles is 4μm or less.
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13297892A JP3335667B2 (en) | 1992-05-26 | 1992-05-26 | Method for manufacturing semiconductor device |
KR1019930009027A KR0153787B1 (en) | 1992-05-26 | 1993-05-25 | A method of manufacturing semiconductor apparatus and a method of flattening |
US08/066,375 US5445996A (en) | 1992-05-26 | 1993-05-25 | Method for planarizing a semiconductor device having a amorphous layer |
GB9326510A GB2275130B (en) | 1992-05-26 | 1993-05-26 | Polishing apparatus and method for planarizing layer on a semiconductor wafer |
GB9611070A GB2299895B (en) | 1992-05-26 | 1993-05-26 | polishing apparatus for planarizing layer on a semiconductor wafer |
GB9326509A GB2275129B (en) | 1992-05-26 | 1993-05-26 | Method for planarizing a layer on a semiconductor wafer |
GB9611104A GB2298961B (en) | 1992-05-26 | 1993-05-26 | Polishing apparatus for planarizing layer on a semiconductor wafer |
GB9611090A GB2298960B (en) | 1992-05-26 | 1993-05-26 | Polishing apparatus and method for planarizing layer on a semiconductor wafer |
GB9310909A GB2267389B (en) | 1992-05-26 | 1993-05-26 | Polishing method for planarizing layer on a semiconductor wafer |
US08/451,226 US5597341A (en) | 1992-05-26 | 1995-05-26 | Semiconductor planarizing apparatus |
US08/897,324 US5914275A (en) | 1992-05-26 | 1997-07-21 | Polishing apparatus and method for planarizing layer on a semiconductor wafer |
US08/897,570 US5948205A (en) | 1992-05-26 | 1997-07-21 | Polishing apparatus and method for planarizing layer on a semiconductor wafer |
KR1019980001478A KR0153906B1 (en) | 1992-05-26 | 1998-01-12 | A polishing apparatus and a polishing method, and an apparatus for planarizing a semiconductor wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13297892A JP3335667B2 (en) | 1992-05-26 | 1992-05-26 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05326469A JPH05326469A (en) | 1993-12-10 |
JP3335667B2 true JP3335667B2 (en) | 2002-10-21 |
Family
ID=15093936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13297892A Expired - Lifetime JP3335667B2 (en) | 1992-05-26 | 1992-05-26 | Method for manufacturing semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3335667B2 (en) |
KR (1) | KR0153787B1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06216094A (en) * | 1993-01-18 | 1994-08-05 | Mitsubishi Materials Shilicon Corp | Polishing method for semiconductor substrate and manufacture of the substrate using same |
AU1670597A (en) * | 1996-02-07 | 1997-08-28 | Hitachi Chemical Company, Ltd. | Cerium oxide abrasive, semiconductor chip, semiconductor device, process for the production of them, and method for the polishing of substrates |
US5962343A (en) * | 1996-07-30 | 1999-10-05 | Nissan Chemical Industries, Ltd. | Process for producing crystalline ceric oxide particles and abrasive |
KR100420087B1 (en) | 1996-09-30 | 2004-02-25 | 히다치 가세고교 가부시끼가이샤 | Cerium Oxide Abrasive and Method of Abrading Substrates |
JPH10309660A (en) | 1997-05-07 | 1998-11-24 | Tokuyama Corp | Finishing abrasive |
JPH11181403A (en) * | 1997-12-18 | 1999-07-06 | Hitachi Chem Co Ltd | Cerium oxide abrasive and grinding of substrate |
WO2001000744A1 (en) | 1999-06-28 | 2001-01-04 | Nissan Chemical Industries, Ltd. | Abrasive compound for glass hard disk platter |
KR100578231B1 (en) * | 2000-06-30 | 2006-05-12 | 주식회사 하이닉스반도체 | Fabrication method of semiconductor device for planarization in damascene gate process |
TWI256971B (en) | 2002-08-09 | 2006-06-21 | Hitachi Chemical Co Ltd | CMP abrasive and method for polishing substrate |
JP2005203394A (en) | 2004-01-13 | 2005-07-28 | Nec Electronics Corp | Manufacturing method of semiconductor device |
EP1566420A1 (en) | 2004-01-23 | 2005-08-24 | JSR Corporation | Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method |
JP4292117B2 (en) | 2004-07-15 | 2009-07-08 | Jsr株式会社 | Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method |
JP4756996B2 (en) * | 2005-11-02 | 2011-08-24 | 三井金属鉱業株式会社 | Cerium-based abrasive |
WO2007069488A1 (en) | 2005-12-16 | 2007-06-21 | Jsr Corporation | Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing |
JP2008132593A (en) * | 2007-12-14 | 2008-06-12 | Hitachi Chem Co Ltd | Cerium oxide slurry, cerium oxide abrasive and base board polishing method |
-
1992
- 1992-05-26 JP JP13297892A patent/JP3335667B2/en not_active Expired - Lifetime
-
1993
- 1993-05-25 KR KR1019930009027A patent/KR0153787B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR940006204A (en) | 1994-03-23 |
JPH05326469A (en) | 1993-12-10 |
KR0153787B1 (en) | 1998-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3335667B2 (en) | Method for manufacturing semiconductor device | |
JP2592401B2 (en) | Composition and method for polishing and planarizing a surface | |
US6527819B2 (en) | Polishing slurries for copper and associated materials | |
JP3983949B2 (en) | Polishing cerium oxide slurry, its production method and polishing method | |
US20040065864A1 (en) | Acidic polishing slurry for the chemical-mechanical polishing of SiO2 isolation layers | |
JP2864451B2 (en) | Abrasive and polishing method | |
US20060218867A1 (en) | Polishing composition and polishing method using the same | |
US5938505A (en) | High selectivity oxide to nitride slurry | |
US6126518A (en) | Chemical mechanical polishing process for layers of semiconductor or isolating materials | |
JP3172008B2 (en) | Method for manufacturing semiconductor device | |
WO2001099170A2 (en) | Ceria slurry and process for the chemical-mechanical polishing of silicon dioxide | |
JP4972829B2 (en) | CMP polishing agent and substrate polishing method | |
WO2012051787A1 (en) | Chemical mechanical polishing liquid | |
JPH069194B2 (en) | Integrated circuits from wafers with improved flatness | |
US20020170237A1 (en) | Polishing slurry for the chemical-mechanical polishing of silica films | |
JP2003051469A (en) | Slurry composition for cmp, patterning method, and semiconductor device | |
TWI757349B (en) | Silica-based particles for polishing and abrasives | |
JP2003510828A (en) | Compositions and methods for reducing or eliminating scratches and defects in a silicon dioxide CMP process | |
US20030211747A1 (en) | Shallow trench isolation polishing using mixed abrasive slurries | |
JPH1131675A (en) | Novel chemical/mechanical polishing method for layer of separation material with silicon dielectric or silicon as base material | |
JP3725357B2 (en) | Element isolation formation method | |
JP2006007399A (en) | Method for increasing polishing speed | |
JPH10102040A (en) | Cerium oxide abrasive and grinding of substrate | |
JPH10106990A (en) | Cerium oxide abrasive material and polishing method of substrate | |
CN114940866A (en) | Chemical mechanical polishing liquid for silicon wafers, preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070802 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080802 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090802 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090802 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100802 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100802 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110802 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110802 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120802 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120802 Year of fee payment: 10 |