[go: up one dir, main page]

JP3321876B2 - Ozone treatment apparatus, ozone treatment method, and water purification treatment method - Google Patents

Ozone treatment apparatus, ozone treatment method, and water purification treatment method

Info

Publication number
JP3321876B2
JP3321876B2 JP04562193A JP4562193A JP3321876B2 JP 3321876 B2 JP3321876 B2 JP 3321876B2 JP 04562193 A JP04562193 A JP 04562193A JP 4562193 A JP4562193 A JP 4562193A JP 3321876 B2 JP3321876 B2 JP 3321876B2
Authority
JP
Japan
Prior art keywords
ozone
concentration
water
treatment
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04562193A
Other languages
Japanese (ja)
Other versions
JPH06254576A (en
Inventor
昌男 藤生
洋 津倉
重夫 青柳
圭一 月足
弘志 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP04562193A priority Critical patent/JP3321876B2/en
Publication of JPH06254576A publication Critical patent/JPH06254576A/en
Application granted granted Critical
Publication of JP3321876B2 publication Critical patent/JP3321876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はオゾン処理に関し、特に
高度浄水処理におけるオゾン処理制御システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ozone treatment, and more particularly to an ozone treatment control system in advanced water purification treatment.

【0002】[0002]

【従来の技術】従来、オゾン処理は種々の分野にて用い
られおり、近年は高度浄水処理等にも適用されている。
従来の上水処理方法としては原水中の濁質成分を凝集沈
澱させた後に塩素処理を行う方法が挙げられる。このよ
うな従来の浄水処理方法を図1に示す。
2. Description of the Related Art Conventionally, ozone treatment has been used in various fields, and has recently been applied to advanced water purification treatment and the like.
As a conventional water treatment method, there is a method in which turbidity components in raw water are coagulated and precipitated and then chlorination is performed. FIG. 1 shows such a conventional water purification treatment method.

【0003】この図に示されるように、河川・湖沼から
取水した原水はまず着水井に入り、混和池にて原水中の
濁質成分(粘土、有機物等)を除去する目的で凝集剤を
注入混合された後にフロック形成池に入る。
As shown in this figure, raw water taken from rivers and lakes first enters a landing well, and a coagulant is injected in a mixing pond in order to remove turbid components (clay, organic matter, etc.) in the raw water. After mixing, it enters the floc formation pond.

【0004】このフロック形成池では原水をある時間滞
留させると共に緩やかな撹はんを行い、より大きなフロ
ックを成長させる。この後、フロック形成池で成長した
フロックは沈澱池で分離され、さらに、沈澱池で分離で
きない微フロックはろ過池で除去される。
[0004] In this floc forming pond, raw water is kept for a certain period of time and gently stirred to grow larger flocs. Thereafter, the flocs grown in the floc formation ponds are separated in the sedimentation basin, and fine flocs that cannot be separated in the sedimentation basin are removed in the filtration basin.

【0005】その後に殺藻処理、除鉄、除マンガン、色
度除去を目的とした塩素を注入する処理が行われる。
[0005] Thereafter, a process of injecting chlorine for the purpose of algicidal treatment, iron removal, manganese removal, and chromaticity removal is performed.

【0006】しかし、近年は特に都市部での水環境が悪
化して河川、湖沼の水質汚濁が進んできており、従来の
凝集沈澱、ろ過処理、および、塩素処理との組み合わせ
だけでは水道用原水中の色度、臭気の除去を完全に行う
ことが困難になっている。
However, in recent years, especially in urban areas, the water environment has deteriorated, and water pollution of rivers and lakes has been progressing. The water supply source has been used only in combination with the conventional coagulation sedimentation, filtration, and chlorination. It is difficult to completely remove chromaticity and odor in water.

【0007】また、原水の水質悪化にともなって塩素注
入量を増加すると、有機塩素化合物で発ガン性物質であ
るトリハロメタンが増加する懸念が生じている。さら
に、微量有害物質の混入も問題となってきている。
[0007] In addition, when the amount of chlorine injection is increased due to the deterioration of the quality of raw water, there is a concern that trihalomethane, which is an organic chlorine compound and is a carcinogenic substance, will increase. Furthermore, contamination of trace harmful substances has also become a problem.

【0008】このような背景から「安全でおいしい水」
を求める動きが強くなっている。そこで、これらの臭気
成分等の効果的な除去あるいは低減方法として、図2に
示されるようなオゾン処理、活性炭処理等と従来の上水
処理との複合処理が考えられている。
[0008] From such a background, "safe and delicious water"
The demand for is growing. Therefore, as a method for effectively removing or reducing these odor components and the like, a combined treatment of an ozone treatment, an activated carbon treatment, or the like and a conventional tap water treatment as shown in FIG. 2 has been considered.

【0009】この単位操作の一つであるオゾン処理は、
浄水工程中で例えば次のような効果を発揮する。
[0009] One of the unit operations, ozone treatment,
The following effects are exhibited during the water purification process.

【0010】1)原水の汚濁に伴う色度、着臭、味の除
去や改善。
[0010] 1) Removal and improvement of chromaticity, odor, and taste due to contamination of raw water.

【0011】2)細菌やウイルスの滅菌除去並びに殺
藻。
2) Sterilization and algicidal removal of bacteria and viruses.

【0012】3)鉄・マンガン等無機物の酸化処理によ
り除去し易くする。
3) It is easy to remove inorganic substances such as iron and manganese by oxidation treatment.

【0013】4)微量有害有機物の酸化分解。4) Oxidative decomposition of trace amounts of harmful organic substances.

【0014】また、浄水処理として下水2次処理(活性
汚泥法+沈澱法)水の再利用(修景・環境維持用水/親
水用水等)についても種々の検討がなされており、その
一つの方法としてオゾン処理による高度処理法が検討さ
れている。
Various studies have been made on the secondary treatment of sewage (activated sludge method + sedimentation method) as a water purification treatment (water for scenic landscape / environmental maintenance / water for hydrophilic use). An advanced treatment method by ozone treatment is being studied.

【0015】このオゾン処理にては2次処理水中の色
度、有機物、大腸菌群、一般細菌MBAS(発泡原因の
陰イオン界面活性剤)等が主な除去対象物質となる。
In this ozone treatment, chromaticity, organic matter, coliform bacteria, general bacteria MBAS (anionic surfactant causing foaming) and the like in the secondary treatment water are the main substances to be removed.

【0016】このようなオゾン処理を行う場合、電気料
金等の処理コストが相当の負担になると言われており、
上記の物質を短時間にかつ低い処理コスト(必要最低限
のO3注入率)で除去することが要求されている。
When performing such ozone treatment, it is said that processing costs such as electricity charges become a considerable burden.
It is required to remove the above substances in a short time and at a low processing cost (minimum O 3 injection rate).

【0017】[0017]

【発明が解決しようとする課題】一般に、オゾン処理を
行う場合には被処理水をオゾン接触槽へ連続流入・流出
させながらオゾン発生機で発生したオゾンガスを連続注
入して処理する方法をとる。
In general, when performing ozone treatment, a method is employed in which ozone gas generated by an ozone generator is continuously injected while water to be treated is continuously flowed into and out of an ozone contact tank.

【0018】従って、オゾンガスを処理水量に対してど
の程度の割合で注入するかを調節する必要がある。この
ようにオゾン処理を自動で効率よく連続的に行う場合に
はオゾン注入制御が必要となる。オゾン注入制御を行う
上で必要と考えられる計測項目は、処理水量、注入オゾ
ン化空気流量、注入オゾン濃度、溶存オゾン濃度、排オ
ゾン濃度等がある。
Therefore, it is necessary to adjust the ratio of the amount of ozone gas to be injected relative to the amount of treated water. When the ozone treatment is performed automatically and efficiently continuously as described above, ozone injection control is required. The measurement items considered to be necessary for performing the ozone injection control include a treated water amount, an injected ozonized air flow rate, an injected ozone concentration, a dissolved ozone concentration, an exhausted ozone concentration, and the like.

【0019】実際の制御システムとしては、オゾン注入
率([オゾン注入率]=[注入オゾン化空気流量]×
[注入オゾン濃度]/[処理水量])を設定することに
より行うことが多い。それには次のような方法がある。
As an actual control system, the ozone injection rate ([ozone injection rate] = [injected ozonized air flow rate] ×
[Injected ozone concentration] / [Treatment water amount]) is often set. There are the following methods.

【0020】1)処理水量に比例してオゾン発生量を制
御する。
1) The amount of ozone generated is controlled in proportion to the amount of treated water.

【0021】2)対象水質の処理効果に応じてオゾン発
生量を制御する。
2) The amount of ozone generated is controlled according to the treatment effect of the target water quality.

【0022】3)オゾン消費量に応じてオゾン発生量を
制御する。
3) The amount of ozone generated is controlled according to the amount of ozone consumed.

【0023】通常は1)の方法によりオゾン注入率を変
化させることが一般的である。実際の浄水工程では季
節、降雨等により水質の変動もあり、処理効果に応じて
オゾン発生量を制御する。
Generally, the ozone injection rate is generally changed by the method 1). In the actual water purification process, water quality varies due to season, rainfall, etc., and the amount of ozone generated is controlled according to the treatment effect.

【0024】2)の方法によりオゾン処理システムを制
御する方法くち安定した水質を得ることができるもの
の、通常、水質の評価に時間を要するため、水質変化に
対する速やかな対応には向かない。さらに、オゾン処理
工程の運転上からみれば注入したオゾンを有効利用した
上で、処理性を安定に確保する必要がある。
The method of controlling the ozone treatment system according to the method 2), although a stable water quality can be obtained, but it usually takes a long time to evaluate the water quality, so that it is not suitable for promptly responding to a change in water quality. Further, from the viewpoint of the operation of the ozone treatment step, it is necessary to ensure the processability while effectively utilizing the injected ozone.

【0025】従って、現在のオゾン処理方式においては
オゾン注入率一定方式等の比較的簡単なオゾン注入制御
方式が採用されており、原水水質の変動にも対応できる
ようにある程度安全側の注入率でオゾン処理を行ってい
る。
Therefore, in the current ozone treatment method, a relatively simple ozone injection control method such as a constant ozone injection rate method is adopted, and an injection rate on a safe side is used to some extent so as to cope with fluctuations in raw water quality. Ozone treatment is performed.

【0026】その結果、オゾン要求量以上のオゾンが注
入されて必要以上の溶存オゾンが発生したり、逆にオゾ
ン注入率が低すぎるために溶存オゾンが表れなかったり
して処理が不安定となる場合がある。
As a result, the processing becomes unstable due to the injection of more ozone than the required amount of ozone and the generation of dissolved ozone more than necessary, or conversely the dissolved ozone does not appear because the ozone injection rate is too low. There are cases.

【0027】例えば下水2次処理水のオゾン処理を行う
場合、多種類の除去対象物質のオゾン要求量を事前に直
接的に知ることはむづかしい。
For example, when performing ozone treatment of secondary sewage water, it is difficult to directly know in advance the required ozone amounts of various types of substances to be removed.

【0028】そこでオゾン要求量を間接的に検知し約5
種類の除去対象物質(色度、有機物、大腸菌群、一般殺
菌、MBAS等)を効果的に低減除去してオゾン処理水
質制御を行うことが考えられるが、現在十分に信頼性の
高い各種センサ(気相/液相オゾン濃度計、有機物セン
サ等)は得られていない。
Therefore, the amount of required ozone is indirectly detected to be about 5
It is conceivable to perform effective ozone treatment water quality control by effectively reducing and removing the types of substances to be removed (chromaticity, organic matter, coliform bacteria, general sterilization, MBAS, etc.). Gas / liquid phase ozone densitometers, organic matter sensors, etc.) have not been obtained.

【0029】従って、オゾン処理する検水のオゾン要求
量が推定できれば、それにそった効率的なオゾン処理制
御が実施できるが、上記のように多種類の除去対象物質
からなるオゾン要求量を推定することは直接的にも間接
的にも困難であり、オゾン要求量に基づいたオゾン注入
制御は実用化には至っていない。
Therefore, if the required ozone amount of the test water to be subjected to ozone treatment can be estimated, efficient ozone treatment control can be performed in accordance therewith, but the required ozone amount composed of various types of substances to be removed is estimated as described above. This is difficult both directly and indirectly, and ozone injection control based on the required amount of ozone has not yet been put to practical use.

【0030】本発明は上記背景の下になされたものであ
り、検水に対してオゾンを過不足なく供給し、オゾン処
理後の検水における溶存オゾン濃度を低くすることので
きるオゾン処理を行うことを目的とする。また、このよ
うなオゾン処理を用いて浄水処理を行うことも目的とす
る。
The present invention has been made under the above-mentioned background, and performs ozone treatment capable of supplying ozone to a test water without excess and deficiency to reduce the dissolved ozone concentration in the test water after the ozone treatment. The purpose is to: It is another object to perform water purification treatment using such ozone treatment.

【0031】[0031]

【課題を解決するための手段及び作用】上記課題を解決
するために、本発明者らは以下のような実験を行った。
In order to solve the above problems, the present inventors conducted the following experiments.

【0032】まず、内径154(mm)、高さ4.5(m)で有
効水深約4(m)(有効容積90(l))のオゾン接触槽を用い
て液とガスとが向流に接触する方式によりオゾン処理を
行う。
First, a liquid and a gas are caused to flow in countercurrent using an ozone contact tank having an inner diameter of 154 (mm), a height of 4.5 (m) and an effective water depth of about 4 (m) (effective volume 90 (l)). Ozone treatment is performed by a contact method.

【0033】この向流接触方式においては、オゾンガス
は底部の散気管から散気注入し上端部から排オゾンガス
として排出され、水は上端部から流入して底部から流出
される。この際、オゾン接触槽に注入するオゾンガス流
量を2(l/分)、処理流量を5〜6(l/分)、発生
オゾン濃度を4〜6(kg/m3)、オゾン注入率を1.
6〜2.1(mg/l)の条件で連続通水による処理を
行った。
In this countercurrent contact system, ozone gas is diffused and injected from a diffuser tube at the bottom, discharged as ozone gas exhausted from the upper end, and water flows in from the upper end and flows out from the bottom. At this time, the flow rate of the ozone gas injected into the ozone contact tank was 2 (l / min), the processing flow rate was 5 to 6 (l / min), the generated ozone concentration was 4 to 6 (kg / m 3 ), and the ozone injection rate was 1 .
The treatment by continuous water passing was performed under the conditions of 6 to 2.1 (mg / l).

【0034】図3にオゾン接触槽内の溶存オゾン濃度分
布を示すグラフを示す。このグラフにおいては上部水面
からの接触時間を接触槽全体での水理学的滞留時間で割
った無次元接触時間(t/θ)に置き変えて溶存オゾン
濃度の分布の測定結果をプロットした。
FIG. 3 is a graph showing the concentration distribution of dissolved ozone in the ozone contact tank. In this graph, the measurement result of the distribution of the dissolved ozone concentration was plotted by replacing the contact time from the upper water surface with the dimensionless contact time (t / θ) obtained by dividing the contact time from the hydraulic residence time in the entire contact tank.

【0035】また、図4にオゾン接触槽内流下方向にお
ける無次元接触時間に対するE260値(波長260n
mでの吸光度、分光光度計50mmセル使用)の相関を
示すグラフを示す。
FIG. 4 shows the E260 value (wavelength 260 n) with respect to the dimensionless contact time in the downflow direction in the ozone contact tank.
2 shows a graph showing the correlation between the absorbance at m and the spectrophotometer using a 50 mm cell).

【0036】このE260は高度浄水処理に於ける低減
化物質の一つであるトリハロメタンの前駆物質(トリハ
ロメタン生成能:THMFP)の濃度と相関が高い。
This E260 has a high correlation with the concentration of the precursor of trihalomethane (trihalomethane forming ability: THMFP) which is one of the reducing substances in the advanced water purification treatment.

【0037】同様に、図5にオゾン処理効果を顕著に表
す蛍光強度と無次元接触時間との相関を表すグラフ示
す。また、図6に殺菌特性として評価指標とした一般細
菌の低減傾向と無次元接触時間との相関を表すグラフを
示す。
Similarly, FIG. 5 is a graph showing the correlation between the fluorescence intensity and the dimensionless contact time which remarkably show the ozone treatment effect. FIG. 6 is a graph showing the correlation between the tendency of reducing general bacteria used as an evaluation index as a bactericidal property and the dimensionless contact time.

【0038】図3〜6の結果から、原水中のE260等
のオゾン酸化成分は接触槽流入の初期には低減度合いは
大きいが、流下にしたがってその変化は小さくなって水
質レベルはほぼ一定値に近づくことがわかる。
From the results shown in FIGS. 3 to 6, the ozone oxidizing components such as E260 in the raw water are largely reduced at the initial stage of the inflow into the contact tank, but the change decreases as the water flows down, and the water quality level becomes almost constant. You can see that it is approaching.

【0039】接触槽内の各流下位置での溶存オゾン濃度
はオゾン酸化成分が酸化に利用する溶存オゾンの消費速
度と、オゾンガスが溶解して気相から液相になる速度
(溶解速度)とのバランスにより変わってくる。
The concentration of dissolved ozone at each downstream position in the contact tank is determined by the rate of consumption of dissolved ozone used by the ozone oxidizing component for oxidation, and the rate of dissolution of ozone gas from gas phase to liquid phase (dissolution rate). It depends on the balance.

【0040】通常、限られた処理時間内ではオゾンガス
が気相から液相へと溶解する量は一定値に定まるが、図
3に示されるように流入初期では溶存オゾン濃度が非常
に低くなっている。
Normally, the amount of dissolved ozone gas from the gas phase to the liquid phase is limited to a fixed value within a limited processing time, but as shown in FIG. I have.

【0041】この原因として、流入初期ではオゾン酸化
成分量が多いので検水に溶解したオゾンはこのオゾン酸
化成分により消費されてしまうことが挙げられる。この
ように溶存オゾンが消費されるので流入初期における溶
存オゾン濃度は低いレベルになる。
One of the causes is that the ozone dissolved in the test water is consumed by the ozone oxidizing component because the amount of the ozone oxidizing component is large in the initial stage of inflow. Since dissolved ozone is consumed in this way, the concentration of dissolved ozone in the initial stage of inflow becomes a low level.

【0042】これに対し、流下に従って上記オゾン酸化
成分は溶存オゾンによって酸化除去されるのでオゾン酸
化成分量は低減し、溶解したオゾンの余剰分が溶存オゾ
ン濃度として表れる。
On the other hand, the ozone oxidizing component is oxidized and removed by dissolved ozone as it flows down, so that the amount of the ozone oxidizing component is reduced, and the excess amount of dissolved ozone appears as the dissolved ozone concentration.

【0043】従って、オゾン接触槽下部ではオゾン酸化
成分が十分低減されて溶存オゾンは一定値に近づく。こ
のため測定される溶存オゾン濃度の変化は小さくなる。
実際に図3においては無次元接触時間が0.3以上にな
るとオゾン濃度はほぼ一定となって殆ど変動しなくな
る。
Therefore, the ozone oxidizing component is sufficiently reduced in the lower part of the ozone contact tank, and the dissolved ozone approaches a constant value. Therefore, the change in the measured dissolved ozone concentration is small.
Actually, in FIG. 3, when the dimensionless contact time becomes 0.3 or more, the ozone concentration becomes almost constant and hardly fluctuates.

【0044】上記結果から、接触槽の流出口付近で溶存
オゾン濃度の変化が小さくなるようなオゾン注入率制御
による運転を行えば、オゾン酸化成分がオゾンによって
十分に酸化除去されて安定したオゾン処理が可能となる
ことがわかる。
From the above results, if the operation is performed by controlling the ozone injection rate so that the change in the dissolved ozone concentration is small near the outlet of the contact tank, the ozone oxidizing component is sufficiently oxidized and removed by ozone, and the stable ozone treatment is performed. It turns out that it becomes possible.

【0045】次に、この際の溶存オゾン濃度の設定に付
いて検討を行った。
Next, the setting of the dissolved ozone concentration at this time was examined.

【0046】接触槽から流出する処理水中における溶存
オゾン濃度が高いと、微生物を死滅したり活性を低下さ
せるので後段での生物活性炭処理を阻害してしまう。従
って、オゾン処理後に生物活性炭処理槽に流入する水中
の溶存オゾン濃度は十分低濃度にする必要がある。
If the concentration of dissolved ozone in the treated water flowing out of the contact tank is high, the microorganisms are killed or the activity is reduced, so that the subsequent biological activated carbon treatment is hindered. Therefore, the dissolved ozone concentration in the water flowing into the biological activated carbon treatment tank after the ozone treatment needs to be sufficiently low.

【0047】このため、接触槽へ注入したオゾンを有効
利用するためには、注入オゾン濃度を処理水質に影響を
及ぼさないレベルまで低下させることによりオゾン処理
水中の溶存オゾン濃度を極力低くする運転を行うことが
望ましい。また、このような運転を行うことで、オゾン
ガスの吸収効率を高く維持することが出来るので排オゾ
ン濃度を低く保持することができる。
Therefore, in order to effectively use the ozone injected into the contact tank, an operation for reducing the concentration of dissolved ozone in the ozonized water as much as possible by reducing the concentration of the injected ozone to a level that does not affect the quality of the treated water. It is desirable to do. In addition, by performing such an operation, the ozone gas absorption efficiency can be maintained at a high level, so that the exhausted ozone concentration can be maintained at a low level.

【0048】このようにオゾン処理を行った後の残留オ
ゾン濃度を極力低くすることにより、オゾン接触槽より
排出された未利用のオゾンガスを無害化する排オゾン処
理装置にかかる負荷を低減し、排オゾン処理剤の交換頻
度を延ばすことが出来る。
By minimizing the residual ozone concentration after the ozone treatment as described above, the load on the waste ozone treatment apparatus for detoxifying unused ozone gas discharged from the ozone contact tank is reduced, and The replacement frequency of the ozonizer can be extended.

【0049】そこで、本発明者らは安定した処理水質を
保ち、かつ残留オゾン濃度が最少で済むような効率の良
いオゾン処理を行うために鋭意検討を重ねて本発明を完
成させた。
Therefore, the present inventors have made intensive studies to complete the present invention in order to carry out an efficient ozone treatment that maintains a stable treated water quality and minimizes the residual ozone concentration.

【0050】すなわち、請求項1記載の発明は、フロー
式のオゾン処理装置であって、検水とオゾンガスとを接
触反応させるオゾン処理槽と、前記オゾン処理槽内での
検水とオゾンとの接触時間が異なるk箇所(ただしk≧
2)における検水の溶存オゾン濃度を計測するオゾン濃
度測定手段と、水質制御手段とを有し、前記水質制御手
段は、前記オゾン濃度測定手段から得られる各溶存オゾ
ン濃度を比較してこれら溶存オゾン濃度の差が予め定め
られた目標値を満たすように供給オゾンガス濃度を制御
することを特徴とするオゾン処理装置を提供する。
That is, according to the first aspect of the present invention, the flow
An ozone treatment apparatus of the type , wherein an ozone treatment tank in which a test water and an ozone gas are brought into contact reaction with each other, and k points (where k ≧ g) in which the contact time between the test water and the ozone in the ozone treatment tank is different.
2) having an ozone concentration measuring means for measuring the dissolved ozone concentration of the test water, and a water quality controlling means, wherein the water quality controlling means compares each dissolved ozone concentration obtained from the ozone concentration measuring means and An ozone treatment apparatus is provided, wherein the supplied ozone gas concentration is controlled so that the difference in ozone concentration satisfies a predetermined target value.

【0051】既に説明したように、検水に対するオゾン
供給量が不足するとオゾン処理槽内のオゾン接触時間が
異なる場所間の検水のオゾン濃度の差は大きくなる。こ
れに対し、オゾンが過剰になると上記オゾン濃度の差は
小さくなる。
As described above, the ozone for the sample is
If the supply amount is insufficient, the contact time of ozone in the ozone treatment tank
The difference in the ozone concentration of the test water between different places becomes large. This
On the other hand, if the ozone becomes excessive, the difference in the ozone concentration becomes
Become smaller.

【0052】従って、適宜しきい値を定めて上記オゾン
接触時間が異なる場所間の検水のオゾン濃度の差がこの
しきい値になるように制御を行うことで、検水に対して
オゾンを過不足なく供給することが可能となる。
Therefore, by appropriately setting the threshold value,
The difference in the ozone concentration of the test water between places with different contact times
By controlling so as to reach the threshold value,
Ozone can be supplied without excess and deficiency.

【0053】尚、上記オゾン接触時間が異なる場所はオ
ゾン処理された検水の流出口近辺にすることが好まし
い。接触槽の流出口付近の異なる位置に設置する溶存オ
ゾン濃度計は2カ所でもよいが、さらに複数カ所設置す
ることにより水質等の負荷変動をよりはやく検出できる
ので迅速な制御が可能となる。
The places where the above-mentioned ozone contact time is different are
It is preferable to be near the outlet of the sampled water
No. Dissolved metal at different locations near the outlet of the contact tank
There may be two zones, but more than one.
Can detect load fluctuations such as water quality more quickly
Therefore, quick control becomes possible.

【0054】請求項2記載の発明は、請求項1記載の
ロー式のオゾン処理装置において、前記水質制御手段は
前記溶存オゾン濃度の差が前記目標値よりも大きいとき
は供給オゾンガスの濃度を高くし、かつ前記溶存オゾン
濃度の差が前記目標値よりも小さいときは前記供給オゾ
ンガス濃度を低くする制御を行うことを特徴とするオゾ
ン処理装置を提供する。
[0054] claims the invention of claim 2, in claim 1, wherein off
In the low-type ozone treatment apparatus, the water quality control means increases the concentration of the supplied ozone gas when the difference in the dissolved ozone concentration is larger than the target value, and the difference in the dissolved ozone concentration is smaller than the target value. In some cases, the present invention provides an ozone treatment apparatus characterized by performing control to reduce the supply ozone gas concentration.

【0055】上記のように制御を行うことで、上記オゾ
ン接触時間が異なる場所間のオゾン濃度を容易にしきい
値近辺に制御することができる。
By performing the control as described above, the Ozone
Facilitates ozone concentration between locations with different contact times
It can be controlled around the value.

【0056】請求項3記載の発明は、検水とオゾンガス
とを接触反応させるフロー式のオゾン処理方法におい
て、前記オゾン処理槽内での検水とオゾンとの接触時間
が異なるk箇所(ただしk≧2)における検水の溶存オ
ゾン濃度を計測し、これら各溶存オゾン濃度を比較して
これら溶存オゾン濃度の差が予め定められた目標値を満
たすように供給オゾンガス濃度を制御することを特徴と
するオゾン処理方法を提供する。
According to a third aspect of the present invention, there is provided a flow type ozone treatment method in which a test sample and an ozone gas are brought into contact with each other. ≧ 2), measuring the dissolved ozone concentration in the test water, comparing the respective dissolved ozone concentrations, and controlling the supplied ozone gas concentration such that the difference between the dissolved ozone concentrations satisfies a predetermined target value. To provide an ozone treatment method.

【0057】上記のように適宜しきい値を定めて上記オ
ゾン接触時間が異なる場所間における検水のオゾン濃度
の差がこのしきい値になるように制御を行うことで、検
水に対してオゾンを過不足なく供給できるオゾン処理方
法を提供できる。
The threshold value is appropriately determined as described above, and
Ozone concentration of test water between sites with different contact time
The control is performed so that the difference between
An ozone treatment method that can supply ozone to water without excess or shortage
Can provide law.

【0058】請求項4記載の発明は、請求項3記載の
ロー式のオゾン処理方法を用いた原水のオゾン処理工程
を有することを特徴とする浄水処理方法を提供する。
[0058] 4. the described invention, according to claim 3, wherein full
Provided is a water purification treatment method comprising an ozone treatment step of raw water using a low-type ozone treatment method.

【0059】浄水処理において上記のようにオゾン処理
を行うことで、オゾン処理に必要となるオゾン量を低く
抑えることができる。また、残留オゾン濃度を低く抑え
ることができるので、後段での生物処理等に与える影響
を小さく抑えることができる。
In the water purification treatment, the ozone treatment is performed as described above.
To reduce the amount of ozone required for ozone treatment.
Can be suppressed. Also keeps the residual ozone concentration low
Impact on biological treatment in the later stage
Can be kept small.

【0060】また、オゾン接触槽より排出された未利用
のオゾンガスを無害化するために必要な排オゾン処理装
置にかかる負荷が低減し、排オゾン処理剤の交換頻度を
延ばすことが出来る。
Also, the unused waste discharged from the ozone contact tank
Ozone treatment equipment necessary to detoxify ozone gas
Installation load is reduced, and
Can be extended.

【0061】尚、前記オゾン処理装置において、検水と
オゾンガスとを接触反応させるオゾン処理槽と、オゾン
供給時における供給オゾンガス濃度と排オゾンガス濃度
とオゾン処理を終えた前記検水における溶存オゾン濃度
とを測定するオゾン濃度測定手段と、水質制御手段とを
有し、前記水質制御手段は、前記オゾン濃度測定手段か
ら得られる供給オゾンガス濃度と排オゾンガス濃度と溶
存オゾンガス濃度とに基づいて前記検水のオゾン消費量
及び前記検水のオゾン要求量を求めるとともに、前記検
水のオゾン消費量が前記検水のオゾン要求量と等しくな
るように供給オゾンガス濃度を制御してもよい。
In the above-mentioned ozone treatment apparatus, water detection and
An ozone treatment tank for contacting and reacting with ozone gas, and ozone
Supply ozone gas concentration and exhaust ozone gas concentration during supply
Ozone concentration in the sample water after ozone treatment
Concentration measuring means for measuring water and water quality controlling means.
Wherein the water quality control means is the ozone concentration measurement means.
Supply ozone gas concentration and exhaust ozone gas concentration
Ozone consumption of the test water based on the ozone gas concentration
And the required amount of ozone in the test water is determined.
If the ozone consumption of the water is equal to the
The supply ozone gas concentration may be controlled as described above.

【0062】上記のように検水のオゾン要求量と検水の
オゾン消費量とが等しくなるように供給オゾンガス濃度
を制御することによって、オゾン処理時に検水と反応せ
ずに検水に残留する余剰オゾンの量を最低限に抑制する
ことができる。
As described above, the required amount of ozone and the sample
Supply ozone gas concentration so that ozone consumption is equal
By reacting with water sample during ozone treatment.
To minimize the amount of surplus ozone remaining in water samples
be able to.

【0063】従って、オゾン処理に必要とされるオゾン
量を低く抑制することができる。また、オゾン処理に必
要な構成が簡素でかつ特別な装置等も必要としない。
Therefore, the ozone required for the ozone treatment
The amount can be kept low. Also necessary for ozone treatment.
The essential configuration is simple and no special device is required.

【0064】また、当該オゾン処理装置において、前記
検水の紫外線吸光度を測定する紫外線吸光度測定手段を
設け、前記水質制御手段は、前記検水のオゾン消費量が
前記検水のオゾン要求量と等しくなるように供給オゾン
ガス濃度を制御するとともに、更に前記検水の紫外線吸
光度が予め設定されたしきい値よりも小さくなるように
フィードバック制御を行ってもよい。
Further , in the ozone treatment apparatus,
UV-absorbance measuring means for measuring UV-absorbance of test water
The water quality control means is provided,
Supply ozone so as to be equal to the ozone demand of the test water
In addition to controlling the gas concentration, it also absorbs the UV
So that the luminous intensity is smaller than a preset threshold
Feedback control may be performed.

【0065】一般に、紫外線吸光度は検水に溶解してい
る有機物濃度の指標とされているが、この有機物濃度と
浄水処理等にて用いられる各除去対象物質では、臭気≧
MBAS>色度>大腸菌群>一般細菌>有機物(UV)
の順で、オゾン処理で除去しやすい。
In general, the UV absorbance is
Is an indicator of the concentration of organic matter,
For each substance to be removed used in water purification, etc., odor ≧
MBAS>Chromaticity> Escherichia coli> General bacteria> Organic matter (UV)
In this order, it is easy to remove by ozone treatment.

【0066】従って、測定が容易である紫外線吸光度が
一定値以下になるように制御を行うことで、連続計測が
困難なMBAS、大腸菌群、一般細菌等の濃度を測定す
ることなく、これらの値を一定値以下に制御することが
できる。
Therefore, the ultraviolet absorbance, which is easy to measure, is
By performing control so that it is below a certain value, continuous measurement can be performed.
Measure the concentration of difficult MBAS, coliforms, general bacteria, etc.
These values can be controlled below a certain value without
it can.

【0067】特に、浄水処理においてはこれら各除去対
象物質を除去することが重要であるので、このオゾン処
理を浄水処理に好適に適用することができる。
In particular, in water purification treatment, each of these removal methods
Because it is important to remove elephant substances, this ozone treatment
The present invention can be suitably applied to water purification treatment.

【0068】また、検水とオゾンガスとを接触反応させ
るオゾン処理方法において、オゾン供給時における供給
オゾンガス濃度と排オゾンガス濃度とオゾン処理を終え
た検水における溶存オゾン濃度とを測定し、これらの各
値に基づいて前記検水のオゾン消費量及び前記検水のオ
ゾン要求量を求めるとともに、前記検水のオゾン消費量
が前記検水のオゾン要求量と等しくなるように供給オゾ
ンガスの濃度を制御してもよい。
Further , the sample water is brought into contact with the ozone gas to cause a contact reaction.
Ozone treatment method
Finished ozone gas concentration, exhausted ozone gas concentration and ozone treatment
And the dissolved ozone concentration in the test water
The ozone consumption of the test water and the ozone
Calculate the required amount of ozone and determine the ozone consumption
Supply ozone so that it is equal to the required ozone
The gas concentration may be controlled.

【0069】上記方法によれば、検水のオゾン要求量と
検水のオゾン消費量とが等しくなるように供給オゾンガ
ス濃度を制御することによって、オゾン処理時に検水と
反応せずに検水に残留する余剰オゾンの量を最低限に抑
制可能なオゾン処理方法を提供できる。
According to the above method, the required amount of ozone in the sample water
Supply ozone gas so that the ozone consumption of the sample is equal.
By controlling the gas concentration, water sampling and
Minimize the amount of excess ozone remaining in the sample without reacting
A controllable ozone treatment method can be provided.

【0070】[0070]

【実施例】【Example】

実施例1 本実施例1においてはオゾン接触槽内の2点に設置した
溶存オゾン濃度計の計測値を用いてオゾン接触槽内の溶
存オゾン濃度をモニタリングし、槽下方部での溶存オゾ
ン濃度の増加パターンを調べた。
Example 1 In this Example 1, the dissolved ozone concentration in the ozone contact tank was monitored using the measurement values of a dissolved ozone concentration meter installed at two points in the ozone contact tank, and the dissolved ozone concentration in the lower part of the tank was monitored. The increase pattern was examined.

【0071】この溶存オゾン濃度の増加パターンに基づ
いて発生オゾン濃度を調整することにより、オゾン注入
率を変更して上記2点間の溶存オゾン濃度の差を予め設
定した値に制御して発生オゾン濃度を小さく抑制するこ
とができるオゾン処理を行うとともに、このオゾン処理
を用いて浄水処理を行った。
By adjusting the generated ozone concentration based on the increase pattern of the dissolved ozone concentration, the ozone injection rate is changed and the difference in the dissolved ozone concentration between the two points is controlled to a preset value to generate the generated ozone. An ozone treatment capable of suppressing the concentration to a low level was performed, and a water purification treatment was performed using the ozone treatment.

【0072】以下、図面を参照して実施例1を説明す
る。
Embodiment 1 will be described below with reference to the drawings.

【0073】図7において1は原水槽であり、原水は送
水ポンプ2によって原水槽1を通じてオゾン処理槽4の
上部に流入する。この際、流量計3により原水の流入量
を測定する。
In FIG. 7, reference numeral 1 denotes a raw water tank. Raw water flows into the upper part of the ozone treatment tank 4 through the raw water tank 1 by the water supply pump 2. At this time, the flow rate of the raw water is measured by the flow meter 3.

【0074】5はオゾン発生機であり、注入オゾンガス
流量計6及び発生オゾン濃度計7によってその流入量と
濃度とを測定した後にオゾン処理槽4の下部に設置され
た散気板8を通じてこのオゾン処理槽内の原水中に送
る。上記のように原水はオゾン処理槽4の上部から流入
し、オゾンはオゾン処理槽4の下部から散気されるの
で、オゾンと原水は向流式に接触することとなる。
Reference numeral 5 denotes an ozone generator which measures the inflow and concentration of the ozone gas by means of an injection ozone gas flowmeter 6 and a generated ozone concentration meter 7 and then passes through an air diffuser plate 8 provided at the lower part of the ozone treatment tank 4. Send to raw water in treatment tank. As described above, the raw water flows in from the upper part of the ozone treatment tank 4, and the ozone is diffused from the lower part of the ozone treatment tank 4, so that the ozone and the raw water come into contact in a countercurrent manner.

【0075】オゾン処理槽内で原水に溶解しなかった排
オゾンは排オゾン濃度計9でその濃度を測定した後に脱
泡槽10で脱泡を行い、その後に排オゾン処理槽11で
2等に分解する。オゾン処理を施されたオゾン処理水
はオゾン処理水槽12へ送られた後に活性炭処理槽に送
られる。
The exhausted ozone which has not been dissolved in the raw water in the ozone treatment tank is defoamed in the defoaming tank 10 after measuring its concentration with the exhausted ozone concentration meter 9, and then O 2 etc. in the exhausted ozone treatment tank 11. Decompose into The ozone-treated water subjected to the ozone treatment is sent to the ozone-treated water tank 12 and then sent to the activated carbon treatment tank.

【0076】オゾン処理槽4の散気板付近及びその上方
にはそれぞれ溶存オゾン濃度計B、Aが設置されてお
り、それぞれ散気板付近のオゾン濃度(DO3(B))
及び散気板上方におけるオゾン濃度(DO3(A))を
測定する構成となっている。
Dissolved ozone concentration meters B and A are installed near and above the diffuser plate of the ozone treatment tank 4, respectively. The ozone concentration (DO 3 (B)) near the diffuser plate is respectively provided.
And the ozone concentration (DO 3 (A)) above the diffuser plate is measured.

【0077】また、図8に示すように、水質制御部13
では流量計3から得られる原水の流入量、注入オゾンガ
ス流量計6及びオゾン濃度計7から得られるオゾンガス
注入量及びオゾンガス濃度、排オゾン濃度計9から得ら
れる排オゾン濃度、並びに溶存オゾン計A、Bにより得
られる各オゾン濃度を入力として送水ポンプ2及びオゾ
ン発生機5を制御してオゾン注入制御を行う。
Further, as shown in FIG.
In, the inflow amount of raw water obtained from the flow meter 3, the ozone gas injection amount and the ozone gas concentration obtained from the injected ozone gas flow meter 6 and the ozone concentration meter 7, the exhaust ozone concentration obtained from the exhaust ozone concentration meter 9, and the dissolved ozone meter A, The ozone injection control is performed by controlling the water pump 2 and the ozone generator 5 using the respective ozone concentrations obtained by B as inputs.

【0078】以下、上記オゾン処理システムにおけるオ
ゾン処理方法を詳細に説明する。
Hereinafter, the ozone treatment method in the above ozone treatment system will be described in detail.

【0079】このオゾン処理システムにおいて、原水は
原水槽4から送水ポンプ2によりオゾン処理槽上部に供
給される。この際、流量計3の計測値をもとに原水を一
定量供給する。オゾン処理槽4では、吸収効率を高める
ために散気管により微細気泡としたオゾンガスと処理用
原水とを気液接触させ、塔内に一定時間滞留させて反応
させた後に処理水槽12へ送水する。
In this ozone treatment system, raw water is supplied from the raw water tank 4 to the upper part of the ozone treatment tank by the water supply pump 2. At this time, a constant amount of raw water is supplied based on the measurement value of the flow meter 3. In the ozone treatment tank 4, the ozone gas, which has been made into fine bubbles by a diffuser, is brought into gas-liquid contact with the raw water for treatment in order to increase absorption efficiency.

【0080】また、オゾン接触槽内の溶存オゾン濃度を
測定する溶存オゾン濃度計を検水の流出部付近に複数設
置する。実施例では、A,Bの2箇所で測定する。
Further, a plurality of dissolved ozone concentration meters for measuring the dissolved ozone concentration in the ozone contact tank are provided near the outflow portion of the sample. In the embodiment, the measurement is performed at two points A and B.

【0081】溶存オゾン濃度計の設置場所は、接触槽流
出部のBを基準とし、接触槽の上流部をAとする。その
溶存オゾン濃度を各々DO3(A)、D03(B)として
これらの計測値の差の絶対値をもとにしてオゾン注入率
制御部13によって次の制御操作を行う。
The location of the dissolved ozone concentration meter is based on B at the outlet of the contact tank, and A is at the upstream of the contact tank. The following control operation is performed by the ozone injection rate control unit 13 based on the absolute value of the difference between these measured values, with the dissolved ozone concentrations being DO 3 (A) and DO 3 (B), respectively.

【0082】 1)│D03(A)−D03(B)│>αの場合 オゾン発生機5へ制御信号を出力して発生オゾン濃度を
ΔCだけ増加させる。また、│D03(A)−D03
(B)│<αの条件が満たされるまでこの操作を継続す
る。
1) In the case of | D03 (A) −D03 (B) |> α, a control signal is output to the ozone generator 5 to increase the generated ozone concentration by ΔC. Also, | D03 (A) -D03
(B) This operation is continued until the condition of | <α is satisfied.

【0083】 2)│D03(A)−D03(B)│<αの場合 オゾン発生機5へ制御信号を出力して発生オゾン濃度を
ΔCだけ減少させる。この操作を、最小の発生オゾン濃
度で│D03(B)−D03(A)│<αの条件を満足
するまで継続する。
2) In the case of | D03 (A) -D03 (B) | <α, a control signal is output to the ozone generator 5 to reduce the generated ozone concentration by ΔC. This operation is continued until the condition of | D03 (B) -D03 (A) | <α is satisfied with the minimum generated ozone concentration.

【0084】上記αは許容値であり、実験により決定し
制御装置で設定できる。ΔCは制御装置に外部設定でき
る発生オゾン濃度の変更幅の値である。
The above α is an allowable value, which can be determined by experiment and set by the control device. ΔC is a value of the change width of the generated ozone concentration which can be set externally to the control device.

【0085】1)は、この条件の場合に速やかに実行
し、また、2)の条件は予め定められた時間間隔で実行
するものである。
1) is executed promptly in the case of this condition, and 2) is executed at a predetermined time interval.

【0086】発生オゾン濃度の変更は、オゾン濃度計6
でその気相オゾン濃度を計測するとともに、目標の発生
オゾン濃度となるようにオゾン発生機の電圧値あるいは
電流値を制御回路の出力信号によって制御する。
[0086] The generated ozone concentration can be changed by using an ozone concentration meter 6
, The gas phase ozone concentration is measured, and the voltage value or the current value of the ozone generator is controlled by the output signal of the control circuit so that the ozone concentration becomes the target generated ozone concentration.

【0087】上記のように制御を行うことで、オゾン注
入量を低く抑制して効率のよりオゾン処理を行うことが
できる。
By performing the control as described above, the ozone injection amount can be suppressed to a low level, and the ozone treatment can be performed with higher efficiency.

【0088】以上説明した実施例による制御を行うこと
により、オゾン処理水量及び水質に応じて最小の発生オ
ゾン濃度で安定した処理水質が得られる。また、オゾン
濃度を小さく抑えることができるので、浄水処理工程に
おける生物活性炭の生物活性を阻害しにくいオゾン注入
自動制御を実現できる。
By performing the control according to the above-described embodiment, a stable treated water quality can be obtained with a minimum generated ozone concentration according to the amount and quality of the treated ozone water. In addition, since the ozone concentration can be suppressed to a low level, it is possible to realize automatic ozone injection control that does not hinder the biological activity of the biological activated carbon in the water purification treatment process.

【0089】また、この制御により処理水量の変化や水
質の変動などの負荷変動に対しても安定した処理水質が
得られ、後段の活性炭処理工程で大きな負荷変動を受け
ることなく安定した運転管理が可能となる。その結果、
浄水工程全体の運転管理の信頼性向上につながり、浄水
の安定供給に寄与することもできる。
In addition, this control makes it possible to obtain a stable treated water quality against load fluctuations such as a change in the treated water amount and fluctuations in the water quality, so that stable operation management can be performed without receiving large load fluctuations in the subsequent activated carbon treatment process. It becomes possible. as a result,
This leads to improved reliability of operation management of the whole water purification process and can contribute to stable supply of purified water.

【0090】更に、オゾン接触槽より排出された未利用
のオゾンガスを無害化するために必要な排オゾン処理装
置にかかる負荷を低減し、排オゾン処理剤の交換頻度を
延ばすことが出来る。
Furthermore, it is possible to reduce the load on the waste ozone treatment device required to detoxify the unused ozone gas discharged from the ozone contact tank, and to increase the frequency of replacement of the waste ozone treatment agent.

【0091】実施例2 本実施例においては検水の溶存オゾン濃度や排オゾンガ
ス濃度等から検水のオゾン要求量を求め、検水のオゾン
消費量が上記検水のオゾン要求量と等しくなるように制
御を行った。
Embodiment 2 In this embodiment, the required ozone amount of the test water is determined from the dissolved ozone concentration and the exhaust ozone gas concentration of the test water so that the ozone consumption of the test water is equal to the ozone required amount of the test water. Was controlled.

【0092】また、オゾン処理における運転制御(オゾ
ン吸収効率、溶存オゾン濃度)と水質制御(処理水のU
V値)との組合せ制御をも行い、このオゾン処理方法を
浄水処理に適用した。。
Further, operation control (ozone absorption efficiency, dissolved ozone concentration) in ozone treatment and water quality control (U
V value), and this ozone treatment method was applied to water purification treatment. .

【0093】本実施例においては図9に示すオゾン処理
システムにおいてオゾン処理の制御を行った。
In this embodiment, ozone treatment was controlled in the ozone treatment system shown in FIG.

【0094】この図において4〜11は図7と同様なの
で説明を省略する。
In this figure, reference numerals 4 to 11 are the same as in FIG.

【0095】15は排水中の溶存オゾン測定装置、16
は排水におけるUV測定装置であり、排水中の溶存オゾ
ン濃度及びUV値をそれぞれ測定する。
15 is a device for measuring dissolved ozone in waste water,
Is a UV measuring device for waste water, which measures the dissolved ozone concentration and the UV value in the waste water, respectively.

【0096】本実施例では、オゾン処理を行っている状
態で発生オゾン濃度Ci(O3)及び排オゾン濃度Co
(O3)を測定して水質制御部16によってオゾン注入
率の制御を行う。図10に示すように、オゾン注入率制
御部16では供給オゾン濃度計7から得られるオゾンガ
ス濃度、排オゾン濃度計9から得られる排オゾン濃度、
溶存オゾン濃度測定装置15より得られるオゾン濃度、
及びUV測定装置16から得られるUV値を入力として
オゾン発生機5を制御してオゾン注入制御を行う。
In this embodiment, the generated ozone concentration Ci (O 3 ) and the discharged ozone concentration Co
(O 3 ) is measured, and the water quality controller 16 controls the ozone injection rate. As shown in FIG. 10, in the ozone injection rate control unit 16, the ozone gas concentration obtained from the supply ozone concentration meter 7, the exhaust ozone concentration obtained from the exhaust ozone concentration meter 9,
Ozone concentration obtained from the dissolved ozone concentration measuring device 15,
The ozone generator 5 controls the ozone generator 5 using the UV value obtained from the UV measurement device 16 as an input to perform ozone injection control.

【0097】この制御方法のフローチャートを図11に
示す。
FIG. 11 shows a flowchart of this control method.

【0098】この図において、ステップ101では発生
オゾン濃度計7より得られる発生オゾン濃度Ci
(O3)と排オゾン濃度計9より得られる排オゾン濃度
Co(O3)の各計測値に基づいて吸収効率η[={Ci
(O3)−Co(O3)}/Ci(O3)×100(%)]
を演算する。
In this figure, in step 101, the generated ozone concentration Ci obtained from the generated ozone concentration meter 7
(O 3 ) and the exhaust ozone concentration Co (O 3 ) obtained from the exhaust ozone concentration meter 9 based on the measured values of the absorption efficiency η [= {Ci
(O 3 ) -Co (O 3 )} / Ci (O 3 ) × 100 (%)]
Is calculated.

【0099】ステップ102ではオゾン吸収量α[=オ
ゾン注入率(D)・(η/100)]を演算する。
In step 102, the ozone absorption amount α [= ozone injection rate (D) · (η / 100)] is calculated.

【0100】ステップ103では溶存オゾン濃度計15
から得られる溶存オゾン濃度(DO3)から溶存オゾン量
を演算する。
In step 103, the dissolved ozone concentration meter 15
Is calculated from the dissolved ozone concentration (DO 3 ) obtained from the above.

【0101】ステップ104ではステップ102及び1
03から得られる値を下にしてオゾン消費量(CO3
を演算する(CO3=(D・η/100)−DO3)。
In step 104, steps 102 and 1
Ozone consumption (CO 3 ) below the value obtained from 03
Is calculated (CO 3 = (D · η / 100) −DO 3 ).

【0102】ステップ105では上記CO3の値から検
水のオゾン要求量(RO3)をカッコ内の数式のように
仮定する(RO3≒C 3+ΔC 3)。
In step 105, the required amount of ozone (RO 3 ) of the sample is calculated from the value of CO 3 as shown in the equation in parentheses.
Assuming (RO 3 ≒ C O 3 + ΔC O 3).

【0103】ステップ106ではΔCO3→0になるよ
うにDO3を最小化することにより溶存オゾン濃度の最
小化を行う。
In step 106, the concentration of dissolved ozone is minimized by minimizing DO 3 so that ΔCO 3 → 0.

【0104】ステップ107ではDO3が最小(≒0.1
〜0.3mgO3/l)となるようにオゾン注入率を最小化
してDを制御する。
In step 107, DO 3 is minimized (≒ 0.1
D is controlled by minimizing the ozone injection rate so as to be about 0.3 mg O 3 / l).

【0105】ステップ108ではDを制御するためにオ
ゾン発生機からの発生オゾン濃度を最小化する。これに
よりオゾンの吸収効率が上昇する。
In step 108, the concentration of ozone generated from the ozone generator is minimized in order to control D. This increases the ozone absorption efficiency.

【0106】ステップ109ではO3処理水中のUV値
が制御目標値以下となるように以下に示すフィードバッ
ク制御を行う。
In step 109, the following feedback control is performed so that the UV value in the O 3 treated water becomes equal to or less than the control target value.

【0107】まず、オゾン処理水の各除去対象物質(色
度、臭気大腸菌群、一般細菌、MBAS等)とUV値の
除去関係式(UV値がどの値以下であれば臭気色度、大
腸菌群、一般細菌は除去目標値をクリアーするか)を求
める。
First, a relational expression between the respective substances to be removed (chromaticity, odorous Escherichia coli, general bacteria, MBAS, etc.) and the UV value (the odor chromaticity, the coliforms if the UV value is less than or equal to). General bacteria clear the target removal value).

【0108】この関係は任意の方法で求められるが、本
実施例においては図12に示すように除去対象物である
色度、大腸菌群、一般細菌、MBAS、臭気(それぞれ
A〜E線に対応)の各値とUV値との相関を示すグラフ
を用いた。
This relationship can be obtained by an arbitrary method. In this embodiment, as shown in FIG. 12, the chromaticity, coliform bacteria, general bacteria, MBAS, and odors to be removed (corresponding to lines A to E, respectively) as shown in FIG. A graph showing the correlation between each value of ()) and the UV value was used.

【0109】このグラフにおいては上記除去対象物の除
去目標値がL線になるようにそれぞれの値において縦軸
の各濃度目盛りをそれぞれ設定し、このグラフで目標値
に対するUV値(E260値)が最も高いものを目標U
V値とした。
In this graph, each of the density scales on the vertical axis is set at each value so that the removal target value of the object to be removed is on the L line. In this graph, the UV value (E260 value) with respect to the target value is set. Highest target U
The V value was used.

【0110】この図12においてはC線において除去目
標値に対するUV値が最も高い。従って目標UV値はこ
のC線におけるUV値(UV1)とした。
In FIG. 12, the UV value with respect to the removal target value is the highest on the C line. Therefore, the target UV value was the UV value (UV 1 ) for this C line.

【0111】以上のように第1にオゾン吸収効率が最大
になり、かつ溶存オゾン流出が最小になるようなオゾン
注入率を演算しする。
As described above, first, the ozone injection rate is calculated such that the ozone absorption efficiency is maximized and the dissolved ozone outflow is minimized.

【0112】次に図12の関係図を用いて各物質が目標
値以下になるUV1を求め、オゾン処理水のUV(E2
60)値をフィードバック制御により補正制御を行うこ
とにより、オゾン処理においてオゾン使用量を最小にす
るとともに各除去対象物濃度を基準値より低くすること
ができる。
Next, UV 1 at which each substance becomes equal to or less than the target value is determined using the relationship diagram of FIG.
60) By performing the correction control on the value by the feedback control, the amount of ozone used in the ozone treatment can be minimized and the concentration of each object to be removed can be made lower than the reference value.

【0113】尚、本実施例においては図7に示されるよ
うなオゾン接触槽を用いてオゾン処理を行ったが、この
ようなオゾン接触槽に限定されるものではなく、例えば
図13に示されるようなう流式処理槽等を用いることも
できる。また、処理水の水質信号(UV信号)だけを用
いることで、よごれ等のセンサーの信頼性を向上するこ
ともできる。
In the present embodiment, the ozone treatment was performed using an ozone contact tank as shown in FIG. 7, but the present invention is not limited to such an ozone contact tank. For example, as shown in FIG. Such a flow type processing tank or the like can also be used. Further, by using only the water quality signal (UV signal) of the treated water, the reliability of the sensor such as dirt can be improved.

【0114】[0114]

【発明の効果】以上説明したように、本発明によれば以
下の効果が得られる。
As described above, according to the present invention, the following effects can be obtained.

【0115】(1)オゾン吸収率の向上が図れるととも
に、オゾン処理水中の溶存オゾン濃度の最小化が達成で
きる。従って、処理水を放流しても河川等の周囲環境に
与える影響を抑制することができる。
(1) The ozone absorption rate can be improved and the concentration of dissolved ozone in the ozonated water can be minimized. Therefore, even if the treated water is discharged, the influence on the surrounding environment such as a river can be suppressed.

【0116】また、オゾン注入率の最小化が達成でき、
電気料金等の処理コストを削減することができる。
Further, the ozone injection rate can be minimized,
Processing costs such as electricity charges can be reduced.

【0117】(2)発生オゾン濃度、排オゾン濃度、溶
存オゾン濃度、溶存UV計等の汎用的な機器によって、
運転制御と水質制御が実現できる。
(2) Generated ozone concentration, exhausted ozone concentration, dissolved ozone concentration, dissolved UV meter, etc.
Operation control and water quality control can be realized.

【0118】(3)オゾン処理時間が15−30分程度
であるため、フィードバック制御のみで制御系が構築で
きる。フィードフォワード制御系の省略、原水系の水質
センサーの省略ができる。従って、フィードバック制御
のみで制御系を構築することができる。
(3) Since the ozone treatment time is about 15 to 30 minutes, a control system can be constructed only by feedback control. The feedforward control system can be omitted, and the water quality sensor for the raw water system can be omitted. Therefore, a control system can be constructed only by the feedback control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来例に係る浄水処理装置の説明図。FIG. 1 is an explanatory diagram of a water purification apparatus according to a conventional example.

【図2】従来例に係るオゾン処理方法の説明図。FIG. 2 is an explanatory diagram of an ozone treatment method according to a conventional example.

【図3】無次元接触時間に対する溶存オゾン濃度の相関
を示すグラフ。
FIG. 3 is a graph showing a correlation between a dissolved ozone concentration and a dimensionless contact time.

【図4】無次元接触時間に対する溶存E260の相関を
示すグラフ。
FIG. 4 is a graph showing a correlation of dissolved E260 with respect to dimensionless contact time.

【図5】無次元接触時間に対する蛍光強度の相関を示す
グラフ。
FIG. 5 is a graph showing a correlation of a fluorescence intensity with a dimensionless contact time.

【図6】無次元接触時間に対する一般細菌濃度の相関を
示すグラフ。
FIG. 6 is a graph showing the correlation of the general bacterial concentration with the dimensionless contact time.

【図7】本発明の一実施例に係るオゾン処理装置の説明
図。
FIG. 7 is an explanatory view of an ozone treatment apparatus according to one embodiment of the present invention.

【図8】本発明の一実施例に係る水質制御部の説明図。FIG. 8 is an explanatory diagram of a water quality control unit according to one embodiment of the present invention.

【図9】本発明の一実施例に係るオゾン処理装置の説明
図。
FIG. 9 is an explanatory diagram of an ozone treatment apparatus according to one embodiment of the present invention.

【図10】本発明の一実施例に係る水質制御部の説明
図。
FIG. 10 is an explanatory diagram of a water quality control unit according to one embodiment of the present invention.

【図11】本発明の一実施例に係る水質制御方法のフロ
ーチャート。
FIG. 11 is a flowchart of a water quality control method according to an embodiment of the present invention.

【図12】UV値に対する各除去対象物濃度の相関を示
すグラフ。
FIG. 12 is a graph showing the correlation between the concentration of each object to be removed and the UV value.

【図13】う流式オゾン処理装置の説明図。FIG. 13 is an explanatory diagram of a flow type ozone treatment apparatus.

【符号の説明】[Explanation of symbols]

1…原水槽 2…送水ポンプ 3…流量計 4…処理槽 5…オゾン発生機 6…注入オゾンガス流量計 7…発生オゾン濃度計 8…散気板 9…排オゾン濃度計 10…脱泡槽 11…排オゾン処理槽 12…オゾン処理水槽 13、14…DO3測定部 15…溶解オゾン濃度測定部 16…UV値測定部DESCRIPTION OF SYMBOLS 1 ... Raw water tank 2 ... Water supply pump 3 ... Flow meter 4 ... Treatment tank 5 ... Ozone generator 6 ... Injected ozone gas flow meter 7 ... Generated ozone concentration meter 8 ... Aeration plate 9 ... Waste ozone concentration meter 10 ... Defoaming tank 11 ... discharge ozone treatment tank 12 ... ozone treatment water tank 13, 14 ... DO 3 measuring section 15 ... dissolved ozone concentration measuring unit 16 ... UV value measuring unit

フロントページの続き (72)発明者 月足 圭一 東京都品川区大崎2丁目1番17号 株式 会社明電舎内 (72)発明者 島崎 弘志 東京都品川区大崎2丁目1番17号 株式 会社明電舎内 (56)参考文献 特開 平4−225895(JP,A) 特開 平3−224694(JP,A) 特開 昭58−150488(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/78 C02F 1/50 B01F 1/00 Continued on the front page (72) Inventor Keiichi Tsukiari 2-1-17 Osaki, Shinagawa-ku, Tokyo, Japan Inside Meidensha Co., Ltd. (72) Inventor Hiroshi Shimazaki 2-1-1, Osaki, Shinagawa-ku, Tokyo Co., Ltd. 56) References JP-A-4-225895 (JP, A) JP-A-3-224694 (JP, A) JP-A-58-150488 (JP, A) (58) Fields investigated (Int. Cl. 7 , (DB name) C02F 1/78 C02F 1/50 B01F 1/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フロー式のオゾン処理装置であって、 検水とオゾンガスとを接触反応させるオゾン処理槽と、 前記オゾン処理槽内での検水とオゾンとの接触時間が異
なるk箇所(ただしk≧2)における検水の溶存オゾン
濃度を計測するオゾン濃度測定手段と、 水質制御手段とを有し、 前記水質制御手段は、前記オゾン濃度測定手段から得ら
れる各溶存オゾン濃度を比較してこれら溶存オゾン濃度
の差が予め定められた目標値を満たすように供給オゾン
ガス濃度を制御することを特徴とするオゾン処理装置。
1. An ozone treatment apparatus of a flow type , comprising: an ozone treatment tank for causing a contact reaction between sample water and ozone gas; and k locations (where, however, contact times between sample water and ozone in the ozone treatment tank are different). k ≧ 2), comprising an ozone concentration measuring means for measuring the dissolved ozone concentration of the test water, and a water quality controlling means, wherein the water quality controlling means compares each dissolved ozone concentration obtained from the ozone concentration measuring means. An ozone treatment apparatus characterized in that the supply ozone gas concentration is controlled so that the difference between the dissolved ozone concentrations satisfies a predetermined target value.
【請求項2】 請求項1記載のフロー式のオゾン処理装
置において、 前記水質制御手段は前記溶存オゾン濃度の差が前記目標
値よりも大きいときは供給オゾンガスの濃度を高くし、
かつ前記溶存オゾン濃度の差が前記目標値よりも小さい
ときは前記供給オゾンガス濃度を低くする制御を行うこ
とを特徴とするオゾン処理装置。
2. The flow-type ozone treatment apparatus according to claim 1, wherein the water quality control means increases the concentration of the supplied ozone gas when the difference in the dissolved ozone concentration is larger than the target value.
An ozone treatment apparatus characterized in that when the difference in the dissolved ozone concentration is smaller than the target value, control is performed to lower the supplied ozone gas concentration.
【請求項3】 検水とオゾンガスとを接触反応させる
ロー式のオゾン処理方法において、 前記オゾン処理槽内での検水とオゾンとの接触時間が異
なるk箇所(ただしk≧2)における検水の溶存オゾン
濃度を計測し、これら各溶存オゾン濃度を比較してこれ
ら溶存オゾン濃度の差が予め定められた目標値を満たす
ように供給オゾンガス濃度を制御することを特徴とする
オゾン処理方法。
3. A full contacting reaction of the test water and ozone gas
In the low-type ozone treatment method, the dissolved ozone concentration of the test water is measured at k points (where k ≧ 2) where the contact time between the test water and the ozone in the ozone treatment tank is different, and each of these dissolved ozone concentrations is measured. An ozone treatment method comprising controlling the supplied ozone gas concentration so that the difference between the dissolved ozone concentrations satisfies a predetermined target value.
【請求項4】 請求項3記載のフロー式のオゾン処理方
法を用いた検水のオゾン処理工程を有することを特徴と
する浄水処理方法。
4. A water purification treatment method comprising an ozone treatment step for water sample using the flow type ozone treatment method according to claim 3.
JP04562193A 1993-03-08 1993-03-08 Ozone treatment apparatus, ozone treatment method, and water purification treatment method Expired - Fee Related JP3321876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04562193A JP3321876B2 (en) 1993-03-08 1993-03-08 Ozone treatment apparatus, ozone treatment method, and water purification treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04562193A JP3321876B2 (en) 1993-03-08 1993-03-08 Ozone treatment apparatus, ozone treatment method, and water purification treatment method

Publications (2)

Publication Number Publication Date
JPH06254576A JPH06254576A (en) 1994-09-13
JP3321876B2 true JP3321876B2 (en) 2002-09-09

Family

ID=12724451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04562193A Expired - Fee Related JP3321876B2 (en) 1993-03-08 1993-03-08 Ozone treatment apparatus, ozone treatment method, and water purification treatment method

Country Status (1)

Country Link
JP (1) JP3321876B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114432A1 (en) 2007-03-20 2008-09-25 Fujitsu Limited Data embedding device, data extracting device, and audio communication system
WO2019040839A1 (en) * 2017-08-24 2019-02-28 Absolutaire, Inc. Ozone generator conrtol system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100373511B1 (en) * 2000-07-13 2003-02-25 (주)우대기술단 Auto control apparatus of ozone process and AOP(Advanced Oxidation Process) using I.D(Instantaneous Ozone Demand) and method thereof
KR100373512B1 (en) * 2000-07-13 2003-02-25 (주)우대기술단 Auto control apparatus of ozone process and AOP(Advanced Oxidation Process) using CT control and method thereof
KR100373513B1 (en) * 2000-07-14 2003-02-25 (주)우대기술단 Auto control apparatus of ozone process and AOP(Advanced Oxidation Process) using kc(ozone consumption rate) and method thereof
JP2006223935A (en) * 2005-02-15 2006-08-31 Hitachi Ltd Apparatus and method for producing reusable water
JP4711937B2 (en) * 2006-11-17 2011-06-29 株式会社日立製作所 Process control equipment for water treatment facilities

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114432A1 (en) 2007-03-20 2008-09-25 Fujitsu Limited Data embedding device, data extracting device, and audio communication system
WO2019040839A1 (en) * 2017-08-24 2019-02-28 Absolutaire, Inc. Ozone generator conrtol system

Also Published As

Publication number Publication date
JPH06254576A (en) 1994-09-13

Similar Documents

Publication Publication Date Title
KR100384668B1 (en) Water Treating Method
RU2565175C2 (en) Method of water treatment
JP3321876B2 (en) Ozone treatment apparatus, ozone treatment method, and water purification treatment method
JP3184948B2 (en) Ozone injection control method and device
JP4334404B2 (en) Water treatment method and water treatment system
JP4907103B2 (en) Sludge treatment method for biological treatment tank
JP3602661B2 (en) Ozone injection device control system
JP3598022B2 (en) Water treatment method using ozone and hydrogen peroxide
JP4170610B2 (en) Water quality control system
KR100430071B1 (en) Facility supplying extinguish water and living water by recycling waste water
JP4660211B2 (en) Water treatment control system and water treatment control method
JP2007014955A (en) Water-quality control system
JP2003236566A (en) Apparatus for controlling residual hydrogen peroxide concentration
JP2000117274A (en) Water treatment method and apparatus
JPH07275874A (en) Ozone treatment apparatus
JPH0242559B2 (en)
JPH09192680A (en) Ozone treatment method and ozone treatment device
JPS5939198B2 (en) Wastewater ozone treatment equipment
RU1822970C (en) Method of potentiometric water quality control
JPH11207368A (en) Ozone injection controlling method
JP2005313115A (en) System for controlling ozone-used water treatment
JPH08299972A (en) Ozone yield controller
JP2000107778A (en) Water treatment method and apparatus
JPH04317796A (en) Purifying vessel for sewage and its driving method
JPH08318286A (en) Ozone treating method and apparatus in high-degree water purifying treatment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees