[go: up one dir, main page]

JP3331867B2 - Capacitor abnormality detection device in capacitor equipment - Google Patents

Capacitor abnormality detection device in capacitor equipment

Info

Publication number
JP3331867B2
JP3331867B2 JP17839796A JP17839796A JP3331867B2 JP 3331867 B2 JP3331867 B2 JP 3331867B2 JP 17839796 A JP17839796 A JP 17839796A JP 17839796 A JP17839796 A JP 17839796A JP 3331867 B2 JP3331867 B2 JP 3331867B2
Authority
JP
Japan
Prior art keywords
capacitor
phase
current
capacitors
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17839796A
Other languages
Japanese (ja)
Other versions
JPH09327122A (en
Inventor
武憲 上田
雅彦 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP17839796A priority Critical patent/JP3331867B2/en
Publication of JPH09327122A publication Critical patent/JPH09327122A/en
Application granted granted Critical
Publication of JP3331867B2 publication Critical patent/JP3331867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Control Of Electrical Variables (AREA)
  • Protection Of Static Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、力率改善等の電力
用コンデンサ設備におけるコンデンサの異常検出装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting an abnormality of a capacitor in a power capacitor equipment for improving a power factor or the like.

【0002】[0002]

【従来の技術】力率改善等の電力用コンデンサ設備にお
けるコンデンサの異常検出方式として、大別すると、機
械的検出方式と電気的検出方式とがある。機械的検出方
式には、コンデンサを収容したケースの膨張を検出する
方式、内部圧力を検出する方式等があり、また、電気的
検出方式には、オープンデルタ方式、電圧差動検出方
式、中性点電圧検出方式、2重中性点間検出方式、過電
流検出方式等がある。
2. Description of the Related Art An abnormality detection method for a capacitor in a power capacitor equipment such as power factor improvement is roughly classified into a mechanical detection method and an electric detection method. The mechanical detection method includes a method of detecting the expansion of the case containing the capacitor and a method of detecting the internal pressure.The electrical detection method includes an open delta method, a voltage differential detection method, and a neutral detection method. There are a point voltage detection method, a double neutral point detection method, an overcurrent detection method, and the like.

【0003】図3ないし図5は、電気的検出方式を用い
たコンデンサの異常検出装置の例の概略構成を示す図
で、図3は三相形式による過電圧検出方式、図4は単相
形式による過電圧検出方式、図5は不平衡形式による過
電流検出方式をそれぞれ示している。なお、各図に示す
例はコンデンサ単器についてのものである。以下、各図
に示す例を簡単に説明する。
FIG. 3 to FIG. 5 are diagrams showing a schematic configuration of an example of a capacitor abnormality detecting device using an electric detection system. FIG. 3 shows an overvoltage detection system using a three-phase system, and FIG. FIG. 5 shows an overvoltage detection system using an unbalanced type. The example shown in each figure is for a single capacitor. Hereinafter, the example shown in each figure will be briefly described.

【0004】各図において、C、C1、C2はコンデン
サの集合体(以下、「コンデンサ」という。)を示し、
図3に示す例では、コンデンサCは三相電力系統のR
相、S相、T相のそれぞれに挿入され、各コンデンサC
の端部は互いに接続(中性点)されている。各コンデン
サCの両端には放電コイルDCが接続され、各放電コイ
ルDCの2次コイルは直列に接続されて過電圧継電器に
接続されている。この場合、いずれかのコンデンサCの
内部で短絡が生じると、過電圧が発生しその電圧を過電
圧継電器で検出される。
In each of the figures, C, C1, and C2 denote an aggregate of capacitors (hereinafter, referred to as “capacitors”).
In the example shown in FIG. 3, the capacitor C is connected to the three-phase power system R
Phase, S phase, and T phase, each capacitor C
Are connected to each other (neutral point). Discharge coils DC are connected to both ends of each capacitor C, and secondary coils of each discharge coil DC are connected in series and connected to an overvoltage relay. In this case, if a short circuit occurs in any of the capacitors C, an overvoltage occurs and the voltage is detected by the overvoltage relay.

【0005】図4に示す例では、三相電力系統のR相、
S相、T相のそれぞれに挿入されたコンデンサC1及び
C2は、図3に示すコンデンサCを直列に等容量で分割
したそれぞれを示し、各コンデンサC1及びC2の両端
にはそれぞれ放電コイルDCが接続され、各相毎に各放
電コイルDCの2次コイルは極性を反転して直列に接続
されて過電圧継電器に接続されている。この場合、コン
デンサC1及びC2のいずれかの内部で短絡が生じる
と、過電圧が発生しその電圧を過電圧継電器で検出され
る。
In the example shown in FIG. 4, the R-phase of the three-phase power system,
Capacitors C1 and C2 inserted in each of the S-phase and the T-phase represent capacitors C shown in FIG. 3 divided in series by an equal capacity, and a discharge coil DC is connected to both ends of each of the capacitors C1 and C2. The secondary coil of each discharge coil DC is connected in series with the polarity inverted for each phase and connected to the overvoltage relay. In this case, if a short circuit occurs in any of the capacitors C1 and C2, an overvoltage occurs and the voltage is detected by the overvoltage relay.

【0006】図5に示す例では、三相電力系統のR相、
S相、T相のそれぞれに挿入されたコンデンサC1及び
C2は、図3に示すコンデンサCを並列に等容量で分割
したそれぞれを示し、各相のコンデンサC1の互いの接
続点(中性点)と各相のコンデンサC2の互いの接続点
(中性点)とを接続する接続線に変流器CTを挿入して
過電流継電器に接続されている。この場合、各相のコン
デンサC1及びC2のいずれかの内部で短絡が生じる
と、中性点間に不平衡電流が流れ、その電流を過電流継
電器で検出される。
In the example shown in FIG. 5, the R-phase of a three-phase power system,
Capacitors C1 and C2 inserted in each of the S-phase and T-phase represent capacitors C shown in FIG. 3 which are divided in parallel by equal capacitance, and the connection points (neutral points) of capacitors C1 of each phase. A current transformer CT is inserted in a connection line connecting the capacitor C2 of each phase and a connection point (neutral point) of each other, and is connected to an overcurrent relay. In this case, if a short circuit occurs in any of the capacitors C1 and C2 of each phase, an unbalanced current flows between the neutral points, and the current is detected by the overcurrent relay.

【0007】[0007]

【発明が解決しようとする課題】ところで、上記のよう
な従来からあるコンデンサの異常検出方式では、機械式
にあっては、コンデンサの誘電体がオールフイルム構成
になって以来、内部圧力の上昇が少なく検出感度が十分
にとれないという問題点がある。また、電気的検出方式
にあっては、感度を高めることができる反面、特に複数
のコンデンサ単器を並列接続されるような場合には、次
のような問題がある。
However, in the conventional capacitor abnormality detection system as described above, in the mechanical type, since the dielectric of the capacitor has an all-film structure, the internal pressure has increased. There is a problem that detection sensitivity cannot be sufficiently obtained. Further, in the electrical detection method, the sensitivity can be increased. However, in the case where a plurality of single capacitors are connected in parallel, the following problem occurs.

【0008】すなわち、オープンデルタや電圧作動方式
では、三相電力系統に接続されているコンデンサの端子
電圧を検出するための電圧変成器が必要なことと、三相
電力系統に接続されるコンデンサの中性点を引き出すこ
とが必要になり、ブッシング等も多く構造的に複雑とな
るばかりでなくコストが嵩む。
That is, in the open delta or voltage operation system, a voltage transformer for detecting the terminal voltage of the capacitor connected to the three-phase power system is required. It is necessary to extract a neutral point, so that there are many bushings and the like, which not only complicates the structure but also increases the cost.

【0009】2重中性点検出方式では、並列接続する三
相電力系統に接続したコンデンサの各々に中性点端子を
引き出す事が必要であり、同様にブッシング等も多く構
造的に複雑となるばかりでなく、汎用製品の運用ができ
ず高価となる。
In the double neutral point detection system, it is necessary to draw out a neutral terminal from each of the capacitors connected to the three-phase power system connected in parallel, and similarly, there are many bushings and the like, which complicates the structure. Not only that, general-purpose products cannot be operated, which is expensive.

【0010】過電流検出方式では、コンデンサ単器の並
列接続数が多くなるほど、故障時の過電流倍数が小さ
く、検出感度が高くとれないという問題点がある。
The overcurrent detection method has a problem that the larger the number of parallel connected single capacitors, the smaller the overcurrent multiple at the time of failure and the higher the detection sensitivity.

【0011】本発明は、上記のような問題点に鑑みなさ
れたもので、簡素な構成によってコンデンサの異常検出
を電気的に行なうことを可能し、特にコンデンサ単器を
複数用いる場合に効果的なコンデンサ設備におけるコン
デンサの異常検出装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and enables a capacitor to be electrically detected with a simple configuration, and is particularly effective when a plurality of capacitor units are used. An object of the present invention is to provide a capacitor abnormality detection device in a capacitor facility.

【0012】[0012]

【課題を解決するための手段】本発明の上記目的は、三
相電力系統の各相に接続されるコンデンサを有するコン
デンサ単器と、前記コンデンサと前記三相電力系統の各
相間に挿入される変流器と、前記変流器を並列接続して
その出力を入力する過電流継電器とを有し、前記三相電
力系統に前記コンデンサ単器が複数並列接続されるとと
もに、前記三相分の変流器のいずれかまたはそれぞれ
が、前記並列接続された複数のコンデンサ単器の異なる
コンデンサ単器に分配されて取付けられてなることを特
徴とするコンデンサ設備におけるコンデンサの異常検出
装置とすることにより達成される。
An object of the present invention is to provide a single capacitor having a capacitor connected to each phase of a three-phase power system, and a capacitor inserted between the capacitor and each phase of the three-phase power system. A current transformer and an overcurrent relay for connecting the current transformer in parallel and inputting an output thereof; a plurality of the capacitor units are connected in parallel to the three-phase power system ; Any or each of the current transformers
However, the plurality of capacitor units connected in parallel are different.
This is achieved by providing a capacitor abnormality detection device in a capacitor facility, which is distributed and attached to a single capacitor unit .

【0013】本発明の上記特徴によれば、全コンデンサ
が正常時は各変流器に流れる電流は、同一値で各々12
0゜の位相差をもった電流が流れるため、変流器の2次
側の合成値は零アンペアとなる。いずれかのコンデンサ
単器のコンデンサに故障が発生すると、故障したコンデ
ンサ単器には三相間で不平衡の電流が流れる。故障した
コンデンサ単器に流れる電流の各相合計値は零アンペア
となるが、異なるコンデンサ単器間での合計値は零アン
ペアとならず過電流継電器に電流が流れる。継電器はこ
の電流を検出するように整定することにより故障を検出
することができる。
According to the above-mentioned feature of the present invention, when all the capacitors are normal, the currents flowing through the respective current transformers have the same value and are equal to each other.
Since a current having a phase difference of 0 ° flows, the composite value on the secondary side of the current transformer is zero amperes. When a failure occurs in a capacitor of any one of the capacitor units, an unbalanced current flows between the three phases in the failed capacitor unit. The total value of each phase of the current flowing through the failed capacitor unit becomes zero ampere, but the total value between different capacitor units does not become zero ampere, and the current flows through the overcurrent relay. The relay can detect a fault by setting to detect this current.

【0014】また、変流器は、例えば、コンデンサ単器
が2台並列の場合、一方のコンデンサ単器のコンデンサ
には三相の内のR相とS相に、残り1台のコンデンサ単
器のコンデンサにはT相に変流器が分配されて取付けら
れ、また、コンデンサ単器が3台並列の場合、変流器は
各コンデンサ単器にR相、S相、T相と分配されて取付
けられ、いずれの場合にも変流器は3台で構成されて数
少なくて済み、かつ、コンデンサと三相電力系統の各相
間に取付けられるので、コンデンサ単器の構造は簡素な
ものとすることができる。
In the case where two current transformers are connected in parallel, for example, the capacitors of one of the current transformers are connected to the R-phase and the S-phase out of the three phases, and the remaining one is a single capacitor. When three current transformers are distributed and attached to the T phase, the current transformers are divided into R, S, and T phases for each capacitor. In each case, the number of current transformers is three, and the number is small, and it can be installed between the capacitor and each phase of the three-phase power system. Therefore, the structure of a single capacitor should be simple. Can be.

【0015】[0015]

【発明の実施の形態】次に、本発明に係るコンデンサ設
備におけるコンデンサの異常検出装置の例について、図
1および図2を参照して説明する。図1は三相電力系統
のR相、S相、T相にコンデンサ単器(1つのコンデン
サケースに収容されたコンデンサ群)を2台並列接続し
た場合の本発明に係るコンデンサ設備におけるコンデン
サの異常検出装置の回路説明図で、図2は三相電力系統
のR相、S相、T相にコンデンサ単器を3台並列接続し
た場合の本発明に係るコンデンサ設備におけるコンデン
サの異常検出装置の回路説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an example of a capacitor abnormality detecting device in a capacitor facility according to the present invention will be described with reference to FIGS. FIG. 1 shows an abnormality of a capacitor in the capacitor equipment according to the present invention when two single capacitors (capacitor groups housed in one capacitor case) are connected in parallel to the R, S, and T phases of a three-phase power system. FIG. 2 is a circuit diagram of a detection device. FIG. 2 is a circuit diagram of a capacitor abnormality detection device in a capacitor facility according to the present invention when three capacitor units are connected in parallel to the R, S, and T phases of a three-phase power system. FIG.

【0016】(1)三相電力系統のR相、S相、T相に
コンデンサ単器を2台並列接続した場合のコンデンサの
異常検出装置は、図1に示すように、一方のコンデンサ
単器SCAには、R相とS相に変流器CTを取付け、残
り1台のコンデンサ単器SCBにはT相に変流器CTを
取り付け、各変流器CTの2次コイル(1次はコンデン
サ単器の入力線)は並列に接続されて過電流継電器1に
接続されて構成される。この場合、変流器CTは三相分
の3台で、コンデンサ単器SCA及びコンデンサ単器S
CBにそれぞれ分配されて異なる相に取り付けられてい
る。
(1) An abnormality detecting device for a capacitor when two capacitor units are connected in parallel to the R, S, and T phases of a three-phase power system, as shown in FIG. Current transformers CT are attached to the R and S phases of the SCA, and current transformers CT are attached to the T phase of the remaining single capacitor SCB, and the secondary coils (primary is The input line of the capacitor unit is connected in parallel and connected to the overcurrent relay 1. In this case, there are three current transformers CT for three phases, a single capacitor SCA and a single capacitor S
Each is distributed to the CB and attached to a different phase.

【0017】このように構成されたコンデンサの異常検
出装置は、健全な正常時においては各変流器CTに流れ
る電流は同一値で各々120゜の位相差を持った電流が
流れるため変流器CTの2次側の合成値は零アンペアで
あり、いずれかのコンデンサ単器SCA、SCBのコン
デンサC1、C2に故障が発生すると、例えば、コンデ
ンサ単器SCAのR相に接続されたコンデンサの内部の
一部に短絡等(図1の矢印で示すコンデンサC1)の故
障が発生すると、コンデンサ単器SCAには三相間で不
平衡の電流が流れる。
In the capacitor abnormality detecting device thus constructed, the current flowing through each current transformer CT has the same value and a current having a phase difference of 120 ° flows in a normal state. The combined value on the secondary side of CT is zero amperes. If a failure occurs in any of the capacitors C1 and C2 of the single capacitors SCA and SCB, for example, the internal of the capacitor connected to the R phase of the single capacitor SCA When a short-circuit or the like (a capacitor C1 shown by an arrow in FIG. 1) occurs in a part of the capacitor, an unbalanced current flows between the three phases in the capacitor unit SCA.

【0018】この場合、故障したコンデンサ単器SCA
に流れる電流の各相の合計値は零アンペアとなるが、コ
ンデンサ単器SCB間での合計値は零アンペアにはなら
ず過電流継電器1に電流が流れ、故障検出ができる。
In this case, the failed capacitor unit SCA
The total value of each phase of the current flowing through the capacitor becomes zero ampere, but the total value between the single capacitor units SCB does not become zero ampere, and the current flows through the overcurrent relay 1 to detect a failure.

【0019】以下、コンデンサ単器SCA、SCBの各
相に流れる電流、及び正常時、故障時の電流について式
を用いて説明する。なお、式中I及びVはベクトル量で
あり式では省略されている。また、AおよびBはコンデ
ンサ単器SCA、SCBのそれぞれを示し、R、S、T
は三相電力系統のR相、S相、T相のそれぞれを示して
いる。
The currents flowing through the phases of the single capacitors SCA and SCB, and the currents during normal times and faults will be described below using equations. In the expression, I and V are vector quantities and are omitted in the expression. A and B respectively denote the single capacitors SCA and SCB, and R, S, T
Indicates the R, S, and T phases of the three-phase power system.

【0020】コンデンサ単器SCAの各相電流は、 IRA={1−(YRA+aYSA+aYTA)/
(YRA+YSA+YTA)}VRYRA ISA={a−(YRA+aYSA+aYTA)/
(YRA+YSA+YTA)}VRYSA ITA={a−(YRA+aYSA+aYTA)/
(YRA+YSA+YTA)}VRYTA
Each phase current of the capacitor unit SCA is given by: IRA = {1- (YRA + a 2 YSA + aYTA) /
(YRA + YSA + YTA)} VRYRA ISA = {a 2 − (YRA + a 2 YSA + aYTA) /
(YRA + YSA + YTA)} VRYSA ITA = {a- (YRA + a 2 YSA + aYTA) /
(YRA + YSA + YTA) @VRYTA

【0021】コンデンサ単器SCBの各相電流は、 IRB={1−(YRB+aYSB+aYTB)/
(YRB+YSB+YTB)}VRYRB ISB={a−(YRB+aYSB+aYTB)/
(YRB+YSB+YTB)}VRYSB ITB={a−(YRB+aYSB+aYTB)/
(YRB+YSB+YTB)}VRYTB
Each phase current of the capacitor unit SCB is expressed as follows: IRB = {1− (YRB + a 2 YSB + aYTB) /
(YRB + YSB + YTB)} VRYRB ISB = {a 2 − (YRB + a 2 YSB + aYTB) /
(YRB + YSB + YTB)} VRYSB ITB = {a- (YRB + a 2 YSB + aYTB) /
(YRB + YSB + YTB)} VRYTB

【0022】但し、a=−1/2+j(ルート3)/
2、 a=−1/2−j(ルート3)/2、 VR=
aVS=aVT(相電圧)
Where a = -1 / 2 + j (route 3) /
2, a 2 = -1 / 2 -j ( root 3) / 2, VR =
aVS = a 2 VT (phase voltage)

【0023】コンデンサ単器SCAのみの三相合計値
は、 IAT=IRA+ISA+ITA=0
The three-phase total value of only the capacitor unit SCA is: IAT = IRA + ISA + ITA = 0

【0024】一方、過電流継電器1の入力電流は、コン
デンサ単器SCAのR相、S相とコンデンサ単器SCB
のT相の合計値であるから、過電流継電器1に流れる電
流ITは、IT=IRA+ISA+ITB=−ITA+
ITB(ただし、IRA+ISA=−ITA)
On the other hand, the input current of the overcurrent relay 1 depends on the R and S phases of the single capacitor SCA and the single capacitor SCB.
, The current IT flowing in the overcurrent relay 1 is given by IT = IRA + ISA + ITB = −ITA +
ITB (However, IRA + ISA = -ITA)

【0025】正常時においては、絶対値IRA=絶対値
IRB=絶対値ISA=絶対値ISB=絶対値ITA=
絶対値ITBであるから、IT=0となる。
In a normal state, absolute value IRA = absolute value IRB = absolute value ISA = absolute value ISB = absolute value ITA =
Since it is the absolute value ITB, IT = 0.

【0026】故障時においては、図1に示すように、コ
ンデンサ単器SCAのコンデンサC1が短絡故障した場
合について、下記の通りになる。 YRA=2、0(p.u) YSA=YTA=1、0
(p.u) YRB=YSB=YTB=1、0(p.u)、VR=
1、0(p.u) ITB=a=−1/2+j(ルート3)/2 ITA=−0、75+j(ルート3)/2 すなわち、IT=−ITA+ITB=0、25(p.
u)
At the time of failure, as shown in FIG. 1, the case where the capacitor C1 of the single capacitor unit SCA has a short-circuit failure is as follows. YRA = 2, 0 (pu) YSA = YTA = 1, 0
(Pu) YRB = YSB = YTB = 1, 0 (pu), VR =
1, 0 (pu) ITB = a = − / + j (route 3) / 2 ITA = −0, 75 + j (route 3) / 2 That is, IT = −ITA + ITB = 0, 25 (p.
u)

【0027】コンデンサ単器SCAの定格電流は1、0
(p.u)であるので継電器の整定値は一方のコンデン
サ単器SCBの定格電流の25%に対し余裕をみて決定
すればよく2台の合計電流に対するより感度を高くとる
ことができる。
The rated current of the capacitor unit SCA is 1, 0
(Pu), the setting value of the relay should be determined with a margin for 25% of the rated current of one capacitor unit SCB, and the sensitivity to the total current of the two units can be increased.

【0028】(2)三相電力系統のR相、S相、T相に
コンデンサ単器を3台並列接続した場合のコンデンサの
異常検出装置は、図2に示すように、1台目のコンデン
サ単器SCAにはR相に、2台目のコンデンサ単器SC
BにはS相に、3台目のコンデンサ単器SCCにはT相
に変流器CTを取付け、各変流器CTの2次コイルは並
列に接続されて過電流継電器1に接続されて構成され
る。この場合、変流器CTは三相分の3台で、コンデン
サ単器SCA、コンデンサ単器SCB及びコンデンサ単
器SCCにそれぞれ分配されて異なる相に取り付けられ
ている。
(2) An abnormality detecting device for a capacitor when three single capacitors are connected in parallel to the R, S, and T phases of a three-phase power system, as shown in FIG. In the single unit SCA, the second capacitor unit SC in the R phase
Current transformers CT are attached to the B phase in the S phase and the third capacitor unit SCC to the T phase, and the secondary coils of each current transformer CT are connected in parallel and connected to the overcurrent relay 1. Be composed. In this case, there are three current transformers CT for three phases, which are respectively distributed to the single capacitor unit SCA, the single capacitor unit SCB, and the single capacitor unit SCC and attached to different phases.

【0029】このように構成されたコンデンサの異常検
出装置は、前述した2台の場合と同様にいずれかのコン
デンサ単器SCA、SCB、SCCのコンデンサC1、
C2に故障が発生すると、例えば、コンデンサ単器SC
AのR相に接続されたコンデンサの内部の一部に短絡等
(図2の矢印で示すコンデンサC1)の故障が発生する
と、故障したコンデンサ単器SCAに流れる電流の各相
の合計値は零アンペアとなるが、他のコンデンサ単器間
での合計値は零アンペアにはならず過電流継電器1に電
流が流れ、故障検出ができる。
The abnormality detecting device for a capacitor having the above-mentioned configuration is similar to the two devices described above, and the capacitor C1 of any one of the capacitor units SCA, SCB and SCC is used.
When a failure occurs in C2, for example, the capacitor unit SC
If a short-circuit or the like (a capacitor C1 shown by an arrow in FIG. 2) occurs in a part of the capacitor connected to the R-phase of A, the total value of the phases of the current flowing through the failed capacitor unit SCA becomes zero. However, the total value between the other capacitor units does not become zero amperes, but a current flows through the overcurrent relay 1 to detect a failure.

【0030】以下前記2台の場合同様にして、コンデン
サ単器SCA、SCB、SCCの各相に流れる電流、及
び正常時、故障時の電流について式を用いて説明する。
なお、式中I及びVはベクトル量であり式では省略され
ている。また、A、BおよびCはコンデンサ単器SC
A、SCB、SCCのそれぞれを示し、R、S、Tは三
相電力系統のR相、S相、T相のそれぞれを示してい
る。
Hereinafter, similarly, the currents flowing through the respective phases of the single capacitors SCA, SCB, and SCC, and the currents in the normal state and the fault state will be described by using equations.
In the expression, I and V are vector quantities and are omitted in the expression. A, B and C are single capacitors SC
A, SCB, and SCC are shown, and R, S, and T show each of the R, S, and T phases of the three-phase power system.

【0031】コンデンサ単器SCAの各相電流は、 IRA={1−(YRA+aYSA+aYTA)/
(YRA+YSA+YTA)}VRYRA ISA={a−(YRA+aYSA+aYTA)/
(YRA+YSA+YTA)}VRYSA ITA={a−(YRA+aYSA+aYTA)/
(YRA+YSA+YTA)}VRYTA
Each phase current of the capacitor unit SCA is given by: IRA = {1− (YRA + a 2 YSA + aYTA) /
(YRA + YSA + YTA)} VRYRA ISA = {a 2 − (YRA + a 2 YSA + aYTA) /
(YRA + YSA + YTA)} VRYSA ITA = {a- (YRA + a 2 YSA + aYTA) /
(YRA + YSA + YTA) @VRYTA

【0032】コンデンサ単器SCBの各相電流は、 IRB={1−(YRB+aYSB+aYTB)/
(YRB+YSB+YTB)}VRYRB ISB={a−(YRB+aYSB+aYTB)/
(YRB+YSB+YTB)}VRYSB ITB={a−(YRB+aYSB+aYTB)/
(YRB+YSB+YTB)}VRYTB
Each phase current of the capacitor unit SCB is given by: IRB = {1- (YRB + a 2 YSB + aYTB) /
(YRB + YSB + YTB)} VRYRB ISB = {a 2 − (YRB + a 2 YSB + aYTB) /
(YRB + YSB + YTB)} VRYSB ITB = {a- (YRB + a 2 YSB + aYTB) /
(YRB + YSB + YTB)} VRYTB

【0033】コンデンサ単器SCCの各相電流は、 IRC={1−(YRC+aYSC+aYTC)/
(YRC+YSC+YTC)}VRYRC ISC={a−(YRC+aYSC+aYTC)/
(YRC+YSC+YTC)}VRYSC ITC={a−(YRC+aYSC+aYTC)/
(YRC+YSC+YTC)}VRYTC
Each phase current of the capacitor unit SCC is given by: IRC = {1− (YRC + a 2 YSC + aYTC) /
(YRC + YSC + YTC)} VRYRC ISC = {a 2 − (YRC + a 2 YSC + aYTC) /
(YRC + YSC + YTC)} VRYSC ITC = {a- (YRC + a 2 YSC + aYTC) /
(YRC + YSC + YTC)} VRYTC

【0034】過電流継電器1の入力電流は、コンデンサ
単器SCAのR相、コンデンサ単器SCBのS相とコン
デンサ単器SCCのT相の合計値であるから、過電流継
電器1に流れる電流ITは、IT=IRA+ISB+I
TC
The input current of the overcurrent relay 1 is the sum of the R phase of the single capacitor SCA, the S phase of the single capacitor SCB, and the T phase of the single capacitor SCC. Is IT = IRA + ISB + I
TC

【0035】正常時においては、下記の式が成立するこ
とにより、電流IT=0となる。 絶対値IRA=絶対値IRB=絶対値IRC=絶対値I
SA=絶対値ISB=絶対値ISC=絶対値ITA=絶
対値ITB=絶対値ITC
In a normal state, the current IT becomes zero by the following equation. Absolute value IRA = absolute value IRB = absolute value IRC = absolute value I
SA = absolute value ISB = absolute value ISC = absolute value ITA = absolute value ITB = absolute value ITC

【0036】故障時においては、図2に示すように、コ
ンデンサ単器SCAのコンデンサC1が短絡故障した場
合について、下記の通りになる。
At the time of failure, as shown in FIG. 2, the case where the capacitor C1 of the capacitor unit SCA has a short-circuit failure is as follows.

【0037】YRA=2、0(p.u) YRB=YS
B=YSC=YSA=YTA=YRC=YSC=YTC
=1、0(p.u) VR=1、0(p.u) IRA
=1、5(p.u) ISB=a=−1/2+j(ルート3)/2 ITC=a=−1/2−j(ルート3)/2
YRA = 2, 0 (pu) YRB = YS
B = YSC = YSA = YTA = YRC = YSC = YTC
= 1, 0 (pu) VR = 1, 0 (pu) IRA
= 1,5 (pu) ISB = a = −1 / 2 + j (route 3) / 2 ITC = a 2 = −1 / 2−j (route 3) / 2

【0038】過電流継電器1に流れる電流ITは、 IT=IRA+ISB=ITC=0、5(p.u)The current IT flowing in the overcurrent relay 1 is as follows: IT = IRA + ISB = ITC = 0, 5 (pu)

【0039】このように、2台並列の場合と同様に、コ
ンデンサ単器SCAの定格電流は1、0(p.u)であ
るので、過電流継電器1の整定値は3台中1台のコンデ
ン単器の定格電流の50%に対し余裕をみて決定すれば
よく3台の合計電流に対するより感度を高くとることが
できる。
As described above, the rated current of the single capacitor unit SCA is 1, 0 (pu) as in the case of two units in parallel, so that the set value of the overcurrent relay 1 is one of three capacitors. It is sufficient to determine the margin with respect to 50% of the rated current of the unit, and it is possible to obtain higher sensitivity to the total current of the three units.

【0040】なお、三相電力系統にコンデンサ単器を2
台及び3台並列接続したものについて説明したが、三相
電力系統に並列接続されるコンデンサ単器は2台及び3
台に限るものではないく、4台以上の並列接続として本
方式を適用すれば故障検出は可能である。
It should be noted that two capacitor units are used in the three-phase power system.
In the above description, two and three capacitors are connected in parallel, but two and three capacitors are connected in parallel to the three-phase power system.
The present invention is not limited to the number of units, and failure detection is possible if this method is applied as four or more units connected in parallel.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
並列接続したコンデンサ単器の入力部の各々異なる相に
変流器を取り付けた構造にすることにより、コンデンサ
単器のブッシング等も少なく構造を簡単にすると共に、
最小限の変流器により高感度に異常を検出することがで
き、コストの低減されたコンデンサ設備におけるコンデ
ンサの異常検出装置を得ることができる。
As described above, according to the present invention,
By adopting a structure in which current transformers are attached to different phases of the input section of a single capacitor unit connected in parallel, bushing etc. of the single capacitor unit are reduced and the structure is simplified.
An abnormality can be detected with high sensitivity using a minimum number of current transformers, and a capacitor abnormality detection device in a capacitor facility with reduced cost can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るコンデンサ設備におけるコンデン
サの異常検出装置で三相電力系統にコンデンサ単器を2
台並列接続した場合の回路説明図である。
FIG. 1 is a diagram showing an apparatus for detecting an abnormality of a capacitor in a capacitor facility according to the present invention, in which two single capacitors are connected to a three-phase power system.
It is a circuit explanatory diagram at the time of connecting in parallel.

【図2】本発明に係るコンデンサ設備におけるコンデン
サの異常検出装置で三相電力系統にコンデンサ単器を3
台並列接続した場合の回路説明図である。
FIG. 2 shows a three-phase power system including three capacitor units in the capacitor abnormality detecting device in the capacitor equipment according to the present invention.
It is a circuit explanatory diagram at the time of connecting in parallel.

【図3】コンデンサ設備におけるコンデンサの異常検出
装置の一例の構成図である。
FIG. 3 is a configuration diagram of an example of a capacitor abnormality detection device in a capacitor facility.

【図4】コンデンサ設備におけるコンデンサの異常検出
装置の一例の構成図である。
FIG. 4 is a configuration diagram of an example of a capacitor abnormality detection device in a capacitor facility.

【図5】コンデンサ設備におけるコンデンサの異常検出
装置の一例の構成図である。
FIG. 5 is a configuration diagram of an example of a capacitor abnormality detection device in a capacitor facility.

【符号の説明】[Explanation of symbols]

1 過電流継電器 SCA、SCB、SCC コンデンサ単器 CT 変流器 R、S、T 三相電力系統の各相 1 Overcurrent relay SCA, SCB, SCC Single capacitor CT Current transformer R, S, T Each phase of three-phase power system

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02H 7/16 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) H02H 7/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 三相電力系統の各相に接続されるコンデ
ンサを有するコンデンサ単器と、前記コンデンサと前記
三相電力系統の各相間に挿入される変流器と、前記変流
器を並列接続してその出力を入力する過電流継電器とを
有し、前記三相電力系統に前記コンデンサ単器が複数並
列接続されるとともに、前記三相分の変流器のいずれか
またはそれぞれが、前記並列接続された複数のコンデン
サ単器の異なるコンデンサ単器に分配されて取付けられ
てなることを特徴とするコンデンサ設備におけるコンデ
ンサの異常検出装置。
1. A single capacitor having a capacitor connected to each phase of a three-phase power system, a current transformer inserted between the capacitor and each phase of the three-phase power system, and the current transformer in parallel. An overcurrent relay for connecting and inputting the output thereof, wherein a plurality of the capacitor units are connected in parallel to the three-phase power system, and any one of the three-phase current transformers.
Or each of the plurality of capacitors connected in parallel
Distributed and mounted on different capacitors
Be Te abnormality detecting device of a capacitor in the capacitor equipment according to claim.
JP17839796A 1996-06-04 1996-06-04 Capacitor abnormality detection device in capacitor equipment Expired - Lifetime JP3331867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17839796A JP3331867B2 (en) 1996-06-04 1996-06-04 Capacitor abnormality detection device in capacitor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17839796A JP3331867B2 (en) 1996-06-04 1996-06-04 Capacitor abnormality detection device in capacitor equipment

Publications (2)

Publication Number Publication Date
JPH09327122A JPH09327122A (en) 1997-12-16
JP3331867B2 true JP3331867B2 (en) 2002-10-07

Family

ID=16047793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17839796A Expired - Lifetime JP3331867B2 (en) 1996-06-04 1996-06-04 Capacitor abnormality detection device in capacitor equipment

Country Status (1)

Country Link
JP (1) JP3331867B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300550B (en) * 2014-09-19 2017-05-10 国家电网公司 Method for analyzing switching of low-voltage reactive power compensation capacitor

Also Published As

Publication number Publication date
JPH09327122A (en) 1997-12-16

Similar Documents

Publication Publication Date Title
US4398232A (en) Protective relaying methods and apparatus
US20150124358A1 (en) Feeder power source providing open feeder detection for a network protector by shifted neutral
US3909672A (en) Capacitor bank protection relay
US4634981A (en) Method for testing a circuit breaker using a three terminal current transformer
JP3331867B2 (en) Capacitor abnormality detection device in capacitor equipment
Lubich High resistance grounding and fault finding on three phase three wire (delta) power systems
EP0316202A2 (en) Selecting a faulty phase in a multi-phase electrical power system
JP2001352663A (en) Method and apparatus for detecting electrical leak in low-voltage ground electrical circuit
Kersting et al. Modeling and analysis of unsymmetrical transformer banks serving unbalanced loads
US3184644A (en) Polyphase electroresponsive apparatus
EP1134865B1 (en) Detecting wire break in electrical network
JPS63290122A (en) Overcurrent releasing device for breaker
CN1127745C (en) breaker
US2345440A (en) Protective system
US1939046A (en) Protective relay
Manditereza Fault Analysis
SU1065951A1 (en) Device for single-phase ground leakage protection of a.c. isolated neutral system
US5719489A (en) Apparatus for determining load currents
JPH04138021A (en) Capacitor protector
JP2607623B2 (en) Light ground fault occurrence cable identification method
JPH073342Y2 (en) Gas insulation device voltage detector
JP3615170B2 (en) Method for determining the application of DC voltage in an AC cable line, a method for removing the DC voltage, and a device for preventing an increase in potential of the AC cable line during a ground fault
JP2705198B2 (en) Ground fault detector
JP2602299Y2 (en) Zero-phase voltage detector connected to insulator capacitor
RU2055435C1 (en) Current protective gear for three-phase electrical installation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130726

Year of fee payment: 11

EXPY Cancellation because of completion of term