JP3306598B2 - Semiconductor device manufacturing method and cleaning device - Google Patents
Semiconductor device manufacturing method and cleaning deviceInfo
- Publication number
- JP3306598B2 JP3306598B2 JP11888892A JP11888892A JP3306598B2 JP 3306598 B2 JP3306598 B2 JP 3306598B2 JP 11888892 A JP11888892 A JP 11888892A JP 11888892 A JP11888892 A JP 11888892A JP 3306598 B2 JP3306598 B2 JP 3306598B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- cleaning
- wiring
- concentration
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、銅を基体とする配線が
形成された半導体装置の製造方法及びその製造工程で用
いられる洗浄装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a copper-based wiring and a cleaning apparatus used in the manufacturing process.
【0002】[0002]
【従来の技術】従来、半導体素子の回路配線や電極材料
には、アルミニウム合金が用いられてきた。近年半導体
素子の高集積化に伴い、配線パタ−ンの微細化が進行
し、配線幅として0.5μm以下が要求されてきてい
る。しかし、配線断面積の減少に伴い、配線遅延による
回路応答速度の低下、および発熱量の増加や電流密度の
増加によるエレクトロマイグレ−ションの進行による配
線寿命の低下等の問題が懸念されている。この問題を回
避するために、特開昭61−294838号公報あるい
は特開昭63−248538号公報に記載のようにアル
ミニウム系配線材料よりも電気伝導性、耐熱性、耐エレ
クトロマイグレ−ション性に優れた銅あるいは銅合金を
用いた配線材料が開発されている。2. Description of the Related Art Conventionally, aluminum alloys have been used for circuit wiring and electrode materials of semiconductor devices. In recent years, as semiconductor devices have become more highly integrated, wiring patterns have become finer, and wiring widths of 0.5 μm or less have been required. However, with the decrease in the wiring cross-sectional area, there are concerns about problems such as a reduction in circuit response speed due to wiring delay, and a reduction in wiring life due to an increase in heat generation and an increase in current density resulting in progress of electromigration. In order to avoid this problem, as described in JP-A-61-294838 or JP-A-63-248538, the electrical conductivity, heat resistance, and electromigration resistance are higher than those of aluminum-based wiring materials. Wiring materials using excellent copper or copper alloys have been developed.
【0003】[0003]
【発明が解決しようとする課題】しかし、銅は耐食性や
耐酸化性の点で問題がある。すなわち、銅はアルミニウ
ムに比べ、その表面に生成する酸化皮膜の保護性が低い
ため、高温酸化を受けやすく、また水溶液中では腐食し
やすい。配線材料はその製造工程中に数多くの水洗工程
が含まれているので、配線材料には洗浄液中における高
い耐食性が要求される。However, copper has problems in corrosion resistance and oxidation resistance. That is, copper is less susceptible to oxidation at a high temperature and more susceptible to corrosion in an aqueous solution because copper has a lower protective property of an oxide film formed on its surface than aluminum. Since the wiring material includes many water washing steps in the manufacturing process, the wiring material is required to have high corrosion resistance in a cleaning liquid.
【0004】尚、銅の腐食抑制方法としてベンゾトリア
ゾール(BTA)を用いることが知られているが(特開
昭52−12636号公報および特開昭56−8447
9号公報)、半導体の製造分野においては全く検討され
ていない。また特開平2−285696号公報に、プリ
ント配線板の製造において、銅配線を2−アミノチアゾ
ール誘導体の塩と無機の酸の銅塩とを含む水溶液に浸漬
して銅表面に銅イオンを含む2−アミノチアゾール誘導
体からなる保護膜を形成する技術が開示されているが、
その保護膜は、その後のエッチング工程でのエッチング
レジスト膜である。エッチングとは関係ない純水による
洗浄工程での純水による極細銅配線パターンの腐食対策
については全く言及されていない。それは、プリント基
板の配線は、断面延長が約210μm程度であり、半導
体の銅配線パターンに比して太いものだからである。こ
こで、断面延長とは基板上に形成された銅配線が洗浄水
と接触する露呈部分の断面の全長を言う。It is known that benzotriazole (BTA) is used as a copper corrosion inhibiting method (JP-A-52-12636 and JP-A-56-847).
No. 9) has not been studied in the field of semiconductor manufacturing. Japanese Patent Application Laid-Open No. Hei 2-285696 discloses that, in the production of a printed wiring board, copper wiring is immersed in an aqueous solution containing a salt of a 2-aminothiazole derivative and a copper salt of an inorganic acid to contain copper ions on the copper surface. -A technique for forming a protective film comprising an aminothiazole derivative has been disclosed,
The protective film is an etching resist film in a subsequent etching step. No mention is made of measures against corrosion of the ultrafine copper wiring pattern by pure water in a cleaning step with pure water unrelated to etching. This is because the wiring of the printed circuit board has a cross-sectional extension of about 210 μm, which is thicker than a semiconductor copper wiring pattern. Here, the cross-sectional extension refers to the total length of the cross-section of the exposed portion where the copper wiring formed on the substrate comes into contact with the cleaning water.
【0005】本発明の目的は、水洗中における極細の銅
配線の腐食を抑制した半導体装置の製造方法及びその製
造工程で用いられる洗浄装置を提供することにある。An object of the present invention is to provide a method of manufacturing a semiconductor device in which corrosion of ultrafine copper wiring during water washing is suppressed and a cleaning apparatus used in the manufacturing process.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明は、基板上に銅配線パターンを形成した後、
その銅配線パタ−ンを銅イオンを含有する水溶液により
洗浄する工程を含むことを特徴とする半導体装置の製造
方法である。ここで水溶液中の銅イオン濃度は、5×1
0~8〜5×10~6mol・dm~2であるのがよい。又は
水溶液の銅イオンによる電気伝導度は、0.07〜1.
0μS/cmであるのがよい。To achieve the above object, the present invention provides a method for forming a copper wiring pattern on a substrate, comprising the steps of:
A method of manufacturing a semiconductor device, comprising a step of cleaning the copper wiring pattern with an aqueous solution containing copper ions. Here, the copper ion concentration in the aqueous solution is 5 × 1
It is preferably from 0 to 8 to 5 × 10 to 6 mol · dm to 2 . Alternatively, the electrical conductivity of the aqueous solution due to copper ions is 0.07-1.
It is preferably 0 μS / cm.
【0007】また本発明は、基板上に銅配線パターンを
形成した後、その銅配線パタ−ンをベンゾトリアゾール
を含有する水溶液により洗浄する工程を含み、水溶液中
のベンゾトリアゾール濃度が、2×10  ̄6 〜10  ̄1
mol・dm  ̄2 であることを特徴とする半導体装置の
製造方法である。 The present invention also includes a step of forming a copper wiring pattern on a substrate and then cleaning the copper wiring pattern with an aqueous solution containing benzotriazole.
Benzotriazole concentration of 2 × 10 6 to 10 1
a method of manufacturing a semiconductor device which is a mol · dm ¯2.
【0008】また本発明は、基板上に銅を含む配線パタ
ーンを形成した後、その銅配線パタ−ンを水溶液で洗浄
する洗浄工程で用いられる半導体装置の洗浄装置であっ
て、前記水溶液は銅イオンを含み、その銅イオン濃度を
検出する濃度検出手段と、この検出手段からの信号に基
づいて前記水溶液中に銅イオンを供給する供給手段とを
備えたことを特徴とするものである。The present invention is also a semiconductor device cleaning apparatus used in a cleaning step of forming a wiring pattern containing copper on a substrate and then cleaning the copper wiring pattern with an aqueous solution. It is characterized by comprising a concentration detecting means containing ions and detecting the concentration of copper ions, and a supply means for supplying copper ions into the aqueous solution based on a signal from the detecting means.
【0009】また本発明は、基板上に銅を含む配線パタ
ーンを形成した後、その銅配線パタ−ンを水溶液で洗浄
する洗浄工程で用いられる半導体装置の洗浄装置であっ
て、前記水溶液はベンゾトリアゾールを含み、そのベン
ゾトリアゾール濃度を検出する濃度検出手段と、この検
出手段からの信号に基づいて前記水溶液中にベンゾトリ
アゾールの濃度が、2×10  ̄6 〜10  ̄1 mol・d
m  ̄2 になるようにベンゾトリアゾールを供給する供給
手段とを備えたことを特徴とするものである。The present invention is also an apparatus for cleaning a semiconductor device used in a cleaning step of forming a wiring pattern containing copper on a substrate and then cleaning the copper wiring pattern with an aqueous solution. A concentration detecting means for detecting the concentration of benzotriazole containing triazole, and a concentration of benzotriazole in the aqueous solution of 2 × 10 6 to 10 1 mol · d based on a signal from the detecting means.
It is characterized in that a supply means for supplying a benzotriazole such that m ¯2.
【0010】[0010]
【作用】水溶液中において銅は、(化1)に示される様
なCuとCuの+2価イオンとの化学平衡状態にある。In an aqueous solution, copper is in a chemical equilibrium state between Cu and a +2 ion of Cu as shown in (Chemical Formula 1).
【0011】[0011]
【化1】 Embedded image
【0012】ル・シャトリエの法則によれば、(化1)
の化学平衡状態にある系で、Cuの+2価イオン濃度が
減少すると、新たにCuが酸化されCuの+2価イオン
が生成される。水洗工程においては、洗浄液により銅配
線上の銅イオンが洗い流されると、新たに銅配線が酸化
される。すなわち、水洗することにより銅配線の腐食が
進行する。そこで水洗工程における銅配線の腐食を防止
するためには、予め洗浄液中に銅イオンを添加し、化学
平衡状態を変化させることなく銅配線を洗浄すれば良
い。しかし、銅イオンの添加濃度を高くし過ぎると、
(化2)又は(化3)の沈殿反応により銅配線上に腐食
生成物が堆積する。According to Le Chatelier's law,
When the concentration of +2 valence ions of Cu decreases in the system in the chemical equilibrium state, Cu is newly oxidized to generate +2 valence ions of Cu. In the water washing step, when the copper ions on the copper wiring are washed away by the cleaning liquid, the copper wiring is newly oxidized. That is, the corrosion of the copper wiring proceeds by washing with water. Therefore, in order to prevent corrosion of the copper wiring in the water washing step, copper ions may be added to the cleaning solution in advance and the copper wiring may be cleaned without changing the chemical equilibrium state. However, if the addition concentration of copper ions is too high,
Corrosion products are deposited on the copper wiring by the precipitation reaction of (Chemical formula 2) or (Chemical formula 3).
【0013】[0013]
【化2】 Embedded image
【0014】[0014]
【化3】 Embedded image
【0015】そこで、洗浄液中の銅イオン濃度を制御
し、銅配線上の銅イオン濃度を特定範囲内に保つことに
より、銅配線の腐食を最小限に抑制することができる。
また半導体装置の洗浄には通常純水が用いられているの
で、洗浄液の電気伝導度は銅イオン濃度の関数で表すこ
とができる。そこで洗浄液の電気伝導度を特定範囲内に
保つことにより、洗浄液中の銅イオン濃度を制御し、銅
配線の腐食を最小限に抑制することもできる。Therefore, by controlling the concentration of copper ions in the cleaning solution and keeping the concentration of copper ions on the copper wiring within a specific range, corrosion of the copper wiring can be suppressed to a minimum.
Further, since pure water is usually used for cleaning the semiconductor device, the electric conductivity of the cleaning liquid can be represented by a function of the copper ion concentration. Therefore, by keeping the electrical conductivity of the cleaning liquid within a specific range, the copper ion concentration in the cleaning liquid can be controlled, and the corrosion of the copper wiring can be suppressed to a minimum.
【0016】配線の断面延長を、前記の如く、配線を形
成したとき配線断面の露出している三辺の長さの和を意
味するとする。プリント基板の配線に比べ、LSIチッ
プ内の配線の断面積は小さいため、プリント基板では信
頼性に問題なかったレベルの酸化や腐食がLSIチップ
内の配線では致命的な抵抗増加につながる。そして配線
抵抗の増加率は、一定断面積の配線ではその断面延長が
長いほど大きくなる。アスペクト比1の配線を仮定した
とき、表面0.1μmが酸化したときの抵抗増加率は、
配線断面延長が300μm(100μm角)で0.3
%,100μmで0.9%(約33μm角)であると見
積もられる。抵抗増加率が1%を超えると配線の信頼性
は著しく低下するので、本発明では、配線断面延長の上
限が100μmのものが効果的である。ちなみに現在プ
リント基板で用いられている配線は、最も微細なもので
断面延長が前記の如く210μm程度である。As described above, the extension of the cross section of the wiring means the sum of the lengths of three exposed sides of the wiring cross section when the wiring is formed. Since the cross-sectional area of the wiring in the LSI chip is smaller than that of the wiring on the printed board, oxidation or corrosion at a level that has no problem in reliability on the printed board leads to a fatal increase in resistance in the wiring in the LSI chip. The rate of increase in the wiring resistance increases as the length of the cross section of a wiring having a constant cross section increases. Assuming a wiring with an aspect ratio of 1, the resistance increase rate when the surface is oxidized at 0.1 μm is
0.3 when the wiring cross section is 300 μm (100 μm square)
%, It is estimated to be 0.9% (about 33 μm square) at 100 μm. If the rate of increase in resistance exceeds 1%, the reliability of the wiring is remarkably reduced. Therefore, in the present invention, it is effective that the upper limit of the wiring cross-sectional extension is 100 μm. Incidentally, the wiring currently used on the printed circuit board is the finest and has a cross-sectional extension of about 210 μm as described above.
【0017】次にBTAによる銅配線の腐食抑制の作用
について述べる。銅配線にBTAを含む洗浄液を接触さ
せると、銅とBTAとが反応し、不溶性のCu−BTA
化合物が生成する。このCu−BTA化合物が銅配線と
洗浄液のバリアとなるので銅配線の腐食が抑制できる。
しかし、過剰のBTAは半導体装置の汚染源となる。そ
こで、BTA濃度を特定範囲内に保つことにより、銅配
線の腐食を抑制し、かつ半導体装置の汚染を最小限にす
ることができる。Next, the action of BTA for suppressing corrosion of copper wiring will be described. When a cleaning solution containing BTA is brought into contact with the copper wiring, the copper and BTA react, and the insoluble Cu-BTA
A compound is formed. Since the Cu-BTA compound serves as a barrier between the copper wiring and the cleaning liquid, corrosion of the copper wiring can be suppressed.
However, excess BTA becomes a source of contamination for semiconductor devices. Therefore, by keeping the BTA concentration within a specific range, it is possible to suppress the corrosion of the copper wiring and minimize the contamination of the semiconductor device.
【0018】尚、配線パターンの形成は、ウェットエッ
チングではエッチング溶液中にインヒビタを添加するこ
とにより配線パターンの腐食は抑制できるので、本発明
では配線パターンの形成方法としてドライプロセスがよ
い。このドライエッチングは、SiCl4系ガスにより
達成される。本発明は、エッチング後の配線に付着した
残渣物や残留吸着ガス等を除去するための水洗工程で水
洗水により生じる腐食を抑制する手段に関するものであ
るが、結果的にはエッチング後の配線に付着した残渣物
や残留吸着ガス等により生じる腐食も抑制できる。Incidentally, in the formation of the wiring pattern, in the wet etching, the corrosion of the wiring pattern can be suppressed by adding an inhibitor to the etching solution. Therefore, in the present invention, a dry process is preferred as a method of forming the wiring pattern. This dry etching is achieved by a SiCl 4 -based gas. The present invention relates to a means for suppressing corrosion caused by rinsing water in a rinsing step for removing a residue or a residual adsorbed gas or the like attached to wiring after etching. Corrosion caused by adhered residue, residual adsorbed gas and the like can also be suppressed.
【0019】[0019]
【実施例】本発明による半導体装置の製造方法の実施例
の手順を図1に示す。通常の半導体製造プロセスに従っ
て、半導体が形成されたシリコンウエハ上に絶縁膜が形
成され、そこにコンタクトホ−ルを形成し、配線膜を形
成する。この配線材料として銅を用いた場合は、従来の
アルミニウム合金を用いた場合と異なり、配線パタ−ン
を形成した後の洗浄工程で腐食が起こりやすい。そこで
銅を用いた場合は、まず始めに銅イオンを含有した水溶
液で洗浄し、半導体が形成されたシリコンウエハ上の付
着物を充分に洗い流した。洗浄液中には銅イオンが含ま
れているので、銅配線の腐食は最小限に抑制される。FIG. 1 shows a procedure of an embodiment of a method of manufacturing a semiconductor device according to the present invention. According to a normal semiconductor manufacturing process, an insulating film is formed on a silicon wafer on which a semiconductor has been formed, and a contact hole is formed thereon to form a wiring film. When copper is used as the wiring material, corrosion is likely to occur in the cleaning step after forming the wiring pattern, unlike the case where a conventional aluminum alloy is used. Therefore, when copper was used, first, it was washed with an aqueous solution containing copper ions, and the deposits on the silicon wafer on which the semiconductor was formed were sufficiently washed away. Since the cleaning solution contains copper ions, corrosion of the copper wiring is minimized.
【0020】次に、シリコンウエハ上に残留した銅イオ
ンを取り除くために、純水で洗浄し乾燥した。銅イオン
が残留していると、そこが起点となり腐食が起こる。ま
た、純水による洗浄時間が長いと純水中で銅配線の腐食
が進行しやすくなる。そこで純水による洗浄時間は、残
留した銅イオンを取り除くために充分な最小時間が望ま
しい。Next, in order to remove copper ions remaining on the silicon wafer, the silicon wafer was washed with pure water and dried. If copper ions remain, corrosion will occur from that starting point. Further, if the cleaning time with pure water is long, the corrosion of the copper wiring in pure water easily proceeds. Therefore, the cleaning time with pure water is desirably a minimum time sufficient to remove the remaining copper ions.
【0021】次に本発明の実施例における、洗浄液中に
添加する銅イオン濃度と銅配線の腐食速度との関係を図
2に示す。純水中に銅イオンを添加した場合、その濃度
がおおよそ10~7mol・dm~2で最小値となり、それ
よりも濃度が高くても、逆に低くても腐食速度が大きく
なった。この値は純水中の腐食速度に比べると1桁以上
小さな値であった。このことより、洗浄液中に含有する
銅イオン濃度は、5×10~8〜5×10~6mol・dm
~2が望ましい。本実施例により、洗浄液として純水を単
独で用いたのと比較して、銅配線の腐食速度が1桁以上
低減でき、耐食性に優れた銅配線を形成する手段を提供
できる。尚、純水のCuイオン濃度は1×10~8mol
・dm~2以下である。FIG. 2 shows the relationship between the concentration of copper ions added to the cleaning solution and the corrosion rate of copper wiring in the embodiment of the present invention. When copper ions were added to pure water, the concentration reached a minimum value when the concentration was approximately 10 to 7 mol · dm- 2 , and the corrosion rate increased even if the concentration was higher or conversely lower. This value was at least one digit smaller than the corrosion rate in pure water. From this, the concentration of copper ions contained in the cleaning solution is 5 × 10 to 8 to 5 × 10 to 6 mol · dm.
~ 2 is desirable. According to the present embodiment, as compared with the case where pure water is used alone as the cleaning liquid, the corrosion rate of the copper wiring can be reduced by one digit or more, and a means for forming a copper wiring excellent in corrosion resistance can be provided. The pure water has a Cu ion concentration of 1 × 10 to 8 mol.
-It is dm ~ 2 or less.
【0022】上記実施例において銅イオン濃度を規定し
たが、実際の半導体製造プロセス中において銅イオン濃
度を連続的に監視するのは困難が伴う。そこで、次に洗
浄液の濃度管理方法の実施例を示す。図3は純水中の銅
イオン濃度と電気伝導度との関係を示した図である。洗
浄液中に純水と銅イオンが共存している場合、図3のよ
うに洗浄液の電気伝導度は銅イオン濃度によって一義的
に決まった。そこで洗浄液中の電気伝導度を連続的に監
視することにより、銅イオン濃度の監視、制御ができ
る。図2と図3とより洗浄液の電気伝導度は0.07〜
1.0μS/cmが望ましい。本実施例により、簡便に
洗浄液中の銅イオンを制御し、耐食性に優れた銅配線を
形成する手段を提供できる。尚、純水の電気伝導度は
0.05μS/cm以下である。Although the copper ion concentration is specified in the above embodiment, it is difficult to continuously monitor the copper ion concentration during the actual semiconductor manufacturing process. Therefore, an embodiment of a method for controlling the concentration of the cleaning liquid will be described below. FIG. 3 is a diagram showing the relationship between the copper ion concentration in pure water and the electrical conductivity. When pure water and copper ions coexist in the cleaning solution, the electrical conductivity of the cleaning solution was uniquely determined by the copper ion concentration as shown in FIG. Therefore, the copper ion concentration can be monitored and controlled by continuously monitoring the electric conductivity in the cleaning liquid. 2 and 3, the electric conductivity of the cleaning liquid is 0.07 to
1.0 μS / cm is desirable. According to the present embodiment, it is possible to provide a means for easily controlling copper ions in the cleaning liquid and forming a copper wiring excellent in corrosion resistance. The electric conductivity of pure water is 0.05 μS / cm or less.
【0023】次に洗浄中の銅配線の腐食を抑制するため
に、洗浄液中にBTAを添加した洗浄液による半導体装
置の製造方法の実施例の手順を図4に示す。通常の半導
体製造プロセスに従って、半導体が形成されたシリコン
ウエハ上に絶縁膜が形成され、そこにコンタクトホ−ル
を形成し、配線膜を形成した。次にBTAを含有した水
溶液で洗浄し、半導体が形成されたシリコンウエハ上の
付着物を充分に洗い流した。洗浄液中にはBTAが含ま
れているので、銅配線の腐食は最小限に抑制される。次
にシリコンウエハ上に残留したBTAを取り除くため
に、純水で洗浄し乾燥した。BTAが残留していると乾
燥時にBTAが新たな付着物となり、半導体装置の信頼
性低下を引き起こす。また、銅配線表面はCu−BTA
化合物で覆われているので腐食はしない。そこで純水に
よる洗浄時間は、残留したBTAを取り除くために充分
な時間が望ましい。Next, FIG. 4 shows a procedure of an embodiment of a method of manufacturing a semiconductor device using a cleaning solution in which BTA is added to a cleaning solution in order to suppress corrosion of copper wiring during cleaning. According to a normal semiconductor manufacturing process, an insulating film was formed on a silicon wafer on which a semiconductor was formed, a contact hole was formed thereon, and a wiring film was formed. Next, the substrate was washed with an aqueous solution containing BTA, and the deposits on the silicon wafer on which the semiconductor was formed were sufficiently washed away. Since BTA is contained in the cleaning solution, corrosion of the copper wiring is minimized. Next, in order to remove BTA remaining on the silicon wafer, it was washed with pure water and dried. If the BTA remains, the BTA becomes a new attachment during drying, which causes a reduction in the reliability of the semiconductor device. The copper wiring surface is Cu-BTA
Does not corrode because it is covered with a compound. Therefore, the cleaning time with pure water is desirably long enough to remove the remaining BTA.
【0024】次に本発明の実施例における洗浄液中に添
加するBTA濃度と銅配線の腐食速度との関係を図5に
示す。純水中にBTAを添加した場合、その濃度が、お
よそ10~5mol・dm~2よりも高くなると、銅配線の
腐食速度が純水中の腐食速度に比べ1桁小さくなった。
このことより、洗浄液中に含有するBTA濃度は2×1
0~6〜10~1mol・dm~2が望ましい。10~1mol
・dm~2以上では溶解度を超えるため、BTAが析出す
るので好ましくない。本実施例により、洗浄液として純
水を単独で用いたのと比較して、銅配線の腐食速度が1
桁以上低減でき、耐食性に優れた銅配線を形成する手段
を提供できる。Next, FIG. 5 shows the relationship between the concentration of BTA added to the cleaning solution and the corrosion rate of copper wiring in the embodiment of the present invention. When BTA was added to pure water and the concentration was higher than about 10 to 5 mol · dm- 2 , the corrosion rate of the copper wiring was reduced by one digit compared to the corrosion rate in pure water.
From this, the BTA concentration contained in the cleaning solution was 2 × 1
It is preferably from 0 to 6 to 10 to 1 mol · dm- 2 . 10 ~ 1 mol
· Dm ~ to exceed the solubility is 2 or more is not preferable because BTA is deposited. According to the present embodiment, the corrosion rate of the copper wiring is 1 compared with the case where pure water is used alone as the cleaning liquid.
It is possible to provide a means for forming a copper wiring which can be reduced by an order of magnitude or more and has excellent corrosion resistance.
【0025】次に基板上に銅を含む配線パターンを形成
した後、その銅配線パタ−ンを水溶液で洗浄する洗浄工
程で用いられる本発明に係る半導体装置の洗浄装置の構
成を表す実施例を図6に示す。原水から凝集、濾過、イ
オン交換等のプロセスをとうして得られた1次純水1の
一部を溶液槽2に溜め、そこに注入器3から銅イオンを
注入する。そしてこの銅イオン含有水溶液と2次純水4
とを混合器5で所定の濃度に混合する。銅イオンの濃度
は混合器5中に設置した銅イオン濃度モニタあるいは電
気伝導度計等の濃度検出手段6で監視し、所定の濃度に
なるように銅イオンの注入量を制御する。こうして調整
された水溶液で銅配線の形成されたシリコンウエハ洗浄
し、洗浄後の水溶液の一部は排水され、残りは一次純水
系に戻され、再利用される。銅イオンの代わりにBTA
を注入しても良い。Next, an embodiment showing a structure of a semiconductor device cleaning apparatus according to the present invention used in a cleaning step of forming a wiring pattern containing copper on a substrate and then cleaning the copper wiring pattern with an aqueous solution. As shown in FIG. A part of the primary purified water 1 obtained from raw water through processes such as coagulation, filtration, and ion exchange is stored in a solution tank 2, and copper ions are injected from an injector 3 into the solution tank 2. And this copper ion-containing aqueous solution and secondary pure water 4
Are mixed to a predetermined concentration by the mixer 5. The concentration of copper ions is monitored by a concentration detector 6 such as a copper ion concentration monitor or an electric conductivity meter installed in the mixer 5, and the injection amount of copper ions is controlled to a predetermined concentration. The aqueous solution thus adjusted is used to clean the silicon wafer on which the copper wiring is formed, a part of the washed aqueous solution is drained, and the rest is returned to the primary pure water system and reused. BTA instead of copper ion
May be injected.
【0026】[0026]
【発明の効果】本発明によれば、銅イオンあるいはBT
Aの防食効果により、半導体装置に形成された極細の銅
配線の純水による腐食を抑制できる。According to the present invention, copper ions or BT
Due to the anti-corrosion effect of A, corrosion of pure copper wiring formed on the semiconductor device due to pure water can be suppressed.
【図1】本発明の実施例による半導体装置の製造方法を
示す図である。FIG. 1 is a diagram illustrating a method of manufacturing a semiconductor device according to an embodiment of the present invention.
【図2】本発明を施したときの銅イオン濃度と腐食速度
との関係を示す図である。FIG. 2 is a diagram showing a relationship between a copper ion concentration and a corrosion rate when the present invention is applied.
【図3】純水中における銅イオンと電気伝導度との関係
を示した図である。FIG. 3 is a diagram showing a relationship between copper ions and electric conductivity in pure water.
【図4】本発明の他の実施例による半導体装置の製造方
法を示す図である。FIG. 4 is a view illustrating a method of manufacturing a semiconductor device according to another embodiment of the present invention.
【図5】本発明を施したときのBTA濃度と腐食速度と
の関係を示す図である。FIG. 5 is a diagram showing a relationship between a BTA concentration and a corrosion rate when the present invention is applied.
【図6】本発明の実施例に用いる洗浄液の製造装置の構
成を示した図である。FIG. 6 is a diagram illustrating a configuration of a cleaning liquid manufacturing apparatus used in an embodiment of the present invention.
1 一次純水 2 溶液槽 3 Cuイオン注入器 4 二次純水槽 5 混合器 6 濃度検出手段 DESCRIPTION OF SYMBOLS 1 Primary pure water 2 Solution tank 3 Cu ion implanter 4 Secondary pure water tank 5 Mixer 6 Concentration detection means
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−125447(JP,A) 特開 平5−36690(JP,A) 特開 平4−64233(JP,A) 特開 平4−42529(JP,A) 特開 平3−167829(JP,A) 特開 平2−83930(JP,A) 特開 昭56−84479(JP,A) 特公 昭58−36061(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H01L 21/3205 H01L 21/28 301 H01L 21/304 647 H05K 3/26 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-12547 (JP, A) JP-A-5-36690 (JP, A) JP-A-4-64233 (JP, A) JP-A-4-254 42529 (JP, A) JP-A-3-167829 (JP, A) JP-A-2-83930 (JP, A) JP-A-56-84479 (JP, A) JP-B-58-36061 (JP, B1) (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/3205 H01L 21/28 301 H01L 21/304 647 H05K 3/26
Claims (4)
その銅配線パタ−ンを銅イオンを含有する水溶液により
洗浄する工程を含むことを特徴とする半導体装置の製造
方法。After forming a copper wiring pattern on a substrate,
A method for manufacturing a semiconductor device, comprising a step of cleaning the copper wiring pattern with an aqueous solution containing copper ions.
その銅配線パタ−ンをベンゾトリアゾールを含有する水
溶液により洗浄する工程を含み、水溶液中のベンゾトリ
アゾール濃度が、2×10  ̄6 〜10  ̄1 mol・dm
 ̄2 であることを特徴とする半導体装置の製造方法。2. After forming a copper wiring pattern on a substrate,
As the copper wiring pattern - it comprises the step of cleaning the emissions with an aqueous solution containing benzotriazole, Benzotori in aqueous solution
The azole concentration is 2 × 10 6 to 10 1 mol · dm
The method of manufacturing a semiconductor device which is a 2.
水溶液で洗浄する洗浄工程で用いられる半導体装置の洗
浄装置であって、前記水溶液は銅イオンを含み、その銅
イオン濃度を検出する濃度検出手段と、この検出手段か
らの信号に基づいて前記水溶液中に銅イオンを供給する
供給手段とを備えたことを特徴とする半導体装置の洗浄
装置。3. A semiconductor device cleaning apparatus used in a cleaning step of cleaning a wiring pattern turn containing copper on a substrate with an aqueous solution, wherein the aqueous solution contains copper ions, and the concentration of the copper ions is detected. An apparatus for cleaning a semiconductor device, comprising: a concentration detecting means; and a supplying means for supplying copper ions to the aqueous solution based on a signal from the detecting means.
た後、その銅配線パタ−ンを水溶液で洗浄する洗浄工程
で用いられる半導体装置の洗浄装置であって、前記水溶
液はベンゾトリアゾールを含み、そのベンゾトリアゾー
ル濃度を検出する濃度検出手段と、この検出手段からの
信号に基づいて前記水溶液中にベンゾトリアゾールの濃
度が、2×10  ̄6 〜10  ̄1 mol・dm  ̄2 になる
ようにベンゾトリアゾールを供給する供給手段とを備え
たことを特徴とする半導体装置の洗浄装置。4. A cleaning device for a semiconductor device used in a cleaning step of forming a wiring pattern containing copper on a substrate and then cleaning the copper wiring pattern with an aqueous solution, wherein the aqueous solution contains benzotriazole. Concentration detecting means for detecting the benzotriazole concentration, and the concentration of benzotriazole in the aqueous solution based on a signal from the detecting means.
Degree becomes the 2 × 10 ¯6 ~10 ¯1 mol · dm ¯2
And a supply means for supplying benzotriazole as described above .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11888892A JP3306598B2 (en) | 1992-05-12 | 1992-05-12 | Semiconductor device manufacturing method and cleaning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11888892A JP3306598B2 (en) | 1992-05-12 | 1992-05-12 | Semiconductor device manufacturing method and cleaning device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05315331A JPH05315331A (en) | 1993-11-26 |
JP3306598B2 true JP3306598B2 (en) | 2002-07-24 |
Family
ID=14747631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11888892A Expired - Fee Related JP3306598B2 (en) | 1992-05-12 | 1992-05-12 | Semiconductor device manufacturing method and cleaning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3306598B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020019056A (en) * | 1999-06-01 | 2002-03-09 | 히가시 데쓰로 | Method of manufacturing semiconductor device and manufacturing apparatus |
JP3705724B2 (en) | 1999-11-19 | 2005-10-12 | Necエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
TWI229123B (en) | 2000-03-03 | 2005-03-11 | Nec Electronics Corp | Anticorrosive treating concentrate |
JP4535629B2 (en) * | 2001-02-21 | 2010-09-01 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
JP3998426B2 (en) * | 2001-03-14 | 2007-10-24 | 株式会社荏原製作所 | Substrate processing method |
JP2003077921A (en) | 2001-09-04 | 2003-03-14 | Nec Corp | Method for manufacturing semiconductor device |
JP4803625B2 (en) * | 2001-09-04 | 2011-10-26 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
US7892891B2 (en) * | 2006-10-11 | 2011-02-22 | SemiLEDs Optoelectronics Co., Ltd. | Die separation |
JP6548481B2 (en) * | 2015-06-29 | 2019-07-24 | 株式会社荏原製作所 | Cleaning apparatus, cleaning method, cleaning solution manufacturing apparatus and cleaning solution manufacturing method |
JP6439628B2 (en) * | 2015-08-26 | 2018-12-19 | 住友金属鉱山株式会社 | Method for manufacturing conductive substrate |
-
1992
- 1992-05-12 JP JP11888892A patent/JP3306598B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05315331A (en) | 1993-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3181264B2 (en) | Etching aqueous solution and etching method for removing inorganic polymer residue | |
KR100242144B1 (en) | Stripping solution for dry etching and removal of photoresist residue from a semiconductor substrate, and a method of forming a wiring pattern using the stripping solution | |
EP1318432A1 (en) | Photoresist residue removing liquid composition | |
JP3667273B2 (en) | Cleaning method and cleaning liquid | |
JP3306598B2 (en) | Semiconductor device manufacturing method and cleaning device | |
US7560016B1 (en) | Selectively accelerated plating of metal features | |
KR100356528B1 (en) | Process for production of semiconductor device | |
EP0897975B1 (en) | Cleaning solution | |
US6117795A (en) | Use of corrosion inhibiting compounds in post-etch cleaning processes of an integrated circuit | |
JP2550915B2 (en) | Method for forming surface protective agent and surface protective film for printed wiring board | |
KR20050044085A (en) | Aqueous cleaning solution for integrated circuit device and cleaning method using the cleaning solution | |
US5863344A (en) | Cleaning solutions for semiconductor devices | |
JP4252758B2 (en) | Composition for removing photoresist residue | |
JP2000315666A5 (en) | ||
WO2006030595A1 (en) | Polishing slurry for cmp | |
JPH0864594A (en) | Wiring formation method | |
EP0052787B1 (en) | Etchant composition and application thereof | |
JPH07176854A (en) | Manufacture of device | |
KR101156490B1 (en) | Cleaning composition for semiconductor device and cleaning method of semiconductor device using the same | |
KR100429918B1 (en) | Anticorrosive treating concentrate | |
JP2726804B2 (en) | Method for etching copper-containing devices | |
JP4444420B2 (en) | Process for forming conductive structure and semiconductor device | |
WO1991008914A1 (en) | Copper etching solution and method | |
JP2003282531A (en) | Electronic device manufacturing method | |
JPH11340183A (en) | Cleaning liquid for semiconductor device and producing method there for using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080517 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080517 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090517 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100517 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110517 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110517 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110517 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |