[go: up one dir, main page]

JP3326038B2 - Magnetic processing unit - Google Patents

Magnetic processing unit

Info

Publication number
JP3326038B2
JP3326038B2 JP02881095A JP2881095A JP3326038B2 JP 3326038 B2 JP3326038 B2 JP 3326038B2 JP 02881095 A JP02881095 A JP 02881095A JP 2881095 A JP2881095 A JP 2881095A JP 3326038 B2 JP3326038 B2 JP 3326038B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
liquid
flow
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02881095A
Other languages
Japanese (ja)
Other versions
JPH08197065A (en
Inventor
博満 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP02881095A priority Critical patent/JP3326038B2/en
Publication of JPH08197065A publication Critical patent/JPH08197065A/en
Application granted granted Critical
Publication of JP3326038B2 publication Critical patent/JP3326038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、水または水を主体と
する液体、またはこれらの液体を含む有機液体を磁気処
理する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for magnetically treating water, a liquid mainly composed of water, or an organic liquid containing these liquids.

【0002】[0002]

【従来の技術】磁気処理した水または水を主体とする液
体、またはこれらの液体を含む有機液体、総称して所謂
磁気水は、用水、配管の赤水・赤錆対策およびスケール
・スラッジ防除、農業、園芸における植物の成長促進、
食品製造における食品の鮮度保持、魚介類の養殖促進、
建築、土木におけるコンクリートの固化・強度の促進、
泡利用技術における泡の体積及び安定性の制御、燃料油
改質による燃焼効率の改善など、広い分野の改善に利用
され得ることが知られている。(「ユ.エム.ソコリス
キー。磁化水。レニングラード[ヒミヤ]1990.
(日本語訳版:日ソ通信社・新日本鋳鍛造協会、199
1.)」および「ヴェ・イ・クラッセン。水の磁気処
理。モスクワ[ヒミヤ]1982.(日本語訳版:日ソ
通信者・新日本鋳鍛造協会、1984.)」)。
2. Description of the Related Art Magnetically treated water or liquids mainly composed of water, or organic liquids containing these liquids, collectively called magnetic water, is used for service water, measures against red water and red rust in pipes, scale and sludge control, agriculture, Promotion of plant growth in horticulture,
Preservation of food freshness in food production, promotion of aquaculture of fish and shellfish,
Promotion of concrete solidification and strength in construction and civil engineering,
It is known that it can be used for improvement in a wide range of fields, such as control of foam volume and stability in foam utilization technology, and improvement of combustion efficiency by fuel oil reforming. ("YM Sokolisky. Magnetized water. Leningrad [Himiya] 1990.
(Japanese translation: Nisso News Agency, New Japan Cast Forging Association, 199
1. )) And "Ve Klassen. Magnetic treatment of water. Moscow [Himiya] 1982. (Japanese translation: Japan-Soviet Correspondent, New Japan Cast Forging Association, 1984.)").

【0003】上記の用途に応用される理由は、各種の陽
・陰イオン及び帯電した微細粒子などの荷電粒子を含む
被処理液体の流れにおいて、直角に磁界が印加されるこ
とによりいわゆるローレンツ力を発生し、該ローレンツ
力は中性である液体分子には働かず、荷電粒子のみに働
くので、液体分子と荷電粒子が相対運動、さらには衝突
を惹起することになり、従って液体中の各種原子の配列
・分布などの構造が変化して液体の性質が変化するた
め、密度・表面張力・粘度・誘電率・電解質の溶解速度
などの増大、または電気伝導度・気体溶解度などの減少
など、種々の効果が生じるからである。
[0003] The reason for application to the above-mentioned applications is that the so-called Lorentz force is generated by applying a magnetic field at right angles in the flow of the liquid to be treated containing various positive and negative ions and charged particles such as charged fine particles. Occurs, and the Lorentz force does not act on neutral liquid molecules but acts only on charged particles, so that the liquid molecules and the charged particles cause relative motion and even collisions, and therefore various atoms in the liquid. Since the structure of the liquid changes due to changes in the structure such as the arrangement and distribution of the liquid, various factors such as an increase in density, surface tension, viscosity, dielectric constant, electrolyte dissolution rate, etc., or a decrease in electrical conductivity, gas solubility, etc. This is because the effect described above occurs.

【0004】すなわち、前記文献には、 (1)水という流体は、水分子の四面体配置とその四面体
内部に自由空隙を伴う氷結晶格子の骨組みを保持する
(それゆえ、非緻密で脆い)氷状晶と、水分子が無秩序に
分布し空洞がなく氷状晶よりも緻密な非晶質相からな
り、 (2)該氷状晶の前記空隙の有効半径は1.4Åであり、流体
中の様々の荷電粒子が該空隙と相互作用することにより
前記の種々の効果が生じるのであるが、該相互作用を誘
起させる前記ローレンツ力を発生させるために、荷電粒
子を含む液体の流れに対して直角な磁界を印加する磁気
処理が適用されるのであり、 (3)該磁気処理の条件として、被処理液体の流れの流速
はv=0.5〜2.5m/s、形成される磁界の磁場強度はB=0.7〜
2.0kGが最適であり、対象となる荷電粒子はほとんどの
陽イオンとごく一部の陰イオンであり、該粒子の濃度の
限界は2mol/l以下であり、 (4)さらに、液体中での該イオンの自由飛程の行路およ
び該ローレンツ力による該イオンのサイクロイド運動の
半径に関する検討から派生して、印加される磁界が複数
で液体の流れに対して逆転する交番磁界であること、た
だし逆転する隣接の磁界同志は互いに遠く離れ相互間に
磁力線がないことが効果的であり、 (5)以上の検討の結果、前記の広い分野の改善に該磁気
処理を応用するにあたっては、液体の種類が種々異な
り、含まれる荷電粒子の種類(複合化した場合も含む)と
濃度も各種各様であり、目的とし期待する効果も様々で
あるため、それぞれの応用に対して個々別々に検討する
ことになり試行錯誤されている、と提案されている。
That is, according to the above-mentioned documents, (1) The fluid called water holds a tetrahedral arrangement of water molecules and a framework of an ice crystal lattice with free voids inside the tetrahedron.
(Hence, non-dense and brittle) ice crystals and amorphous phase denser than ice crystals without water molecules distributed randomly, (2) Effectiveness of the voids of the ice crystals The radius is 1.4 °, and the various effects described above occur when various charged particles in the fluid interact with the voids.In order to generate the Lorentz force that induces the interaction, the charged particles are charged. A magnetic process for applying a magnetic field perpendicular to the flow of the liquid containing particles is applied. (3) As a condition of the magnetic process, the flow velocity of the flow of the liquid to be processed is v = 0.5 to 2.5 m / s The magnetic field strength of the formed magnetic field is B = 0.7 ~
2.0 kG is optimal, the charged particles of interest are most cations and a small fraction of anions, the concentration limit of the particles is less than 2 mol / l, (4) Deriving from considerations about the path of the free range of the ions and the radius of the cycloid motion of the ions due to the Lorentz force, the applied magnetic field is a plurality of alternating magnetic fields that are reversed with respect to the flow of the liquid, provided that the reversed magnetic field comrades adjacent are mutually far effective that no magnetic field lines therebetween away and hits the applying result, the magnetic treatment to improve the wide field of the studies described above (5), liquid The types of charged particles are different, the types of charged particles (including complexed ones) and the concentrations are various, and the intended and expected effects are also various. Will be trial and error To have, to have been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかして、荷電粒子を
含む液体の流れに対して直角な磁界を形成し印加する磁
気処理装置について、磁気処理の前記の各種効果を向上
させ確保するため、各方面において種々の研究が多岐に
わたって検討されているが、未だ顕著な成果は得られて
いない。すなわち、磁気処理の対象は、被処理液体の種
類、含まれる荷電粒子の種類と濃度、所期の効果など広
範多様であり、さらに外見上同等と思われても微妙に変
化しているのに対し、磁気処理の条件は前記被処理液体
の流速v及び形成される磁界の磁場強度Bと交番磁界の
逆転回数が与えられているにすぎず、十分とは言い難
い。
SUMMARY OF THE INVENTION A magnetic processing apparatus for forming and applying a magnetic field perpendicular to the flow of a liquid containing charged particles is required to improve and secure the various effects of magnetic processing. Various studies have been conducted in various fields, but no remarkable results have yet been obtained. In other words, the target of magnetic treatment is a wide variety, such as the type of liquid to be treated, the type and concentration of charged particles contained, and the desired effect. On the other hand, the conditions of the magnetic treatment are only given the flow velocity v of the liquid to be treated, the magnetic field strength B of the formed magnetic field, and the number of reversals of the alternating magnetic field, and cannot be said to be sufficient.

【0006】従って、磁気処理の効果を向上させ確保す
るための対策としては、最適な磁界を形成するために高
性能または複雑形状の磁石(往々にして高価である)を
多数使用したり、該被処理液体の流れの流速を増大させ
たり(ポンプアップのため装置が大きくなり経費が増大
する)するにも拘わらず、徒に磁場強度もしくは液体の
流速を増大させるだけで、磁気処理の対象とする液体に
対して最適な磁気処理の条件とはなりえず、所期の効果
が得られないことが多いという問題があった。
Accordingly, measures to improve and secure the effect of the magnetic treatment include using a large number of high-performance or complicated-shaped magnets (often expensive) in order to form an optimal magnetic field. Despite increasing the flow velocity of the flow of the liquid to be processed (increased cost due to the equipment being increased due to the pump-up), it is necessary to increase the magnetic field strength or the flow velocity of the liquid to increase the flow rate. There is a problem that the optimal magnetic processing conditions cannot be obtained for the liquid to be processed, and the desired effect cannot be obtained in many cases.

【0007】この発明は、上述した磁気処理についての
従来の問題点に鑑み、荷電粒子を含む被処理液体の流れ
に対して直角な磁界を印加する磁気処理の効果が向上で
き安定確保され、よって前記の広い分野での改善に利用
できる磁気処理装置の提供を目的としている。
The present invention has been made in view of the above-mentioned conventional problems of the magnetic processing, and the effect of the magnetic processing for applying a magnetic field perpendicular to the flow of the liquid to be processed containing charged particles can be improved and the stability can be ensured. It is an object of the present invention to provide a magnetic processing apparatus that can be used for improvement in the above-mentioned wide fields.

【0008】[0008]

【課題を解決するための手段】発明者は、上記目的を達
成するために、対象とする液体の流れと該流れに対する
磁気処理の条件について種々検討した結果、磁場強度に
特定の逆転変化率を有する該交番磁界を形成することに
より、荷電粒子を含む被処理液体の流れに対して直角な
磁界を印加する磁気処理の効果が向上して安定確保され
ることを知見し、前記の広い分野での改善に利用できる
磁気処理装置の実現が可能となり、この発明を完成し
た。
In order to achieve the above object, the present inventors have conducted various studies on the flow of a target liquid and the conditions of magnetic processing for the flow, and as a result, have found that a specific reversal rate of change in the magnetic field strength is obtained. By forming the alternating magnetic field having, it is found that the effect of the magnetic processing of applying a magnetic field perpendicular to the flow of the liquid to be treated containing charged particles is improved and the effect is ensured. It has become possible to realize a magnetic processing apparatus that can be used for improvement of the present invention, and has completed the present invention.

【0009】すなわち、この発明は、荷電粒子を含む被
処理液体の流れに対して、直角方向の磁界が該流れ方向
に沿って複数形成されかつ順次交互に逆転されてなる、
交番磁界を印加する磁気処理装置において、前記の流れ
方向の単位長さに対する該交番磁界の磁場強度の逆転変
化率(ΔB/Δx)が、5kG/cm以上であることを
特徴とする磁気処理装置である。
That is, according to the present invention, a plurality of magnetic fields in a direction perpendicular to the flow of the liquid to be treated containing charged particles are formed along the flow direction and are alternately reversed in sequence.
A magnetic processing apparatus for applying an alternating magnetic field, wherein a reversal change rate (ΔB / Δx) of a magnetic field intensity of the alternating magnetic field with respect to the unit length in the flow direction is 5 kG / cm or more. It is.

【0010】また、この発明は、上記の構成において、
前記被処理液体は、それぞれ肉厚が一定で該肉厚方向に
磁化された一対の永久磁石が、同一磁化方向に分離対向
して配置される空間を流れ、前記直角方向の磁界は、該
空間により形成されることを特徴とする磁気処理装置、
前記交番磁界を形成する隣接の永久磁石の間隔(m)
と、前記一対の永久磁石の対向間隔(g)の比(m/
g)が、0.5〜1.5であることを特徴とする磁気処
理装置、を併せて提案する。
[0010] Further, according to the present invention, in the above configuration,
The liquid to be processed flows through a space in which a pair of permanent magnets each having a constant thickness and magnetized in the thickness direction are separated and arranged in the same magnetization direction, and the magnetic field in the perpendicular direction is generated in the space. A magnetic processing device characterized by being formed by
Distance (m) between adjacent permanent magnets forming the alternating magnetic field
And the ratio of the facing distance (g) between the pair of permanent magnets (m /
g) is 0.5 to 1.5, and a magnetic processing apparatus is also proposed.

【0011】この発明による前記交番磁界を印加する磁
気処理装置の一例を、該磁気処理装置の前記流れに平行
な断面を示す図1のBにおいて説明すると、一対の磁石
1,1′により液体の流れに対して直角方向に磁界H1
が形成され、同様に複数の一対の磁石(図では一対の磁
石2,2′及び3,3′の場合が示されている)により
複数の磁界(図ではそれぞれ磁界H2及びH3の場合が示
されている)が該流れ方向に縦列して形成されており、
磁界を形成する各々の一対の磁石の磁化方向を順次交互
に逆転することにより磁界方向は順次交互に逆転されて
いる。
An example of the magnetic processing apparatus for applying the alternating magnetic field according to the present invention will be described with reference to FIG. 1B which shows a cross section parallel to the flow of the magnetic processing apparatus. Magnetic field H 1 perpendicular to the flow
Is formed, and a plurality of magnetic fields (in the case of the magnetic fields H 2 and H 3 , respectively, are shown) by a plurality of magnets (a pair of magnets 2, 2 ′ and 3, 3 ′ are shown in the figure). Are formed in tandem with the flow direction,
The magnetic field directions are sequentially and alternately reversed by sequentially and alternately reversing the magnetization directions of the pair of magnets forming the magnetic field.

【0012】上述のような複数の一対の磁石により形成
される磁界、すなわち交番磁界の磁場強度分布の一例を
説明すると、図1Aに示すごとく磁場強度Bは、極値B
0、−B0を持ち、流れ方向(長さx)に原点O(磁界が
印加される流れの入口)から複数の極値B0、−B0(図
ではB0:2ケ、−B0:1ケ)の間を交番し、原点以外
にx軸と複数の点で(図ではx=1及び2;いずれも規
格化位置)で交わっている。すなわち、磁場強度Bは該
x軸との交点で逆転しており、この逆転の大きさを本発
明では逆転変化率(ΔB/Δx)と呼び、この逆転変化
率は該x軸に対する磁場強度B曲線の前記交点における
傾斜の大きさで与えられる。なお、図1Aにおいて、実
線は1.5g≧m≧0.5g、一点鎖線はm<0.5
g、破線は1.5g<mの場合をそれぞれ表している。
A description will be given of an example of a magnetic field formed by a plurality of magnets as described above, ie, a magnetic field intensity distribution of an alternating magnetic field. As shown in FIG.
0 , −B 0 , and a plurality of extreme values B 0 , −B 0 (in the figure, B 0 : 2, −B) from the origin O (the entrance of the flow to which the magnetic field is applied) in the flow direction (length x). 0 : 1), and intersects with the x-axis at a plurality of points (x = 1 and 2 in the figure; both are standardized positions) other than the origin. That is, the magnetic field strength B is reversed at the intersection with the x-axis, and the magnitude of the reversal is called a reversal change rate (ΔB / Δx) in the present invention, and the reversal change rate is the magnetic field strength B with respect to the x-axis. It is given by the magnitude of the slope at the intersection of the curves. In FIG. 1A, the solid line is 1.5 g ≧ m ≧ 0.5 g, and the alternate long and short dash line is m <0.5.
g and the broken line represent cases where 1.5g <m.

【0013】この発明において、上述の逆転変化率が、
ΔB/Δx=5kG/cm以上であるとした理由は、5
kG/cm未満では、荷電粒子を含む被処理液体の流れ
に対して直角な磁界を印加する磁気処理の効果は不十分
かつ不安定となるためであり、該数値が大きいほうが好
ましいが、実用的には50kG/cmを越えると、磁場
強度の極値B0又は−B0が制限を受けて低減したり、も
しくは磁界形成空間を狭小にするため、広範多様な対象
に適応できなくなり好ましくない。
In the present invention, the above-mentioned reverse change rate is
The reason that ΔB / Δx is 5 kG / cm or more is as follows.
If it is less than kG / cm, the effect of the magnetic treatment of applying a magnetic field perpendicular to the flow of the liquid to be treated containing charged particles is insufficient and unstable. If it exceeds 50 kG / cm, the extreme value B 0 or −B 0 of the magnetic field intensity is restricted and reduced, or the magnetic field forming space is narrowed, so that it cannot be applied to a wide variety of objects, which is not preferable.

【0014】また、この発明において、前記流れに対し
て直角方向に磁界を形成する上述の複数の一対の磁石
は、図1のB及び図2に示すようにそれぞれ一対の永久
磁石であり(図1Bは永久磁石1,1′、2,2′、及
び3,3′の場合)、それぞれ肉厚d、流れ方向長さ
l、幅bの直方体状でd方向に磁化され、それぞれ同一
磁化方向に間隔gを保って対向配置され、さらに各々の
一対の永久磁石は間隔mを保って隣接配置され、前記流
れ方向に縦列して複数連設される構成が採用できる。な
お、図において太い矢印は磁化方向を示している。また
図2〜図5に○内にに×印は液体の流れ方向が手前から
奥へ流れることを示している。
In the present invention, the above-mentioned pair of magnets forming a magnetic field in a direction perpendicular to the flow are a pair of permanent magnets as shown in FIG. 1B and FIG. 2, respectively. 1B are permanent magnets 1, 1 ', 2, 2', and 3, 3 '), each of which is magnetized in the d direction in a rectangular parallelepiped having a thickness d, a length 1 in the flow direction, and a width b, each having the same magnetization direction. , A pair of permanent magnets are arranged adjacent to each other with an interval m, and a plurality of permanent magnets are arranged in series in the flow direction. In the drawing, thick arrows indicate the magnetization directions. In FIGS. 2 to 5, a cross in a circle indicates that the liquid flows from the near side to the far side.

【0015】また、この発明において、永久磁石の形状
及び配置などの構成は、図3に示すような被処理液体の
流れ方向に見た形状が、該流れ方向と磁化に直角でな
い、例えば弓型形状の永久磁石による構成、図4示すよ
うな被処理液体の流れ方向に見て、同一磁化軸で同一磁
化方向にそれぞれ間隔g(図ではg,g′,g″,…)
を保って複数の永久磁石(図では1,1′,1″,…)
を分離配置した構成、図5に示すような被処理液体の流
れ方向に見て、肉厚が同じで直径の異なる径方向磁化の
2個の筒状永久磁石(1,1′)からなり、同一磁化方
向に間隔gを保って同軸配置した構成が採用できる。
In the present invention, the shape and arrangement of the permanent magnets are such that the shape as viewed in the flow direction of the liquid to be treated as shown in FIG. When viewed in the flow direction of the liquid to be treated as shown in FIG. 4, the interval is g (in the figure, g, g ′, g ″,.
And a plurality of permanent magnets (1, 1 ', 1 ", ... in the figure)
5, two cylindrical permanent magnets (1, 1 ') having the same thickness and different radial magnetizations as viewed in the flow direction of the liquid to be treated as shown in FIG. It is possible to adopt a configuration in which the components are coaxially arranged with the interval g kept in the same magnetization direction.

【0016】さらに、他の永久磁石の形状及び配置構成
として、図6に示すように被処理液体の流れ方向が変化
する場合に、一対の永久磁石の該流れ方向の形状が該流
れに相似しており、前記一対の永久磁石を間隔gに保っ
て対向配置し、該流れに沿って複数連設させた構成(図
では、流れ方向の変化は磁界の形成面内であるが、磁界
に垂直面を含む場合もある)、図7に示すように、図1
で示した構成の一対の永久磁石の一方を省略している
が、磁石の磁化方向に外部磁界が発生しているために、
被処理液体の流れ方向に対して直角な磁界が形成される
構成(図では永久磁石11,12,13とそれぞれの磁
界H11、H11′、H12、H12′、H13、H13′)が採用
できる。
Further, as another shape and arrangement of the permanent magnets, when the flow direction of the liquid to be treated changes as shown in FIG. 6, the shape of the pair of permanent magnets in the flow direction is similar to the flow. A configuration in which the pair of permanent magnets are arranged opposite to each other while maintaining a gap g, and a plurality of permanent magnets are continuously arranged along the flow (in the drawing, the change in the flow direction is within the plane where the magnetic field is formed; 1) as shown in FIG.
Although one of the pair of permanent magnets having the configuration shown in is omitted, since an external magnetic field is generated in the magnetization direction of the magnet,
Configuration perpendicular magnetic field to the flow direction of the liquid to be treated is formed (respective magnetic fields H 11 and permanent magnets 11, 12 and 13 in FIG, H 11 ', H 12, H 12', H 13, H 13 ') Can be adopted.

【0017】あるいは、図8に示すように1個の永久磁
石の磁化により外部に形成される磁界が、該磁石の端部
では被処理液体の流れ方向に対して直角になり、かつ該
磁石の両端部は互いに異極であることから交番磁界が形
成されることになる構成(図では永久磁石21、22と
それぞれの磁界H21、H21′、H22、H22′)、図9に
示すように、図1で示した構成における磁場強度Bの分
布を安定化させ、極値B0、−B0を大きく確保するため
に、複数連設された該永久磁石の磁石列を外側から継鉄
で被覆する構成、などが適用でき、広範な分野の多様な
用途、目的および経済的都合により適宜選択される。
Alternatively, as shown in FIG. 8, a magnetic field formed outside by the magnetization of one permanent magnet becomes perpendicular to the flow direction of the liquid to be treated at the end of the magnet, and Since both ends have different polarities, an alternating magnetic field is formed (in the figure, permanent magnets 21 and 22 and respective magnetic fields H 21 , H 21 ′, H 22 , and H 22 ′). FIG. as shown, to stabilize the distribution of magnetic field strength B in the configuration shown in FIG. 1, the extreme value B 0, in order to secure a large -B 0, in which a plurality of continuously arranged a magnet array of the permanent magnets from the outside A configuration coated with a yoke can be applied, and is appropriately selected according to various uses, purposes, and economical convenience in a wide range of fields.

【0018】また、この発明において、前記の隣接する
永久磁石の間隔mと、一対の永久磁石の対向間隔gの比
(m/g)を0.5〜1.5とした理由は、0.5未満
では図1Aの一点鎖線で示したように、隣接磁界と相互
に干渉して磁気漏洩が大きくなり磁場強度の極値B0
は−B0が低減するためであり、1.5を越えると図1
Aの破線で示したように、磁場強度変化の該流れ方向に
対する直線性が損なわれて、前記した所定の逆転変化率
が確保できなくなるので好ましくないことによる。
In the present invention, the ratio (m / g) of the distance m between the adjacent permanent magnets and the distance g between the pair of permanent magnets is 0.5 to 1.5. If it is less than 5, as indicated by the dashed line in FIG. 1A, it interferes with the adjacent magnetic field to increase the magnetic leakage and reduce the extreme value B 0 or −B 0 of the magnetic field strength, and exceeds 1.5. And Figure 1
As indicated by the broken line A, the linearity of the change in the magnetic field strength in the flow direction is impaired, and the above-mentioned predetermined reverse change rate cannot be secured.

【0019】[0019]

【作用】荷電粒子を含む被処理液体の流れに対して直角
な磁界を交番させて印加する前記磁気処理とは、該ロー
レンツ力による前記荷電粒子のサイクロイド運動をより
効果的ならしめて、該ローレンツ力の及ばない液体、す
なわち前記氷状晶及び該空隙との相互作用をより増大せ
しむるものであり、逆転する隣接の磁界の相互間に微量
の磁力線を許容しても該交番磁界の磁場強度の逆転変化
率を大きくすることにより、前記荷電粒子のサイクロイ
ド運動をさらに一層効果的にすることができる。
The magnetic treatment in which a magnetic field perpendicular to the flow of the liquid to be treated containing charged particles is alternately applied is to make the cycloid motion of the charged particles due to the Lorentz force more effective and to apply the Lorentz force Liquid, that is, the interaction with the icy crystal and the voids is further increased, and even if a small amount of magnetic field lines are allowed between the reversing adjacent magnetic fields, the magnetic field strength of the alternating magnetic field The cycloid motion of the charged particles can be made even more effective by increasing the reversal change rate of the charged particles.

【0020】印加されている磁界が逆転することによ
り、該荷電粒子の前記サイクロイド運動は方向を逆転さ
せられ、従って該荷電粒子はこの方向逆転の過程で前記
氷状晶及び該空隙との相互作用、すなわち衝撃力を強く
受けることになる。しかるに、前記サイクロイド運動の
方向逆転の過程が短いほど、すなわち該逆転変化率が大
きいほど、該方向逆転が急激に起こることになり、従っ
て前記の相互作用、すなわち衝撃力は強大になる。
By reversing the applied magnetic field, the cycloidal motion of the charged particles is reversed in direction, so that the charged particles interact with the ice and the voids in the course of this direction reversal. That is, the impact force is strongly received. However, the shorter the process of reversing the direction of the cycloid motion, that is, the greater the reversal change rate, the more the reversal of the direction occurs, and the greater the interaction, that is, the greater the impact force.

【0021】かくして磁気処理の条件として、上述のよ
うに磁場強度B0、−B0、交番磁界の逆転回数、及び被
処理液体の種類と流れの流速v、ならびに含まれる荷電
粒子の種類と濃度が最適に与えられたうえに、前記交番
磁界の磁場強度の逆転変化率が大きく形成されるなら
ば、前記の各種効果を向上させ確保することが可能とな
る。
As described above, the magnetic processing conditions include the magnetic field strengths B 0 , −B 0 , the number of reversals of the alternating magnetic field, the type of the liquid to be processed and the flow velocity v, and the type and concentration of the charged particles contained therein. If the reversal rate of change of the magnetic field strength of the alternating magnetic field is formed large in addition to the above, the various effects described above can be improved and ensured.

【0022】ところで、実際の応用面の改善に適用され
対象とされる液体においては、磁気処理による所期の効
果が均一である必要から、施される磁気処理の程度、す
なわち上述の磁気処理の条件が一様でなければならな
い。しかるに、一対の永久磁石が、それぞれ磁石肉厚d
が一定で該肉厚方向に磁化され、それぞれ磁石幅bで流
れ方向長さlであり、同一磁化方向に間隔gを保って対
向配置されることにより、前記被処理液体の流れに直角
の間隔断面(b×g)において磁場強度Bと液体の流速
vは一様となり、さらに前記同等の一対の永久磁石が間
隔mを保って隣接配置され、以下同様に複数の一対の永
久磁石が連設されることにより、前記間隔断面の流れに
沿って延長した断面に関して、交番磁界ならびにその逆
転回数および逆転変化率が一様となる。
By the way, in the liquid which is applied to improve the practical application, the desired effect of the magnetic processing needs to be uniform, and therefore the degree of the magnetic processing to be performed, that is, the above-described magnetic processing Conditions must be uniform. However, each of the pair of permanent magnets has a magnet thickness d.
Are uniformly magnetized in the thickness direction, each have a magnet width b and a length 1 in the flow direction, and are arranged opposite to each other in the same magnetization direction with an interval g therebetween, so that an interval perpendicular to the flow of the liquid to be treated is provided. In the cross section (b × g), the magnetic field strength B and the flow velocity v of the liquid become uniform, and the same pair of permanent magnets are arranged adjacent to each other with an interval m. As a result, the alternating magnetic field and the number of reversals and the rate of change of reversal become uniform with respect to the cross section extending along the flow of the interval cross section.

【0023】かくして、交番磁界ならびにその逆転変化
率が一様となり、磁石配置に関する該隣接間隔mと該対
向間隔gの比m/gが0.5〜1.5となるなれば、磁
場強度Bは、大きくかつ一様な極値B0、−B0を持つと
ともに流れ方向に複数の前記極値B0、−B0の間を一様
に交番し、さらに該流れに対し複数の点でx軸と直線的
かつ一様に交差させられることになり、よって該x軸と
の交点における磁場強度Bの逆転変化率は非常に大きく
形成されることは明白である。従って、荷電粒子を含む
被処理液体の流れに対して直角な磁界を印加する磁気処
理の効果が向上でき安定確保され、前記の広い分野での
改善に利用できる磁気処理装置の実現が可能となること
は言うまでもない。
Thus, if the alternating magnetic field and its reverse change rate become uniform, and the ratio m / g of the adjacent distance m and the opposed distance g with respect to the magnet arrangement becomes 0.5 to 1.5, the magnetic field intensity B Has a large and uniform extremum B 0 , −B 0 , and alternates uniformly in the flow direction between the extremums B 0 , −B 0 , and further, at a plurality of points with respect to the flow. Obviously, the X-axis is crossed linearly and uniformly, so that the reversal rate of change of the magnetic field strength B at the intersection with the x-axis is very large. Therefore, the effect of the magnetic treatment of applying a magnetic field perpendicular to the flow of the liquid to be treated containing charged particles can be improved, the stability can be ensured, and a magnetic treatment apparatus that can be used for improvement in the above-mentioned wide field can be realized. Needless to say.

【0024】[0024]

【実施例】【Example】

実施例 上述の図9に示すこの発明による磁気処理装置を下記諸
元で製作した。磁気処理装置が被処理液体の流れに対し
て直角に印加する磁界H1、H2、H3はそれぞれ永久磁
石1,1′、2,2′及び3,3′で形成され、各々の
磁石の材料特性は、残留磁化Br=11.2kG、保磁
力iHc=21kOe、(住友特殊金属製:NEOMA
X−30SH)、磁石寸法、配置などは、肉厚d=9m
m、流れ方向長さl=11mm、幅b=30mm、肉厚
方向磁化、対向間隔g=6mm、隣接間隔m=5mm、
さらに前記磁石列を外側から肉厚4mmの軟鉄板にて被
覆し継鉄とした。以上の構成にて形成される交番磁界
の、磁界H1、H3による磁場強度Bの極値B0と、磁界
2による磁場強度Bの極値−B0、及び磁場強度の逆転
変化率ΔB/Δxを表1に示す。
Example The magnetic processing apparatus according to the present invention shown in FIG. 9 described above was manufactured with the following specifications. Magnetic fields H 1 , H 2 , H 3 applied by the magnetic processing apparatus at right angles to the flow of the liquid to be treated are formed by permanent magnets 1, 1 ', 2, 2' and 3, 3 ', respectively. Have the following characteristics: remanent magnetization Br = 11.2 kG, coercive force iHc = 21 kOe, (Sumitomo Special Metals: NEOMA)
X-30SH), magnet dimensions, arrangement, etc., thickness d = 9m
m, flow direction length l = 11 mm, width b = 30 mm, thickness direction magnetization, facing distance g = 6 mm, adjacent distance m = 5 mm,
Further, the magnet row was covered from the outside with a soft iron plate having a thickness of 4 mm to form a yoke. The extreme value B 0 of the magnetic field strength B due to the magnetic fields H 1 and H 3 , the extreme value −B 0 of the magnetic field strength B due to the magnetic field H 2 , and the reversal change rate of the magnetic field strength of the alternating magnetic field formed by the above configuration Table 1 shows ΔB / Δx.

【0025】上記の磁気処理装置を利用して、用水、配
管の赤水対策における効果の程度を調査した。すなわ
ち、市販ガラス管を用いて閉管路5系を構成し、前記管
路の途中に市販鉄線(純度96.5%、寸法1mmφ×
57mm)を配置し、また図9に示すように前記磁気処
理装置の間隔空間に前記管路5系の一部分を通し、前記
閉管路5内に、磁気処理の効果の差異を顕著にし、調査
を加速するために被処理液体として3wt%食塩水溶液
の150mlを過不足なく丁度充填し、既に設けておい
た市販のプラスチック製ポンプ(図示せず)を駆動して
前記食塩水を流速v=0.5m/sで24時間循環させ
た。このように処理された該食塩水中の鉄の溶解量を、
吸光光度計を用いた公知の方法で測定した。得られた結
果を表1に併せて示す。
Using the above-mentioned magnetic treatment apparatus, the degree of the effect of the service water and the red water countermeasures of the piping was investigated. That is, a commercially available glass tube is used to form a closed line 5 system, and a commercially available iron wire (purity 96.5%, size 1 mmφ ×
57 mm), and as shown in FIG. 9, a part of the pipe system 5 is passed through the space between the magnetic processing devices to make the difference in the effect of the magnetic processing remarkable in the closed pipe 5. In order to accelerate, 150 ml of a 3 wt% saline solution as a liquid to be treated is just filled without excess and shortage, and a commercially available plastic pump (not shown) which is already provided is driven to flow the saline solution at a flow rate v = 0. Circulation was performed at 5 m / s for 24 hours. The amount of iron dissolved in the saline solution thus treated is
The measurement was performed by a known method using an absorptiometer. The results obtained are shown in Table 1.

【0026】比較例 比較のために製作した磁気処理装置は、永久磁石の配置
に関して隣接間隔をm=12mmとする以外は上記実施
例と同一製造条件であり、該磁気処理装置を用いて上記
実施例と同様に用水、配管の赤水対策における効果の程
度、すなわち食塩水中の鉄の溶解量を調査した。該磁気
処理装置による交番磁界の磁場強度の極値B0、極値−
0及び逆転変化率ΔB/Δx、並びに前記調査の結果
を表1に示す。
Comparative Example A magnetic processing apparatus manufactured for comparison was manufactured under the same manufacturing conditions as the above-described embodiment except that the distance between adjacent permanent magnets was changed to m = 12 mm. In the same manner as in the example, the degree of the effect of the water and the piping on the countermeasures against red water, that is, the amount of iron dissolved in the saline solution was investigated. The extreme value B 0 of the magnetic field intensity of the alternating magnetic field by the magnetic processing device, the extreme value −
Table 1 shows B 0 and the reversal change rate ΔB / Δx, and the results of the investigation.

【0027】参考例 対照のために、磁気処理装置を利用しない以外は実施例
と同様に調査した食塩水中の鉄の溶解量の測定結果を表
1に示す。
REFERENCE EXAMPLE For control, Table 1 shows the results of measurement of the amount of iron dissolved in saline, which was investigated in the same manner as in Example except that the magnetic treatment apparatus was not used.

【0028】実施例は比較例に対して、対象とする液体
の種類、含まれる荷電粒子の種類と濃度、液体の流速な
どの被処理液体の流れが同等であり、また磁気処理装置
の交番磁界の逆転回数、磁場強度の極値などの従来言わ
れている磁気処理の条件は同等であるが、表1より明ら
かなように被処理液体中の鉄の溶解量が大幅に低減され
ていることが、すなわち用水・配管の赤水対策が改善さ
れていることが確認できた。
In the embodiment, the flow of the liquid to be treated such as the kind of liquid to be treated, the kind and concentration of charged particles contained therein, the flow velocity of the liquid, and the like, are the same as those of the comparative example. The conditions of conventional magnetic treatment, such as the number of reversals and extreme values of the magnetic field strength, are the same, but as is clear from Table 1, the amount of iron dissolved in the liquid to be treated is significantly reduced. However, it was confirmed that the measures for red water in the water and piping were improved.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】この発明による、荷電粒子を含む被処理
液体の流れに対して、直角方向の磁界を該流れに沿って
複数形成してなる交番磁界を印加し、該交番磁界の逆転
回数と磁場強度の極値が最適に与えられ、該流れ方向の
単位長さに対する該交番磁界の磁場強度の逆転変化率が
5kG/cm以上である磁気処理装置は、発生するいわ
ゆるローレンツ力による該荷電粒子のサイクロイド運動
をさらに一層効果的にならしめ、液体分子との相互作用
すなわち衝突を強く誘起し、従って、広範多様な液体の
流れに対して直角な磁界を印加する磁気処理の効果が向
上でき安定確保され、前記の広い分野での改善に利用さ
れることが可能である。
According to the present invention, an alternating magnetic field formed by forming a plurality of magnetic fields in a direction perpendicular to the flow of a liquid to be treated containing charged particles is applied along the flow, and the number of reversals of the alternating magnetic field can be reduced. The magnetic processing apparatus in which the extreme value of the magnetic field strength is optimally given and the reversal change rate of the magnetic field strength of the alternating magnetic field with respect to the unit length in the flow direction is 5 kG / cm or more, is caused by the generation of the charged particles by the so-called Lorentz force. The effect of the magnetic treatment that applies a magnetic field perpendicular to the flow of a wide variety of liquids can be improved, making the cycloid movement of the liquid crystal more effective, and strongly inducing the interaction or collision with the liquid molecules. It can be secured and used for improvement in the above-mentioned broad fields.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Aは交番磁界の磁場強度分布を説明する、流れ
方向に対する磁場強度の関係を示すグラフであり、Bの
交番磁界を印加する磁気処理装置の構成を示す説明図で
あり、対象液体の流れに平行な断面図に対応させて示
す。
FIG. 1A is a graph illustrating the magnetic field intensity distribution of an alternating magnetic field and showing the relationship of the magnetic field intensity to the flow direction. FIG. 1A is an explanatory diagram showing the configuration of a magnetic processing apparatus that applies an alternating magnetic field of B. Is shown corresponding to a cross-sectional view parallel to the flow.

【図2】この発明における磁気処理装置の永久磁石の形
状及び配置などの構成を示す説明図であり、一対の直方
体状永久磁石の場合を示す。
FIG. 2 is an explanatory view showing a configuration such as a shape and an arrangement of a permanent magnet of the magnetic processing apparatus according to the present invention, showing a case of a pair of rectangular parallelepiped permanent magnets.

【図3】この発明における磁気処理装置の永久磁石の形
状及び配置などの構成を示す説明図であり、一対の弓形
状永久磁石の場合を示す。
FIG. 3 is an explanatory diagram showing a configuration such as a shape and an arrangement of a permanent magnet of the magnetic processing apparatus according to the present invention, showing a case of a pair of bow-shaped permanent magnets.

【図4】この発明における磁気処理装置の永久磁石の形
状及び配置などの構成を示す説明図であり、複数の直方
体状永久磁石の場合を示す。
FIG. 4 is an explanatory view showing a configuration such as a shape and an arrangement of a permanent magnet of the magnetic processing apparatus according to the present invention, and shows a case of a plurality of rectangular parallelepiped permanent magnets.

【図5】この発明における磁気処理装置の永久磁石の形
状及び配置などの構成を示す説明図であり、2個の筒状
永久磁石の場合を示す。
FIG. 5 is an explanatory view showing a configuration such as a shape and an arrangement of a permanent magnet of the magnetic processing apparatus according to the present invention, and shows a case of two cylindrical permanent magnets.

【図6】この発明における磁気処理装置の永久磁石の形
状及び配置などの構成を示す説明図であり、複数の弓形
状永久磁石を環状に配置した場合を示す。
FIG. 6 is an explanatory diagram showing a configuration such as a shape and an arrangement of permanent magnets of the magnetic processing apparatus according to the present invention, showing a case where a plurality of bow-shaped permanent magnets are arranged in a ring shape.

【図7】この発明における磁気処理装置の永久磁石の形
状及び配置などの構成を示す説明図であり、直方体状永
久磁石の磁化方向の外部磁界を利用すべく複数の該磁石
を連設した場合を示す。
FIG. 7 is an explanatory view showing a configuration such as a shape and an arrangement of a permanent magnet of the magnetic processing apparatus according to the present invention, in a case where a plurality of the permanent magnets are connected in series in order to use an external magnetic field in a magnetization direction of the rectangular parallelepiped permanent magnet; Is shown.

【図8】この発明における磁気処理装置の永久磁石の形
状及び配置などの構成を示す説明図であり、被処理液体
の流れ方向に磁化した棒状永久磁石の両端部における外
部磁界を利用すべく複数の該磁石を連設した場合を示
す。
FIG. 8 is an explanatory view showing a configuration such as a shape and an arrangement of a permanent magnet of the magnetic processing apparatus according to the present invention, wherein a plurality of permanent magnets magnetized in a flow direction of a liquid to be treated are used to utilize external magnetic fields at both ends of the permanent magnet. Shows the case where the magnets are connected in series.

【図9】この発明における磁気処理装置の永久磁石の形
状及び配置などの構成を示す説明図であり、図1の構成
に継鉄を設けた例を示す。
9 is an explanatory diagram showing a configuration such as a shape and an arrangement of a permanent magnet of the magnetic processing apparatus according to the present invention, and shows an example in which a yoke is provided in the configuration of FIG. 1;

【符号の説明】[Explanation of symbols]

1,1′,1′′,1n,2,2′,3,3′,11,
12,13,21,22, 永久磁石 41,42 継鉄 5 閉管路 d 磁石肉厚 l 長れ方向長さ b 磁石幅 g,g′,g″ 対向間隔 m 隣接間隔 H1,H1′,H1″,H2,H3,H11,H11′,H12
12′,H13,H13′,H21,H21′,H22,H22
磁界
1,1 ′, 1 ″, 1 n , 2,2 ′, 3,3 ′, 11,
12,13,21,22, the permanent magnet 41 yoke 5 closed pipe path d Re magnet thickness l length direction length b magnet width g, g ', g "opposing distance m adjacent interval H 1, H 1', H 1 ″, H 2 , H 3 , H 11 , H 11 ′, H 12 ,
H 12 ', H 13, H 13', H 21, H 21 ', H 22, H 22'
magnetic field

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 荷電粒子を含む被処理液体の流れに対し
て、直角方向の磁界が該流れ方向に沿って複数形成され
かつ順次交互に逆転されてなる、交番磁界を印加する磁
気処理装置において、前記の流れ方向の単位長さに対す
る該交番磁界の磁場強度の逆転変化率(ΔB/Δx)
が、5kG/cm以上であることを特徴とする磁気処理
装置。
1. A magnetic processing apparatus for applying an alternating magnetic field, wherein a plurality of magnetic fields in a direction perpendicular to a flow of a liquid to be processed containing charged particles are formed along the flow direction and are sequentially and alternately reversed. Reversal change rate of the magnetic field strength of the alternating magnetic field with respect to the unit length in the flow direction (ΔB / Δx)
Is 5 kG / cm or more.
【請求項2】 前記被処理液体は、それぞれ肉厚が一定
で該肉厚方向に磁化された一対の永久磁石が、同一磁化
方向に分離対向して配置される空間を流れ、前記直角方
向の磁界は、該空間により形成されることを特徴とする
請求項1記載の磁気処理装置。
2. The liquid to be treated flows through a space in which a pair of permanent magnets each having a constant thickness and magnetized in the thickness direction are separated and opposed in the same magnetization direction. The magnetic processing apparatus according to claim 1, wherein the magnetic field is formed by the space.
【請求項3】 前記交番磁界を形成する隣接の永久磁石
の間隔(m)と、前記一対の永久磁石の対向間隔(g)
の比(m/g)が、0.5〜1.5であることを特徴と
する請求項2記載の磁気処理装置。
3. An interval (m) between adjacent permanent magnets forming the alternating magnetic field and an opposing interval (g) between the pair of permanent magnets.
3. The magnetic processing apparatus according to claim 2, wherein the ratio (m / g) is 0.5 to 1.5.
JP02881095A 1995-01-24 1995-01-24 Magnetic processing unit Expired - Fee Related JP3326038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02881095A JP3326038B2 (en) 1995-01-24 1995-01-24 Magnetic processing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02881095A JP3326038B2 (en) 1995-01-24 1995-01-24 Magnetic processing unit

Publications (2)

Publication Number Publication Date
JPH08197065A JPH08197065A (en) 1996-08-06
JP3326038B2 true JP3326038B2 (en) 2002-09-17

Family

ID=12258776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02881095A Expired - Fee Related JP3326038B2 (en) 1995-01-24 1995-01-24 Magnetic processing unit

Country Status (1)

Country Link
JP (1) JP3326038B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3193903B2 (en) * 1998-06-15 2001-07-30 倉科 好麿 Fluid magnetic processing equipment
JP2004351366A (en) * 2003-05-30 2004-12-16 Toyobo Engineering Kk Magnetic treatment apparatus

Also Published As

Publication number Publication date
JPH08197065A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
US3228878A (en) Method and apparatus for treatment of flowing liquids to control deposition of solid matter therefrom
US4265754A (en) Water treating apparatus and methods
US4265746A (en) Water treating apparatus and methods
Ghernaout Magnetic field generation in the water treatment perspectives: An overview
US8636906B2 (en) Liquid purification using magnetic nanoparticles
RU2001110084A (en) Magnetic interaction device for mixing fluid
US20170266670A1 (en) Liquid purification using magnetic nanoparticles
US20190193088A1 (en) Liquid purification using magnetic nanoparticles
JP3326038B2 (en) Magnetic processing unit
US20020056666A1 (en) Magnet structures for treating liquids and gases
CN1249275A (en) Process and equipment for separating ions from solution
EP1574480A1 (en) Method and apparatus for activating water with permanent magnets
SU1579907A1 (en) Method of protecting surfaces of pipes, heat exchangers and tanks from scale formation in aqueous media
RU2046761C1 (en) Apparatus for magnetic treatment of liquid
SU1537647A1 (en) Method of magnetic treatment of liquid
WO2004033378A1 (en) Magnetic device for fluids treatment
SU791619A1 (en) Apparatus for magnetic treatment of liquid-fluid media
JP3128743U (en) Fluid magnetic processing equipment
JP2019010630A (en) Magnetic force intensifier and water activation system
JP2002239555A (en) Magnetic substance removal device in fluid
RU4138U1 (en) INSTALLATION FOR MAGNETIC PROCESSING OF PLASTIC LIQUID
SU1061841A1 (en) Magnetic separator-settler
Carpenter Magnetic Treatment Does Work
JPH0975630A (en) Magnetic separation device and method
JP2003251361A (en) Water treatment system and water treatment method

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees