JP3309138B2 - Measuring method of rotation center position of rotating body by measuring displacement of three points and measuring device therefor - Google Patents
Measuring method of rotation center position of rotating body by measuring displacement of three points and measuring device thereforInfo
- Publication number
- JP3309138B2 JP3309138B2 JP2000036333A JP2000036333A JP3309138B2 JP 3309138 B2 JP3309138 B2 JP 3309138B2 JP 2000036333 A JP2000036333 A JP 2000036333A JP 2000036333 A JP2000036333 A JP 2000036333A JP 3309138 B2 JP3309138 B2 JP 3309138B2
- Authority
- JP
- Japan
- Prior art keywords
- rotation
- sphere
- center position
- measuring
- rotation center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、各種の回転体の回
転中心位置を計測することができ、特に工具や工作物の
ような機械加工における回転体の回転中心位置を計測す
るのに適した3点の変位計測による回転体の回転中心位
置の計測方法及びその計測装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can measure the position of the center of rotation of various rotating bodies, and is particularly suitable for measuring the position of the center of rotation of a rotating body in machining such as tools and workpieces. The present invention relates to a method for measuring the position of the center of rotation of a rotating body by measuring displacements at three points and a measuring device therefor.
【0002】[0002]
【従来の技術】回転体の回転中心位置を計測することは
各種の分野で必要とされ、特に回転軸の回転中心位置
は、軸及び軸受けの構造、回転数、軸に作用する外力等
により変動するするためその測定は困難であり、そのた
めに種々の技術が開発されている。その中でも工作機械
主軸は様々な形状と重量をもつ工具あるいは工作物を保
持して回転させながら加工を行うため、上記のような変
動は寸法形状、加工面形状等の加工結果に対して直接的
な影響を及ぼすこととなる。したがって、必要とされる
加工精度に対して許容しうる軸心変動となるような主軸
系の設計を行うことが要求される。2. Description of the Related Art Measuring the position of the center of rotation of a rotating body is required in various fields. In particular, the position of the center of rotation of a rotating shaft fluctuates due to the structure of the shaft and bearing, the number of rotations, external force acting on the shaft, and the like. Therefore, the measurement is difficult, and various techniques have been developed for that purpose. Above all, the machine tool spindle performs machining while holding and rotating tools or workpieces with various shapes and weights, so the above fluctuations are directly related to machining results such as dimensional shape, machining surface shape, etc. Will have a significant effect. Therefore, it is required to design the spindle system such that the axis center fluctuation is acceptable for the required machining accuracy.
【0003】たとえば、0.01μmの加工精度が要求
される超精密加工機では、回転中心位置の変動は同じ
0.01μmオーダー以下に押さえることが必要とな
る。また精密旋削加工においては工具刃先の高さを回転
中心位置に高精度に一致させることも重要な技術的課題
となっているが、これらの課題に対応するためには、ま
ず、無付加回転中及び加工回転中における主軸の回転中
心位置を、サブミクロンあるいはナノメータのオーダで
高精度に検出する方法を確立することが必要である。For example, in an ultra-precision processing machine that requires a processing accuracy of 0.01 μm, it is necessary to suppress the fluctuation of the rotation center position to the same order of 0.01 μm or less. In precision turning, it is also an important technical issue to match the height of the tool edge with the position of the rotation center with high accuracy, but in order to address these issues, first, In addition, it is necessary to establish a method for detecting the rotation center position of the spindle during machining rotation with high accuracy on the order of submicron or nanometer.
【0004】上記のような課題を解決するため、本発明
者らは以前よりこの関連技術の研究を行い、特許第20
71913号及び特許第2090587号等の発明を行
っている。上記特許第2071913号「回転軸の回転
中心位置の検出方法及びその検出装置」の技術は、図4
に示すように、回転軸(Z)軸の端部に高精度な鋼球を
取付け、回転中心(O)と鋼球中心(A)とのずれ
(e)に起因して生ずる変位量のうち回転同期成分
(z)を検出する。その際、非接触変位計をY軸方向と
X軸方向(図面に垂直な方向)に走査しながら計測し
て、zが最小となる位置、即ち回転中心位置(O)を求
めるものである。[0004] In order to solve the above-mentioned problems, the present inventors have been conducting research on this related technology for a long time, and have found that the patent No. 20
No. 71913 and Japanese Patent No. 2090587. Japanese Patent No. 2071913 entitled "Method and Apparatus for Detecting Rotation Center Position of Rotation Shaft" is disclosed in FIG.
As shown in the figure, a high-precision steel ball is attached to the end of the rotation axis (Z) axis, and the displacement amount caused by the displacement (e) between the rotation center (O) and the steel ball center (A) is A rotation synchronization component (z) is detected. At this time, measurement is performed while scanning the non-contact displacement meter in the Y-axis direction and the X-axis direction (a direction perpendicular to the drawing), and a position where z is minimum, that is, a rotation center position (O) is obtained.
【0005】また、上記特許第2090587号「平面
基板と3センサによる回転中心位置の自動検出方法及び
検出装置」は、軸端にゴニオメータにより高精度な平面
基板をZ軸に対して僅かに傾けて取り付け、この平面基
板に対向するX−Y平面内で正三角形の頂点位置に3つ
の非接触変位計を配置する。回転中の平面基板と変位計
との間の相対変位信号から回転同期成分を抽出し、3つ
の同期成分のうち隣接する変位計によるものについてそ
れぞれの位相差を検出する。その結果、位相差を円周角
とし、隣接する2つの変位計の中心位置(正三角形の2
つの頂点位置)を通る円を3つ描くことができる。この
3つの円の交点の座標は回転中心位置に一致する。この
円とその交点位置は演算によって求めるものである。[0005] Also, in the above-mentioned Japanese Patent No. 2090587, "a method and an apparatus for automatically detecting the rotation center position using a flat substrate and three sensors" are described in which a highly accurate flat substrate is slightly inclined with respect to the Z axis by a goniometer at the shaft end. Attach, and three non-contact displacement meters are arranged at the vertices of an equilateral triangle in the XY plane facing this flat substrate. A rotation synchronization component is extracted from a relative displacement signal between the rotating flat substrate and the displacement meter, and a phase difference between each of the three synchronization components by the adjacent displacement meter is detected. As a result, the phase difference is defined as the circumferential angle, and the center position of two adjacent displacement meters (2
Three vertices) can be drawn. The coordinates of the intersection of these three circles coincide with the rotation center position. This circle and its intersection point are obtained by calculation.
【0006】[0006]
【発明が解決しようとする課題】前記特許第20719
13号の発明においては、非接触変位計を走査する際
に、比較的長い距離にわたって一定の間隔(p)毎に、
数回のサンプリングと平均化処理を行って回転同期成分
(z)を検出し、その記憶操作を行いながら変位計を移
動させる必要がある。これをX、Y両軸について行うた
め一回の計測に要する時間が長くなる。The above-mentioned Patent No. 20719 is described.
In the invention of No. 13, when scanning the non-contact displacement meter, at a constant interval (p) over a relatively long distance,
It is necessary to detect the rotation synchronization component (z) by performing sampling and averaging several times, and to move the displacement meter while performing the storage operation. Since this is performed for both the X and Y axes, the time required for one measurement becomes longer.
【0007】回転体の回転中心位置は、厳密にいえば常
に変動しているので、計測時間はできるだけ短いことが
望ましい。一方、計測精度を高くするためには測定間隔
(p)が短い方がよいが、それは計測時間を長くするこ
とになる。このように、この方法では計測精度と計測時
間が相反する関係になる欠点があった[0007] Strictly speaking, the position of the center of rotation of the rotating body constantly fluctuates, so that the measurement time is desirably as short as possible. On the other hand, in order to increase the measurement accuracy, it is better that the measurement interval (p) is short, but this increases the measurement time. As described above, this method has a disadvantage that the measurement accuracy and the measurement time are in an opposite relationship.
【0008】また、前記特許第2090587号の発明
においては、通常、光学ガラス製または軟質金属製の平
面鏡を用いる高精度平面基板の取付が大きな問題とな
る。即ち、取付対象が回転体であるから、回転中に緩み
が生じないように確実に取り付ける必要がある。しか
し、一般に平面基板は取付時に作用する外力によって平
面度が低下する。その影響は高精度の平面基板になるほ
ど大きくなる。現状では、平面基板の平面度を保持した
ままで回転体に取り付ける技術、及び回転中に作用する
遠心力などの影響を受けない取付技術は確立されていな
い。このように、計測の基準となる平面基板の取付技術
が未確立であり、開発途上である。In the invention of Japanese Patent No. 2090587, mounting of a high-precision flat substrate using a flat mirror made of optical glass or soft metal usually poses a serious problem. That is, since the mounting object is a rotating body, it is necessary to securely mount the rotating body so that the loosening does not occur during rotation. However, in general, the flatness of a flat substrate is reduced by an external force acting upon mounting. The effect becomes greater as the precision of the substrate becomes higher. At present, a technology for mounting the flat substrate on the rotating body while maintaining the flatness of the flat substrate, and a mounting technology that is not affected by the centrifugal force acting during rotation have not been established. As described above, the mounting technology of the flat substrate serving as a reference for measurement has not been established and is under development.
【0009】したがって本発明は、簡単な操作により短
時間で計測することができ、また、平面基板を用いるこ
となく高精度で、かつ簡単な演算により高速に回転中心
位置を計測することができる3点の変位計測による回転
体の回転中心位置の計測方法及びその計測装置を提供す
ることを目的とする。Therefore, according to the present invention, measurement can be performed in a short time by a simple operation, and the rotation center position can be measured at a high speed with a high accuracy without using a flat substrate and by a simple calculation. An object of the present invention is to provide a method of measuring the position of the center of rotation of a rotating body by measuring the displacement of a point and a measuring device therefor.
【0010】[0010]
【課題を解決するための手段】本発明は、上記課題を解
決するため、請求項1に係る発明は、被計測回転軸の先
端に球体を取付け、一平面内において三角形の頂点に位
置した3個の非接触型変位計を前記球体に対向して配置
し、特定回転数で回転する前記球体と前記非接触型変位
計との軸方向の相対距離に含まれる回転に同期した信号
成分zと、回転中心位置と非接触変位計との間隔yとの
比例定数αを求め、次いで測定目的回転数で回転する前
記球体に前記3個の変位計を近づけて軸方向の相対距離
の内の回転同期成分zを同時に検出し、この3つのzの
値と前記比例定数αより3個の非接触変位計と回転中心
位置との間隔yを算出して、それぞれのyを半径とし前
記三角形の各頂点位置を中心とする3つの円の方程式を
求め、各円の交点から回転軸の回転中心を計測すること
を、特徴とする3点の変位計測による回転体の回転中心
位置の計測方法としたものである。According to the present invention, in order to solve the above-mentioned problems, according to the first aspect of the present invention, a sphere is attached to the tip of a rotation axis to be measured, and the sphere is located at the apex of a triangle in one plane. And a signal component z synchronized with rotation included in the relative distance in the axial direction between the sphere rotating at a specific rotation speed and the non-contact type displacement meter, wherein the non-contact type displacement meters are arranged to face the sphere. Then, the proportional constant α between the rotational center position and the distance y between the non-contact displacement meter is obtained, and then the three displacement meters are brought closer to the sphere rotating at the target number of revolutions to rotate within the relative distance in the axial direction. The synchronous components z are simultaneously detected, and the distance y between the three non-contact displacement gauges and the rotational center position is calculated from the three z values and the proportionality constant α. Find the equation of three circles centered on the vertex position, and find the intersection of each circle Measuring the center of rotation of the rotating shaft is a method of measuring the position of the center of rotation of the rotating body by measuring the displacement at three points.
【0011】また、請求項2に係る発明は、被計測回転
軸の先端に固定した球体と、一平面内において三角形の
頂点に位置し前記球体に対向して可動台上に配置した3
個の非接触型変位計と、前記変位計の信号により回転同
期成分を検出する回転同期成分検出装置と、演算装置と
を備えると共に、特定回転数で回転する前記球体と前記
非接触型変位計との軸方向の相対距離に含まれる回転に
同期した信号成分zと、回転中心位置と非接触変位計と
の間隔yとの比例定数αを求める手段と、測定目的回転
数で回転する前記球体に前記3個の変位計を近づけて軸
方向の相対距離の内の回転同期成分zを同時に検出する
手段と、この3つのzの値と前記比例定数αより3個の
非接触変位計と回転中心位置との間隔yを算出する手段
と、それぞれのyを半径とし前記三角形の各頂点位置を
中心とする3つの円の方程式を求める手段と、各円の交
点から回転軸の回転中心を計測する手段とを備えたこと
を特徴とする3点の変位計測による回転体の回転中心位
置の計測装置したものである。The invention according to claim 2 is characterized in that a sphere fixed to the tip of the rotation axis to be measured and a sphere located at the apex of a triangle in one plane and opposed to the sphere are arranged on a movable base.
A non-contact displacement meter, a rotation synchronization component detection device that detects a rotation synchronization component based on a signal from the displacement meter, and an arithmetic device, and the sphere rotating at a specific rotation speed and the non-contact displacement meter Means for calculating a proportional component α between a signal component z synchronized with rotation included in the relative distance in the axial direction and a distance y between the center of rotation and the non-contact displacement meter, and the sphere rotating at the rotation speed to be measured. Means for simultaneously detecting the rotation synchronizing component z within the relative distance in the axial direction by bringing the three displacement gauges closer to each other, and three non-contact displacement gauges based on the three z values and the proportionality constant α. Means for calculating the distance y from the center position, means for calculating the equation of three circles with each y as a radius and each vertex position of the triangle as the center, and measuring the rotation center of the rotation axis from the intersection of each circle And a means for performing This is a device for measuring the rotation center position of the rotating body by displacement measurement.
【0012】[0012]
【発明の実施の形態】本発明の具体的実施例について説
明する前に、本発明により回転体の回転中心位置を計測
する原理について説明する。本発明は、上記特許第20
71913号の技術と同様に、軸端に高精度な鋼球等の
球体を取り付ける。そして非接触変位計は、上記特許第
2090587号のように3つの非接触変位計を球体に
対向するX−Y平面内で正三角形の頂点の位置に配置す
る。上記特許第2071913号において説明している
ように、回転同期成分zは非接触変位計の位置yの値と
比例関係にあるとみなして良い、したがって実際に球体
を取り付け、任意の回転速度のもとでこの比例関係を計
測して、予め比例定数αを求めておけば、zを測定する
ことによりyの値を算出することができる。本発明は、
この関係を利用したものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing a specific embodiment of the present invention, a principle of measuring a rotation center position of a rotating body according to the present invention will be described. The present invention relates to the twentieth patent.
A high-precision sphere such as a steel ball is attached to the shaft end in the same manner as in the technique of No. 71913. Then, the non-contact displacement meter arranges three non-contact displacement meters at the positions of the vertices of an equilateral triangle in the XY plane facing the sphere as in the above-mentioned Japanese Patent No. 2090587. As described in the above-mentioned Japanese Patent No. 2071913, the rotation synchronization component z may be regarded as being proportional to the value of the position y of the non-contact displacement meter. If this proportional relationship is measured in advance and the proportional constant α is determined in advance, the value of y can be calculated by measuring z. The present invention
This relationship is used.
【0013】まず、図2に示すように、正三角形の頂点
位置(S,T,U)に配置した非接触変位計で、3点で
の回転同期成分ZS,ZT,ZUの値を同時に検出す
る。次に、上述の比例定数αを使って3点のzの値から
各点のyの値yS,yT,yUを算出する。そして図3
に示すように各頂点位置を中心点とし、yを半径とする
円の方程式を求める。例えば、点S(a,b)を中心と
して半径がySの円は、 (x−a)2+(y−b)2=yS 2 (1) と表すことができる。3つの円は1つの交点を持ち、そ
の位置は回転中心位置(O)と一致する。したがって、
本発明は、このようにして上記3つの円の交点を求める
ことにより回転体の回転中心位置を計測するものであ
る。First, as shown in FIG. 2, values of rotation synchronous components Z S , Z T , and Z U at three points are measured by a non-contact displacement meter arranged at the vertices (S, T, U) of an equilateral triangle. Are simultaneously detected. Next, y values y S , y T , and y U of each point are calculated from the z values of the three points using the above-described proportional constant α. And FIG.
As shown in (1), an equation of a circle having each vertex position as a center point and y as a radius is obtained. For example, a circle radius is y S around the point S (a, b) can be represented as (x-a) 2 + ( y-b) 2 = y S 2 (1). The three circles have one intersection, and their positions coincide with the rotation center position (O). Therefore,
The present invention measures the rotation center position of the rotating body by obtaining the intersection of the three circles as described above.
【0014】本発明の具体的実施例を図面に沿って説明
する。その概要は図1に示されるように、回転軸1の端
部に球体2を取り付け、同一性能の3つの非接触変位計
3,4,5を正三角形の頂点位置(S,T,U)に固定
し、これを微動ステージ6上に取り付ける。各変位計の
出力はフィルタにより構成される回転同期成分検出装置
7に入力され、回転同期成分の検出を行った後、パーソ
ナルコンピュータ8の演算装置9に入力し、前記方程式
に基づく演算を行い、回転中心位置を求めてこれを表示
する回転中心位置出力表示装置10に出力するようにな
っている。A specific embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, a sphere 2 is attached to the end of a rotating shaft 1 and three non-contact displacement meters 3, 4, and 5 having the same performance are positioned at the apex positions (S, T, U) of an equilateral triangle. And mounted on the fine movement stage 6. The output of each displacement meter is input to a rotation synchronization component detection device 7 composed of a filter, and after detecting the rotation synchronization component, is input to a calculation device 9 of a personal computer 8 and performs calculation based on the above equation. The rotation center position is obtained and output to a rotation center position output display device 10 for displaying the rotation center position.
【0015】実際の計測に際しては、まず、球体2を取
り付けた回転軸1を特定の回転数で回転させ、この球体
2に対して非接触変位計3,4,5を微動ステージ6に
よって移動させる。その際、前記図4に示すものと同様
に、Y軸方向に変位計を移動させながら、変位計の移動
量yと任意の1つの変位計の回転同期成分zの変化量を
計測する。このyとzとの関係から比例定数αを求め
る。In actual measurement, first, the rotating shaft 1 on which the sphere 2 is mounted is rotated at a specific number of revolutions, and the non-contact displacement meters 3, 4, and 5 are moved by the fine movement stage 6 with respect to the sphere 2. . At this time, as in the case shown in FIG. 4, while moving the displacement meter in the Y-axis direction, the movement amount y of the displacement meter and the change amount of the rotation synchronization component z of any one displacement meter are measured. The proportional constant α is obtained from the relationship between y and z.
【0016】次いで測定目標回転数で回転中の球体に対
して、微動ステージ6により3つの変位計を近づけて回
転同期成分ZS,ZT,ZUを同時に検出する(図2参
照)。これをパーソナルコンピュータの演算装置に入力
し、比例定数αを使用してy S,yT,yUに変換す
る。これによりX−Y平面内でのS,T,Uの座標を中
心点としてyS,yT,yUを半径とする円の方程式
(1)を算出し、その交点を求める(図3参照)。この
ようにして求めた回転中心位置O(x,y)を表示装置
10に出力する。Next, the sphere rotating at the target rotation speed is measured.
Then, the three displacement meters are brought closer by the fine movement stage 6 and turned.
Inversion synchronization component ZS, ZT, ZUAre detected simultaneously (see Fig. 2).
See). This is input to the computing device of the personal computer
And using the proportionality constant α S, YT, YUConvert to
You. This allows the coordinates of S, T, and U in the XY plane to be
Y as the center pointS, YT, YUEquation of a circle with radius
(1) is calculated, and its intersection is obtained (see FIG. 3). this
Of the rotation center position O (x, y) obtained in the manner described above.
Output to 10
【0017】[0017]
【発明の効果】本発明は上記のように構成したので、前
記従来技術1のように時間がかかる変位計の操作が不要
となり、また、前記従来技術2のように平面基板を使う
必要がなく、3点での回転同期成分zを同時検出するだ
けで、後は演算によってその検出時間における回転中心
位置が算出でき、高精度な計測が可能となる。この演算
は、上記従来技術2での演算と比較して単純であり、演
算速度の高速化が可能であり、したがって、高速・高精
度に回転中心位置が計測できる。Since the present invention is constructed as described above, the time-consuming operation of the displacement gauge as in the prior art 1 is unnecessary, and the flat substrate as in the prior art 2 is not required. Only by simultaneously detecting the rotation synchronization component z at three points, the rotation center position at the detection time can be calculated by calculation thereafter, and highly accurate measurement can be performed. This calculation is simpler than the calculation in the above-described conventional technique 2, and the calculation speed can be increased. Therefore, the rotation center position can be measured with high speed and high accuracy.
【図1】本発明の一実施例の概念図である。FIG. 1 is a conceptual diagram of one embodiment of the present invention.
【図2】本発明のX−Y平面内における回転中心位置、
球体及び変位計の位置関係と、3つの変位計により計測
した回転同期成分zの値を表した説明図である。FIG. 2 shows a rotation center position in the XY plane of the present invention;
It is explanatory drawing showing the positional relationship of a spherical body and a displacement meter, and the value of the rotation synchronous component z measured by three displacement meters.
【図3】図2のzからyを算出し、3つの変位計の位置
を中心としてyS,yT,yUを半径とする円の交点が
回転中心位置と一致することを示す説明図である。FIG. 3 is an explanatory diagram showing that y is calculated from z in FIG. 2 and that an intersection of circles having radii of y S , y T , and y U centering on the positions of three displacement meters coincides with the rotation center position. It is.
【図4】従来技術1の計測の原理を示す拡大平面図であ
る。FIG. 4 is an enlarged plan view showing the principle of measurement according to Prior Art 1.
1 回転軸 2 球体 3,4,5 非接触変位計 6 微動ステージ 7 回転同期成分検出装置 8 パーソナルコンピュータ 9 演算装置 10 回転中心位置出力表示装置 DESCRIPTION OF SYMBOLS 1 Rotation axis 2 Sphere 3,4,5 Non-contact displacement meter 6 Fine movement stage 7 Rotation synchronous component detection device 8 Personal computer 9 Arithmetic device 10 Rotation center position output display device
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01B 21/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01B 21/00
Claims (2)
平面内において三角形の頂点に位置した3個の非接触型
変位計を前記球体に対向して配置し、特定回転数で回転
する前記球体と前記非接触型変位計との軸方向の相対距
離に含まれる回転に同期した信号成分zと、回転中心位
置と非接触変位計との間隔yとの比例定数αを求め、次
いで測定目的回転数で回転する前記球体に前記3個の変
位計を近づけて軸方向の相対距離の内の回転同期成分z
を同時に検出し、この3つのzの値と前記比例定数αよ
り3個の非接触変位計と回転中心位置との間隔yを算出
して、それぞれのyを半径とし前記三角形の各頂点位置
を中心とする3つの円の方程式を求め、各円の交点から
回転軸の回転中心を計測することを特徴とする3点の変
位計測による回転体の回転中心位置の計測方法。1. A sphere is attached to the tip of a rotation axis to be measured, and three non-contact type displacement meters located at the vertices of a triangle in one plane are arranged to face the sphere and rotate at a specific rotation speed. Obtain a signal component z synchronized with rotation included in an axial relative distance between the sphere and the non-contact type displacement meter, and a proportional constant α between a rotation center position and a distance y between the non-contact type displacement meter, and then measure The three displacement meters are brought closer to the sphere rotating at the target rotation speed, and the rotation synchronization component z within the relative distance in the axial direction is obtained.
Are simultaneously detected, and the distance y between the three non-contact displacement gauges and the rotation center position is calculated from the three z values and the proportionality constant α, and each vertex position of the triangle is determined using each y as a radius. A method of measuring a rotation center position of a rotating body by measuring displacements of three points, wherein an equation of three circles having a center is obtained, and a rotation center of a rotation axis is measured from an intersection of each circle.
一平面内において三角形の頂点に位置し前記球体に対向
して可動台上に配置した3個の非接触型変位計と、前記
変位計の信号により回転同期成分を検出する回転同期成
分検出装置と、演算装置とを備えると共に、特定回転数
で回転する前記球体と前記非接触型変位計との軸方向の
相対距離に含まれる回転に同期した信号成分zと、回転
中心位置と非接触変位計との間隔yとの比例定数αを求
める手段と、測定目的回転数で回転する前記球体に前記
3個の変位計を近づけて軸方向の相対距離の内の回転同
期成分zを同時に検出する手段と、この3つのzの値と
前記比例定数αより3個の非接触変位計と回転中心位置
との間隔yを算出する手段と、それぞれのyを半径とし
前記三角形の各頂点位置を中心とする3つの円の方程式
を求める手段と、各円の交点から回転軸の回転中心を計
測する手段とを備えたことを特徴とする3点の変位計測
による回転体の回転中心位置の計測装置。2. A sphere fixed to a tip of a rotation axis to be measured,
Three non-contact type displacement meters located on a movable table facing the sphere at the vertices of a triangle in one plane, and a rotation synchronization component detection device for detecting a rotation synchronization component based on a signal from the displacement meter A signal component z synchronized with rotation included in an axial relative distance between the sphere rotating at a specific rotation speed and the non-contact type displacement meter, a rotation center position, and a non-contact displacement meter Means for obtaining a proportional constant α with respect to the distance y between the two, and means for simultaneously detecting the rotation synchronization component z within the relative distance in the axial direction by bringing the three displacement meters close to the sphere rotating at the target rotational speed. Means for calculating the distance y between the three non-contact displacement meters and the rotation center position from the three values of z and the proportionality constant α, and setting each y as a radius to each vertex position of the triangle as a center. Means to find the equations of the three circles Means for measuring the center of rotation of the rotating shaft from the intersection of the circles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000036333A JP3309138B2 (en) | 2000-02-15 | 2000-02-15 | Measuring method of rotation center position of rotating body by measuring displacement of three points and measuring device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000036333A JP3309138B2 (en) | 2000-02-15 | 2000-02-15 | Measuring method of rotation center position of rotating body by measuring displacement of three points and measuring device therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001227937A JP2001227937A (en) | 2001-08-24 |
JP3309138B2 true JP3309138B2 (en) | 2002-07-29 |
Family
ID=18560387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000036333A Expired - Lifetime JP3309138B2 (en) | 2000-02-15 | 2000-02-15 | Measuring method of rotation center position of rotating body by measuring displacement of three points and measuring device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3309138B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5182254B2 (en) * | 2009-08-24 | 2013-04-17 | トヨタ自動車株式会社 | Engine mount displacement measurement method |
KR101038221B1 (en) | 2009-11-27 | 2011-05-31 | 한국생산기술연구원 | Optical rotary displacement gauge |
-
2000
- 2000-02-15 JP JP2000036333A patent/JP3309138B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001227937A (en) | 2001-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Anandan et al. | A technique for measuring radial error motions of ultra-high-speed miniature spindles used for micromachining | |
Ito et al. | Measurement of form error of a probe tip ball for coordinate measuring machine (CMM) using a rotating reference sphere | |
US6895359B2 (en) | Workpiece coordinate system origin setting method, workpiece coordinate system origin setting program and workpiece coordinate system origin setting device of a surface property measuring machine | |
JP4890188B2 (en) | Motion error measurement reference body and motion error measurement device | |
US5390151A (en) | Method and device for measuring the center of rotation of a rotating shaft | |
JP2000205854A (en) | Dimension measurement method for machine parts | |
CN113927369B (en) | Comprehensive on-machine measuring device and method for rotary error motion of machine tool spindle | |
CN114018174B (en) | Complex curved surface contour measuring system | |
JP3309138B2 (en) | Measuring method of rotation center position of rotating body by measuring displacement of three points and measuring device therefor | |
Zha et al. | A strategy to evaluate and minimize parallelism errors of a rotor system in a precision rotary table | |
CN113702039A (en) | System and method for measuring rotation precision of hydrostatic bearing main shaft | |
CN206618368U (en) | A kind of roundness measuring device | |
CN108061503A (en) | A kind of method that conical part outer diameter is detected on JD25-C horizontal metroscopes | |
JP6181935B2 (en) | Coordinate measuring machine | |
JP2754128B2 (en) | Cylindricity measuring device and measuring method | |
JP2504561B2 (en) | Shape measuring device | |
JP4922905B2 (en) | Method and apparatus for measuring position variation of rotation center line | |
JPH04299209A (en) | Method and apparatus for detecting position of center of rotation rotary shaft | |
JP3396733B2 (en) | Separation measuring method and measuring device of circumferential shape and motion accuracy of rotating body by combination of goniometer and displacement meter | |
CN115420257B (en) | A method for measuring the tilt error of a rotary table | |
TWI239385B (en) | A kind of apparatus using transmission grating to measure rotation axis errors | |
CN119063623A (en) | A method for measuring the five-degree-of-freedom motion error of a precision spindle based on a single grayscale image | |
JP4309727B2 (en) | Measuring jig and three-dimensional shape measuring method using the same | |
JPH03249516A (en) | Flatness measuring instrument | |
TWI220688B (en) | A device and method of reflective diffraction grating measure revolving spindle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3309138 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |