JP3304681B2 - Electron microscope and three-dimensional atomic array observation method - Google Patents
Electron microscope and three-dimensional atomic array observation methodInfo
- Publication number
- JP3304681B2 JP3304681B2 JP09920295A JP9920295A JP3304681B2 JP 3304681 B2 JP3304681 B2 JP 3304681B2 JP 09920295 A JP09920295 A JP 09920295A JP 9920295 A JP9920295 A JP 9920295A JP 3304681 B2 JP3304681 B2 JP 3304681B2
- Authority
- JP
- Japan
- Prior art keywords
- sample
- image
- dimensional
- electron beam
- electron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 41
- 238000010894 electron beam technology Methods 0.000 claims description 75
- 230000003287 optical effect Effects 0.000 claims description 15
- 239000013078 crystal Substances 0.000 claims description 12
- 230000007547 defect Effects 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 238000011109 contamination Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 1
- 239000013598 vector Substances 0.000 description 19
- 238000001514 detection method Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 9
- 238000001000 micrograph Methods 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000011084 recovery Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 238000010191 image analysis Methods 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、メモリ素子、高速演算
素子などの集積化素子における不良原因である点欠陥、
不純物原子およびそれらのクラスタを原子1個のレベル
で3次元的に観察することに好適な3次元原子配列観察
方法とこの方法による画像処理手段を有する電子顕微鏡
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a point defect which is a cause of failure in an integrated device such as a memory device and a high-speed operation device,
The present invention relates to a three-dimensional atomic arrangement observation method suitable for three-dimensional observation of impurity atoms and their clusters at the level of one atom, and to an electron microscope having image processing means by this method.
【0002】[0002]
【従来の技術】電子顕微鏡を用いて結晶中の点欠陥、不
純物原子およびそれらのクラスタを原子1個のレベルで
3次元的に観察する方法としては、特開平4−3372
36号公報記載の3次元原子配列観察装置及び方法があ
る。該公報には、試料により或る角度範囲内に散乱され
た電子線で結像された当該試料の原子種に依存したコン
トラストを有する2次元像(電子顕微鏡像)での当該試
料の観察を、試料を傾斜させて当該試料中の同一構造を
種々の方向から行ない、これにより得られた観察方向の
異なる複数の2次元像間での同一原子の位置ずれ量を観
察方向に基づいて画像処理することにより3次元座標を
特定し、3次元的な原子配列像を構築する技術が開示さ
れている。また、この公報には結像に用いた電子線の散
乱角度範囲と像コントラストの関係の解析から原子種も
識別することも開示されている。2. Description of the Related Art A method of three-dimensionally observing point defects, impurity atoms and their clusters in a crystal at the level of one atom by using an electron microscope is disclosed in Japanese Patent Application Laid-Open No. 4-3372.
There is a three-dimensional atomic arrangement observation apparatus and method described in Japanese Patent Publication No. 36-36. The publication discloses observation of the sample in a two-dimensional image (electron microscope image) having a contrast depending on the atomic species of the sample formed by an electron beam scattered within a certain angle range by the sample, The same structure in the sample is performed from various directions by tilting the sample, and the resulting positional displacement of the same atom between a plurality of two-dimensional images having different observation directions is image-processed based on the observation direction. Thus, a technique for specifying three-dimensional coordinates and constructing a three-dimensional atomic arrangement image has been disclosed. This publication also discloses that an atomic species is identified by analyzing the relationship between the scattering angle range of the electron beam used for imaging and the image contrast.
【0003】[0003]
【発明が解決しようとする課題】上記従来技術の発明に
は、3次元原子配列観察に適した電子顕微鏡装置の構
成、2次元像の観察方法、及び種々の方向から観察した
複数の2次元像に基づいて3次元座標を特定して3次元
像を再構成することは記載されているが、3次元像の再
構成を実現させるための具体的な手段は記載されていな
かった。そこで発明者は、これまで主にX線−CT(コ
ンピュータ断層撮影)技術等に用いられてきた画像再構
成法(例えば、フィルタ補正逆投影法)を電子顕微鏡像
に基づく3次元像の再構成法に適用することを検討し
た。X線−CT技術において従来の画像再構成法は、全
方向から試料にX線を照射して得られた複数の2次元的
な投影像に基づき、当該試料の3次元的な内部構造を完
全に再構成できる手法であることが数学的にも実験的に
も証明されている。SUMMARY OF THE INVENTION The above prior art invention includes a configuration of an electron microscope apparatus suitable for three-dimensional atomic arrangement observation, a method of observing a two-dimensional image, and a plurality of two-dimensional images observed from various directions. Describes that a three-dimensional image is reconstructed by specifying three-dimensional coordinates on the basis of the above, but no specific means for realizing the reconstruction of the three-dimensional image is described. Therefore, the inventor has applied an image reconstruction method (for example, a filtered back projection method) which has been mainly used in X-ray CT (computed tomography) technology or the like to a three-dimensional image reconstruction based on an electron microscope image. The application to the law was considered. In the X-ray-CT technique, a conventional image reconstruction method is based on a plurality of two-dimensional projection images obtained by irradiating a sample with X-rays from all directions, and completes a three-dimensional internal structure of the sample. It has been proved mathematically and experimentally that it can be reconstructed as follows.
【0004】しかし、この方法を電子顕微鏡像に適応す
るためには幾つかの条件を満たさなければならない。However, in order to apply this method to an electron microscope image, several conditions must be satisfied.
【0005】まず第1に、電子線が通過した試料厚さと
2次元投影像上の像コントラストの関係が線形でなけれ
ばならない。具体的には試料の厚さが2倍になれば投影
データの値も2倍に、また同じ厚さならば観察方向を変
えても投影データの値は同じになるという線形関係の成
立が必要である。しかし、結晶内を通過する電子線はX
線に比べて複雑な散乱過程をたどるため、この線形関係
は一般には保証されない。そのため電子顕微鏡を用いる
3次元原子配列観察において、この線形関係から外れた
投影データ(即ち、2次元像)の存在は、再構成される
3次元像上にアーティファクトを発生させる。First, the relationship between the sample thickness through which the electron beam has passed and the image contrast on a two-dimensional projected image must be linear. Specifically, it is necessary to establish a linear relationship such that if the thickness of the sample is doubled, the value of the projection data will be doubled, and if the thickness is the same, the value of the projection data will be the same even if the observation direction is changed. It is. However, the electron beam passing through the crystal is X
This linear relationship is generally not guaranteed because of the complex scattering process followed by lines. Therefore, in three-dimensional atomic array observation using an electron microscope, the presence of projection data (ie, a two-dimensional image) that deviates from this linear relationship causes artifacts on the reconstructed three-dimensional image.
【0006】第2に、電子顕微鏡の筐体内にて、試料の
電子線の光軸に対する傾斜角度を所定の値に正確に設定
する必要がある。試料の傾斜角度が所望の角度(又は設
定すべき角度)より僅かでもずれると、再構成像にアー
ティファクトが発生するからである。しかし電子顕微鏡
においては、試料ホルダの加工精度及び動作精度などの
理由により、試料の傾斜軸を設計仕様通りに、即ち試料
ホルダのハードウェアのみで設定することは非常に困難
であり、試料の傾斜角度と試料ホルダの機械的な動きと
を正確に対応させることは事実上不可能である。そこで
試料の傾斜角度を正確に設定するには、投影像から傾斜
軸を解析し、補正しなければならない。Second, it is necessary to accurately set the inclination angle of the electron beam of the sample with respect to the optical axis to a predetermined value in the housing of the electron microscope. This is because if the tilt angle of the sample is slightly deviated from a desired angle (or an angle to be set), an artifact occurs in the reconstructed image. However, in the electron microscope, it is very difficult to set the tilt axis of the sample in accordance with the design specification, that is, only with the hardware of the sample holder, due to the processing accuracy and operation accuracy of the sample holder. It is virtually impossible to exactly match the angle with the mechanical movement of the sample holder. Therefore, in order to accurately set the tilt angle of the sample, the tilt axis must be analyzed from the projected image and corrected.
【0007】第3に、各方向からの観察で得られる投影
像が、同一の物体に基づく情報である必要がある。即
ち、通常のX線−CT技術では試料におけるX線ビーム
の照射領域全体が観察対象領域であるため、各方向から
X線ビームの照射で得られた投影像は全て同一の物体の
情報に基づくものとなる。これに対し電子顕微鏡による
3次元原子配列観察では、例えば半導体ウエハやデバイ
ス等の試料中に局在する結晶欠陥や不純物が観察対象領
域となる。しかし電子ビームの照射は、試料において当
該観察対象領域を取り囲む非観察対象領域(以下、周辺
領域)をも含めて行なわれる。周辺領域においても、観
察対象領域と同様に照射される電子ビームは散乱される
ため、試料中に局在する観察対象領域に各方向から電子
ビームを照射して得られた投影像には、電子ビームの照
射方向(又は電子ビームに対する試料の傾斜角度)に応
じて異なる周辺領域の情報が含まれる。従って、複数の
投影像に基づいて構築される3次元像には、投影像毎の
周辺領域の情報量のバラツキに起因したアーティファク
トが発生する。Third, the projection images obtained by observation from each direction need to be information based on the same object. That is, in the normal X-ray-CT technique, the entire irradiation region of the X-ray beam on the sample is the observation target region. Therefore, the projection images obtained by the irradiation of the X-ray beam from each direction are all based on the information of the same object. It will be. On the other hand, in the three-dimensional atomic arrangement observation using an electron microscope, for example, a crystal defect or an impurity localized in a sample such as a semiconductor wafer or a device becomes an observation target region. However, the irradiation of the electron beam is performed including a non-observation target region (hereinafter, a peripheral region) surrounding the observation target region in the sample. In the peripheral region, the electron beam irradiated in the same manner as in the observation target region is scattered, so that the projection image obtained by irradiating the observation target region localized in the sample with the electron beam from each direction includes an electron beam. Information on the peripheral region that differs depending on the irradiation direction of the beam (or the inclination angle of the sample with respect to the electron beam) is included. Therefore, in a three-dimensional image constructed based on a plurality of projection images, artifacts occur due to a variation in the information amount of a peripheral region for each projection image.
【0008】従来の画像再構成法のソフトウェアは通常
のX線−CT技術での利用を前提としているため、上述
の電子顕微鏡による3次元原子配列観察にて生じるアー
ティファクトを解消するための配慮はされていなかっ
た。[0008] Since the software of the conventional image reconstruction method is premised on the use of ordinary X-ray-CT technology, consideration has been given to eliminating the artifacts generated in the three-dimensional atomic arrangement observation with the above-mentioned electron microscope. I didn't.
【0009】本発明の目的は、上記3次元画像再構成の
際の障害となるアーティファクトを解消または低減する
ことによって、3次元原子配列構造の再構成を高精度で
行う方法とこの方法に基づき3次元画像再構成の処理を
する手段を備えた電子顕微鏡を提供することである。SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for reconstructing a three-dimensional atomic array structure with high accuracy by eliminating or reducing an obstacle which is an obstacle in reconstructing the three-dimensional image. An object of the present invention is to provide an electron microscope provided with means for processing a two-dimensional image reconstruction.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
に、本発明では電子顕微鏡による試料の観察において、
電子顕微鏡像(二次元投影像)を結像するための電子線
の検出と、二次元投影像の画像処理とを以下の要領で行
う。In order to achieve the above object, the present invention provides a method for observing a sample using an electron microscope.
Detection of an electron beam for forming an electron microscope image (two-dimensional projected image) and image processing of the two-dimensional projected image are performed in the following manner.
【0011】まず第1として像コントラストの線形性を
維持するために、試料への電子線照射時に試料で散乱さ
れる電子のうち、像コントラストと試料厚さがほぼ線形
な関係になり且つ像コントラストが原子番号に依存する
ような角度範囲に散乱される電子で二次元投影像を結像
する。具体的には、散乱電子の強度において熱散漫散乱
による電子の強度が弾性散乱による電子の強度より支配
的になる散乱角度範囲において電子(所謂、高角散乱さ
れた電子)を検出して二次元投影像を結像する。このた
めに、電子顕微鏡の筐体内部において電子線検出器を、
電子光学系の光軸を基準に試料(試料ホルダ)からの高
角散乱電子の検出に適した位置に設けるとよい。また、
電子検出面における検出領域を任意に設定できる電子線
検出器(例えば、ニュービコンやハーピコン)を用いる
場合は、検出領域を高角散乱電子の検出に適した検出角
度範囲に合わせて設定する。First, in order to maintain the linearity of the image contrast, of the electrons scattered by the sample when irradiating the sample with an electron beam, the image contrast and the sample thickness have a substantially linear relationship, and the image contrast is high. Forms a two-dimensional projection image with electrons scattered in an angular range depending on the atomic number. More specifically, two-dimensional projection is performed by detecting electrons (so-called high-angle scattered electrons) in a scattering angle range in which the intensity of electrons due to thermal diffuse scattering is more dominant than the intensity of electrons due to elastic scattering. Image the image. For this purpose, an electron beam detector is installed inside the housing of the electron microscope.
It may be provided at a position suitable for detecting high-angle scattered electrons from a sample (sample holder) based on the optical axis of the electron optical system. Also,
When using an electron beam detector (for example, Newvicon or Harpicon) that can arbitrarily set the detection area on the electron detection surface, the detection area is set to a detection angle range suitable for detecting high-angle scattered electrons.
【0012】第2として試料の照射電子線に対する傾斜
角度を正確に設定するために、傾斜軸の解析について
は、試料を試料ホルダにより回転させ、試料ホルダ自体
の傾斜軸(機械的な傾斜軸)周りに数種類の角度で傾斜
させて、試料中に存在する少なくとも2個の異物(例え
ば、試料の主成分となる元素と異なる元素の原子もしく
は原子クラスタ)又は結晶欠陥等の特徴点の位置変化に
注目し、これらの特徴点の2次元投影像における位置を
マークする。次にマークした特徴点の一つを特定してそ
の位置を原点とし、機械的な傾斜軸に基づき試料の傾斜
角度を順次変化させ、傾斜角度に対して予想される特定
の特徴点と他の特徴点との位置関係と実際に観察された
位置関係とのずれに基づき、試料の実効的な傾斜軸(即
ち、照射電子線に対する実際の試料傾斜の中心となる傾
斜軸)を解析する。例えば、特定された特徴点と他の特
徴点とで形状が既知の図形を3次元空間に仮想し、特徴
点の抽出に用いた複数の(異なる傾斜角度における)投
影像における該図形の変形の程度から傾斜軸を解析す
る。Second, in order to accurately set the tilt angle of the sample with respect to the irradiation electron beam, the analysis of the tilt axis involves rotating the sample by the sample holder and tilting the sample holder itself (mechanical tilt axis). By tilting the sample at several angles around it, at least two foreign substances present in the sample (for example, atoms or atomic clusters of elements different from the element that is the main component of the sample) or a change in the position of a characteristic point such as a crystal defect can be detected. Attention is paid to the positions of these feature points in the two-dimensional projected image. Next, one of the marked feature points is specified, the position is set as the origin, the tilt angle of the sample is sequentially changed based on the mechanical tilt axis, the specific feature point expected with respect to the tilt angle and other The effective tilt axis of the sample (that is, the tilt axis that is the center of the actual sample tilt with respect to the irradiation electron beam) is analyzed based on the difference between the positional relationship with the feature point and the actually observed positional relationship. For example, a figure whose shape is known between a specified feature point and another feature point is imagined in a three-dimensional space, and deformation of the figure in a plurality of projection images (at different inclination angles) used for extracting the feature point is determined. Analyze the tilt axis from the degree.
【0013】理解を容易にするために具体例によって説
明すると、まず上述の特徴点間の位置関係を表現するた
めの2つの直交座標系、一つは電子顕微鏡の機械的な構
成に基づくもの(以下、観測系)、もう一つは上述の実
効的な傾斜軸に基づくもの(以下、試料系)を設定す
る。観測系の座標軸の一つを電子顕微鏡の電子光学系の
光軸又はこれに平行に設定し、試料系の座標軸の一つを
上述の実効的な傾斜軸又はこれに平行に設定する。2つ
の座標系の原点は、上述の特定の特徴点に設定するとよ
い。ここで試料ホルダを±αの角度で夫々回転すると、
これに対応して特定の特徴点以外の特徴点が試料系の実
効的な傾斜軸に平行な座標軸を中心に±αの角度で移動
する。この時、当該特徴点の位置変化の軌跡は試料系の
実効的な傾斜軸に垂直な平面において角度α/2なる2
つの角を有する二等辺三角形を描くが、電子顕微鏡像
(即ち観測系の電子光学系の光軸に垂直な平面)におい
ては、電子光学系の光軸と実効的な傾斜軸が平行でない
限り当該特徴点による同様な位置変化の軌跡は現われな
い。従って、試料系の平面に仮想される軌跡の形状と、
観測系の平面で実測される軌跡の形状とを対応させるこ
とにより、機械的な傾斜軸(電子光学系の光軸と一定の
位置関係にある)と実効的な傾斜軸とのずれを求める。To facilitate understanding, a specific example will be described. First, two orthogonal coordinate systems for expressing the positional relationship between the above-mentioned feature points, one based on the mechanical configuration of an electron microscope ( Hereinafter, an observation system) and another one based on the above-described effective tilt axis (hereinafter, a sample system) are set. One of the coordinate axes of the observation system is set to or parallel to the optical axis of the electron optical system of the electron microscope, and one of the coordinate axes of the sample system is set to or above the effective tilt axis. The origins of the two coordinate systems may be set to the specific feature points described above. Here, when the sample holder is rotated at an angle of ± α,
Correspondingly, feature points other than the specific feature point move at an angle of ± α around a coordinate axis parallel to the effective tilt axis of the sample system. At this time, the trajectory of the position change of the feature point has an angle α / 2 on a plane perpendicular to the effective tilt axis of the sample system.
Draws an isosceles triangle with two angles, but in an electron microscope image (that is, a plane perpendicular to the optical axis of the electron optics of the observation system), this is true unless the optical axis of the electron optics and the effective tilt axis are parallel. A locus of similar position change due to the feature point does not appear. Therefore, the shape of the trajectory imagined on the plane of the sample system,
The deviation between the mechanical tilt axis (having a fixed positional relationship with the optical axis of the electron optical system) and the effective tilt axis is obtained by associating the shape of the trajectory actually measured on the plane of the observation system.
【0014】第3として周辺領域の混入に関しては、試
料傾斜角度によって投影像に含まれたり含まれなかった
りする領域は投影データの両端であり、この領域は投影
データを逆投影をした段階の再構成像において周辺部の
みに存在する事を利用する。投影データ及び再構成像か
らこの領域を削除し、同一構造の再構成像となる領域の
みに欠落角度情報回復処理を行い、断面構造を復元す
る。Thirdly, with regard to the mixing of the peripheral area, the area included or not included in the projection image depending on the sample tilt angle is both ends of the projection data, and this area is a re-projection when the projection data is back-projected. The fact that it exists only in the peripheral part in the constituent image is used. This area is deleted from the projection data and the reconstructed image, and the missing angle information recovery processing is performed only on the area that becomes the reconstructed image having the same structure to restore the cross-sectional structure.
【0015】[0015]
【作用】まず第1に投影像を結像する電子として被観察
試料により高角散乱された電子、即ち散乱電子の強度に
おいて電子光学系や試料厚さの条件による干渉を受ける
弾性散乱電子よりもこれらの条件に対し非干渉な熱散漫
散乱電子が支配的となる角度に散乱される電子を用いる
ことにより、像コントラストに対するこれらの条件の影
響を排除できる。即ち、像コントラストと試料厚さが線
形関係に近似できるこのような角度範囲の散乱電子を用
れば、結晶を通過した電子線で結像した2次元像にも一
般の画像再構成の理論が適応可能となり、再構成した3
次元構造における異原子の位置及びコントラストを定量
的に解析できる。First of all, electrons that are high-angle scattered by the sample to be observed as electrons for forming a projected image, that is, elastic scattered electrons, which are subject to interference by the electron optical system and the conditions of the sample thickness, in terms of the intensity of the scattered electrons. By using the electrons scattered at an angle at which the thermally diffuse scattered electrons which do not interfere with the condition (1) are dominant, the influence of these conditions on the image contrast can be eliminated. That is, by using scattered electrons in such an angular range where the image contrast and the sample thickness can be approximated to a linear relationship, the theory of general image reconstruction can be applied to a two-dimensional image formed by an electron beam passing through a crystal. Adaptable and reconfigured 3
It is possible to quantitatively analyze the position and contrast of the different atoms in the three-dimensional structure.
【0016】第2に試料に存在する複数の特異な部分を
マークして試料の傾斜角度に対するこれらの部分の電子
顕微鏡像における位置変化から試料の実際の傾斜を解析
する傾斜軸解析法を用いれば、電子顕微鏡において設定
された試料ホルダの傾斜角度と試料の照射電子線に対す
る実際の傾斜角度とを対応させることができる。即ち、
電子顕微鏡のハードウエアだけでは試料ホルダやその傾
斜装置の機械的な精度の限界から正確に把握できなかっ
た3次元的に任意の方向に向いている試料の照射電子線
に対する実効的な傾斜軸を電子顕微鏡像(画像)ベース
に解析できる。従って、特に原子レベルでの3次元像観
察に必須の微細な試料の傾斜角度設定を略確実に行なう
ことが可能となる。Second, by using a tilt axis analysis method in which a plurality of unique portions present in the sample are marked and the actual tilt of the sample is analyzed from a change in the position of these portions in the electron microscope image with respect to the tilt angle of the sample. The inclination angle of the sample holder set in the electron microscope can correspond to the actual inclination angle of the sample with respect to the irradiation electron beam. That is,
The effective tilt axis for the irradiation electron beam of a sample oriented in any direction in three dimensions, which could not be accurately grasped due to the mechanical accuracy limitations of the sample holder and its tilting device only with the hardware of the electron microscope, Analysis can be based on electron microscope images (images). Therefore, it is possible to almost certainly set the fine sample inclination angle which is essential for the three-dimensional image observation at the atomic level.
【0017】第3に不要領域、即ち所望の観察領域を取
り囲む周辺領域の情報を投影像から除去すれば、解析し
たい所望の領域の周りに3次元画像再構成処理の障害と
なる構造が含まれていても、注目する構造を3次元再構
成することができる。Third, if information on an unnecessary area, that is, a peripheral area surrounding a desired observation area is removed from the projection image, a structure which becomes an obstacle to the three-dimensional image reconstruction processing is included around the desired area to be analyzed. However, the structure of interest can be three-dimensionally reconstructed.
【0018】以上の3つの方法は、電子顕微鏡のハード
ウエアの制御装置や画像処理装置において制御又は処理
シーケンスに組み込むこともできる。例えば、電子線を
放射する電子線源と、電子線を試料に照射する第1の電
子光学系と、試料を保持する試料ホルダと、試料ホルダ
を照射電子線に対して傾斜する試料傾斜装置と、試料か
ら出射される電子線で投影像を結像する第2の電子光学
系と、投影像を検出する電子線検出装置と、電子線検出
装置の投影像のデータを処理するデータ処理装置からな
る電子顕微鏡において、上述の第1の散乱電子線検出条
件の設定を、第1の光学系による試料への中空状電子線
(ホローコーンビーム)照射や2次元的な電子線検出面
を有する電子線検出装置での当該検出面における電子線
検出領域設定の制御により行なえる。上述の第2の傾斜
軸解析法は、試料傾斜装置により設定された試料傾斜角
ごとの投影像をデータ処理装置で処理し、試料傾斜装置
の機械的な傾斜軸と投影像から得られた実効的な傾斜軸
とのずれを算出したデータに基づきデータ処理装置から
試料傾斜装置に制御信号を送る(フィードバックをかけ
る)。試料傾斜装置が試料ホルダの傾斜の中心軸位置を
調整する傾斜軸調整装置を有する場合は、データ処理装
置により傾斜軸調製装置を制御するとよい。また上述の
第3の画像処理方法は、データ処理装置に画像処理ソフ
トとして搭載するとよい。The above three methods can be incorporated in the control or processing sequence in a hardware control device or an image processing device of the electron microscope. For example, an electron beam source that emits an electron beam, a first electron optical system that irradiates the sample with the electron beam, a sample holder that holds the sample, and a sample tilting device that tilts the sample holder with respect to the irradiated electron beam. A second electron optical system that forms a projection image with an electron beam emitted from the sample, an electron beam detection device that detects the projection image, and a data processing device that processes data of the projection image of the electron beam detection device. In the electron microscope described above, the setting of the first scattered electron beam detection condition is performed by irradiating a sample with a hollow electron beam (hollow cone beam) by a first optical system or by using an electron having a two-dimensional electron beam detection surface. This can be performed by controlling the setting of the electron beam detection area on the detection surface in the line detection device. In the above-mentioned second tilt axis analysis method, a projection image for each sample tilt angle set by the sample tilt device is processed by the data processing device, and the effective tilt axis obtained from the mechanical tilt axis of the sample tilt device and the projected image is obtained. A control signal is sent from the data processing device to the sample tilting device (feedback is applied) based on the data calculated for the deviation from the typical tilting axis. When the sample tilting device has a tilt axis adjusting device for adjusting the center axis position of the tilt of the sample holder, the data processing device may control the tilt axis adjusting device. Further, the above-described third image processing method may be installed in the data processing device as image processing software.
【0019】[0019]
【実施例】画像再構成は、直観的には図1に示す様にあ
る物体の2次元断面像1の様々な方向について投影デー
タ2を記録し、該投影データを逆投影して2次元再構成
像3を再構成する処理である。2次元再構成像3と2次
元断面像1が一致すれば、元の像を完全に復元できたこ
とになる。本発明では、前記画像再構成法を実際に観察
された電子顕微鏡像に適応するために必要な観察条件及
び処理を明確化し、更に該条件を満たす方法を提供す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS Intuitively, image reconstruction is performed by recording projection data 2 in various directions of a two-dimensional cross-sectional image 1 of an object as shown in FIG. This is processing for reconstructing the constituent image 3. If the two-dimensional reconstructed image 3 and the two-dimensional cross-sectional image 1 match, it means that the original image has been completely restored. The present invention clarifies observation conditions and processing necessary for adapting the image reconstruction method to an actually observed electron microscope image, and provides a method that satisfies the conditions.
【0020】図2は本発明の実施例で用いた電子顕微鏡
の基本構成である。電界放出型電子銃4、コンデンサー
レンズ5、ビ−ム偏向走査コイル6、対物レンズ7、試
料微動・傾斜機構8、電子線検出器9、制御用及び画像
処理用プロセッサ10から構成されている。図3は3次
元原子配列像を構築する工程を示すフローチャートであ
る。2次元投影像13の観察条件を設定する工程、薄膜
化した試料12をある傾斜軸14周りに傾斜させて種々
の方向から観察した複数の2次元投影像13を得る工
程、該複数の2次元像13から前記傾斜軸14を画像解
析によって特定する工程、該傾斜軸14を設計仕様通り
に設定する工程、前記複数の2次元投影像13から投影
像と直交する各2次元断面像1を構築する工程、該2次
元断面像1を積み重ねて構築した3次元像から3次元原
子配列像を解析する工程から成る。以下に、各工程の詳
細を説明する。FIG. 2 shows the basic structure of the electron microscope used in the embodiment of the present invention. It comprises a field emission type electron gun 4, a condenser lens 5, a beam deflection scanning coil 6, an objective lens 7, a sample fine movement / tilt mechanism 8, an electron beam detector 9, a control and image processing processor 10. FIG. 3 is a flowchart showing a process of constructing a three-dimensional atomic array image. Setting observation conditions for the two-dimensional projection image 13, obtaining a plurality of two-dimensional projection images 13 observed from various directions by inclining the thinned sample 12 around a certain tilt axis 14, A step of specifying the tilt axis 14 from the image 13 by image analysis, a step of setting the tilt axis 14 according to design specifications, and constructing each two-dimensional cross-sectional image 1 orthogonal to the projection image from the plurality of two-dimensional projection images 13 And analyzing the three-dimensional atomic arrangement image from the three-dimensional image constructed by stacking the two-dimensional cross-sectional images 1. The details of each step will be described below.
【0021】まず、前記2次元投影像13を得る工程を
示す。原子1〜2個以下の太さの電子線11で薄膜化し
た試料12を走査し、試料内の原子によって散乱された
電子のうち、ある散乱角度範囲α〜βの散乱電子線15
の強度を検出し、該強度を前記電子線の走査と同期させ
てCRT上に輝度変調表示し、2次元投影像13を観察
する。前記検出角度範囲は下記の幾つかの条件を満たす
様に設定する。まず、該検出角度範囲を設定するため
に、試料内の電子線の散乱過程を考察する。試料12を
通過する電子線は、試料12内の原子によって散乱され
る。散乱電子線量と散乱角度は一般に図4に示す様な関
係にある。ある散乱角にピ−クを持ち、高散乱角側へ裾
広がりを持つ分布を持っており、この分布は電子を散乱
する原子の原子番号Zが大きいほど高散乱角側へシフト
していく。従って、図4に示す散乱角度範囲α〜βの電
子線量は原子番号Zの大きい試料の方が大きくなる。こ
こで、図5に示す様にSi(シリコン)結晶中にAg
(銀)粒子が存在する試料12に電子線11を各位置に
入射し、散乱角度範囲α〜βの電子線15の量を測定し
た場合を考える。位置(1)に電子線11が入射した場
合、電子線はSi結晶しか通過しないので散乱角度範囲
α〜βの電子線15の量は少ない。位置(2)に電子線
11が入射した場合、電子線はSi結晶の他に原子番号
の大きいAg原子を通過するので散乱角度範囲α〜βの
電子線15の量は多くなる。位置(3)に電子線11が
入射した場合、電子線は2個のAg原子を通過するので
その分散乱角度範囲α〜βの電子線15の量は多くな
る。また位置(4)に電子線11が入射した場合、Si
原子が1個欠落しているので位置(1)よりも散乱角度
範囲α〜βの電子線15の量は少なくなる。以上の様
に、散乱角度範囲α〜βの電子線15の量は、電子線を
散乱させた原子数とその原子番号Zに対応している。First, a process for obtaining the two-dimensional projected image 13 will be described. The sample 12 thinned by the electron beam 11 having a thickness of 1 to 2 atoms or less is scanned, and among the electrons scattered by the atoms in the sample, the scattered electron beam 15 having a certain scattering angle range α to β.
Is detected, and the intensity is displayed on a CRT in synchronization with the scanning of the electron beam, and the two-dimensional projected image 13 is observed. The detection angle range is set so as to satisfy the following several conditions. First, in order to set the detection angle range, the scattering process of the electron beam in the sample will be considered. An electron beam passing through the sample 12 is scattered by atoms in the sample 12. The scattered electron dose and the scattering angle generally have a relationship as shown in FIG. It has a distribution having a peak at a certain scattering angle and a broader tail toward the higher scattering angle side, and this distribution shifts toward the higher scattering angle side as the atomic number Z of the atom scatters electrons increases. Therefore, the electron dose in the scattering angle range α to β shown in FIG. Here, as shown in FIG.
It is assumed that the electron beam 11 is incident on the sample 12 having (silver) particles at each position, and the amount of the electron beam 15 in the scattering angle range α to β is measured. When the electron beam 11 enters the position (1), the amount of the electron beam 15 in the scattering angle range α to β is small because the electron beam only passes through the Si crystal. When the electron beam 11 enters the position (2), the amount of the electron beam 15 in the scattering angle range α to β increases because the electron beam passes through Ag atoms having a large atomic number in addition to the Si crystal. When the electron beam 11 enters the position (3), the amount of the electron beam 15 in the scattering angle range α to β increases by the amount of the electron beam passing through two Ag atoms. When the electron beam 11 is incident on the position (4), Si
Since one atom is missing, the amount of the electron beam 15 in the scattering angle range α to β is smaller than that in the position (1). As described above, the amount of the electron beam 15 in the scattering angle range α to β corresponds to the number of atoms that scattered the electron beam and the atomic number Z thereof.
【0022】次に、電子線15の量と該電子線で結像し
た2次元像の像コントラストの対応について考察する。
試料によって散乱された電子は、可干渉な弾性散乱電子
と非干渉な熱散漫散乱散乱電子に分けられる。弾性散乱
電子線は僅かな位相の変化、すなわち対物レンズ7のデ
フォーカスや試料12の厚さの変化に伴い電子線強度の
振動が起こるため像コントラストが散乱電子線量と対応
するとは限らない。一方、熱散漫散乱電子線は非干渉で
あるために前記振動は起こらず、像コントラストと散乱
電子線量は対応する。散乱電子線における弾性散乱と熱
散漫散乱の占める割合と散乱角度の関係は一般に図6に
示す関係になる。弾性散乱電子量は低散乱角位置にピー
クを持ち散乱角度が増加すると急激に減少する。一方、
熱散漫散乱電子量は散乱角度依存性が少ない。そのため
高角側では熱散漫拡散電子がその大部分を占めるように
なる。従って、散乱電子線の検出角度範囲α〜βを熱散
漫散乱電子線がその大部分を占めるくらい高角側すなわ
ち数十mrad以上に設定すれば、散乱電子線量に対応
した像コントラストを得ることができる。例えばSi単
結晶に[110]方向から電子線を入射した場合、散乱
角度範囲を約50mrad以上に設定すれば、散乱電子
線15の量と像コントラストはほぼ線形の関係になるこ
とが確認されている。Next, the correspondence between the amount of the electron beam 15 and the image contrast of the two-dimensional image formed by the electron beam will be considered.
The electrons scattered by the sample are divided into coherent elastic scattered electrons and non-coherent heat diffuse scattered electrons. The image contrast does not always correspond to the scattered electron dose because the elastic scattered electron beam causes a slight change in phase, that is, oscillation of the electron beam intensity due to the defocus of the objective lens 7 and the change in the thickness of the sample 12. On the other hand, since the thermal diffuse scattered electron beam does not interfere, the vibration does not occur, and the image contrast and the scattered electron dose correspond. In general, the relationship between the proportion of elastic scattering and thermal diffuse scattering in the scattered electron beam and the scattering angle is as shown in FIG. The amount of elastic scattered electrons has a peak at a low scattering angle position, and sharply decreases as the scattering angle increases. on the other hand,
The amount of thermally diffuse scattered electrons has little scattering angle dependence. For this reason, the heat diffusion diffused electrons occupy most of the high-angle side. Therefore, if the detection angle range α to β of the scattered electron beam is set on the high angle side, that is, several tens mrad or more so that the heat diffuse scattered electron beam occupies most of the angle, an image contrast corresponding to the scattered electron dose can be obtained. . For example, when an electron beam is incident on a Si single crystal from the [110] direction, if the scattering angle range is set to about 50 mrad or more, it is confirmed that the amount of the scattered electron beam 15 and the image contrast have a substantially linear relationship. I have.
【0023】上記条件を満たす様に検出角度範囲を設定
し、試料傾斜機構8を用いて試料12をある傾斜軸14
回りに回転させ、種々の方向から観察した複数の2次元
投影像13を得る。The detection angle range is set so as to satisfy the above conditions, and the sample 12 is moved to a certain tilt axis 14 using the sample tilt mechanism 8.
It is rotated around to obtain a plurality of two-dimensional projection images 13 observed from various directions.
【0024】次に、該複数の2次元投影像13から前記
傾斜軸14を画像解析によって特定する工程を示す。ま
ず、図7に示す座標系を仮定する。観測系に固定した直
交座標系を座標系xyzとし、試料12に固定した直交
座標系を座標系ξηζとする。座標系xyzと座標系ξ
ηζとの座標変換はオイラー角θψφを用いて、以下の
式で表される。Next, a process of specifying the tilt axis 14 from the plurality of two-dimensional projected images 13 by image analysis will be described. First, a coordinate system shown in FIG. 7 is assumed. An orthogonal coordinate system fixed to the observation system is defined as a coordinate system xyz, and an orthogonal coordinate system fixed to the sample 12 is defined as a coordinate system {η}. Coordinate system xyz and coordinate system ξ
The coordinate conversion with ηζ is expressed by the following equation using the Euler angle θψφ.
【0025】[0025]
【数1】 (Equation 1)
【0026】ここで形状が既知の標準試料があれば、試
料系で設定される(ξηζ)の値と試料を傾斜軸周りに
傾斜させたときに観察系で測定される(xyz)の値の
対応からオイラー角θψφを求めることができる。しか
しTEM試料中には形状が既知である様な構造は、一般
には含まれていない。そこで試料12内の任意の特徴
点、例えばSi結晶中のAg原子を用いる。試料内から
2つの特徴点を選択し、その2点を結ぶベクトルを用い
て解析する。図8に示す様に、傾斜軸14をζ軸とし、
試料12をζ軸周りに回転させる。試料12を回転させ
ないときのベクトルu、ζ軸周りに+α回転させたとき
のベクトルv、−α回転させたときのベクトルwを仮定
する。座標系ξηζで考えると、ベクトルu、v、wは
ξη平面上に二等辺三角形を形作っている。ベクトルs
=v−wはξ軸と平行であり、ベクトルt=u−(v+
w)/2はη軸と平行である。両者の長さの比は回転角
αから求めることが出来るので、座標系ξηζの単位ベ
クトル、ベクトルs’=(k,0,0)、ベクトルt’
=(0,k,0)を設定できる。観測系xyzでベクト
ルu、v、wの座標を測定して求めたベクトルs’、
t’の値と、ξηζ座標系におけるベクトルs’、t’
の値の対応からオイラー角θψφ及び単位ベクトルの長
さkを求める事ができ、傾斜軸14であるζ軸の方向を
解析できる。尚、観測系ではz方向から投影像を観察す
るためz座標は測定出来ないが、ベクトルs’における
x,y座標、ベクトルt’におけるx,y座標で連立方
程式が4つ定義できるので、4つの変数を特定すること
は可能である。Here, if there is a standard sample having a known shape, the value of ({η}) set in the sample system and the value of (xyz) measured in the observation system when the sample is tilted around the tilt axis. The Euler angle θψφ can be obtained from the correspondence. However, a structure whose shape is known is not generally included in the TEM sample. Therefore, an arbitrary feature point in the sample 12, for example, an Ag atom in a Si crystal is used. Two feature points are selected from the sample and analyzed using a vector connecting the two points. As shown in FIG. 8, the inclined axis 14 is a ζ axis,
The sample 12 is rotated around the ζ axis. A vector u when the sample 12 is not rotated, a vector v when the sample 12 is rotated + α around the ζ axis, and a vector w when the sample 12 is rotated −α are assumed. Considering the coordinate system {η}, the vectors u, v, w form an isosceles triangle on the {η plane. Vector s
= V−w is parallel to the ξ axis, and the vector t = u− (v +
w) / 2 is parallel to the η axis. Since the length ratio between the two can be obtained from the rotation angle α, the unit vector of the coordinate system {η}, the vector s ′ = (k, 0, 0), the vector t ′
= (0, k, 0) can be set. A vector s ′ obtained by measuring the coordinates of the vectors u, v, w in the observation system xyz,
The value of t 'and the vectors s', t' in the {η} coordinate system
, The Euler angle θψφ and the length k of the unit vector can be obtained, and the direction of the ζ axis, which is the inclined axis 14, can be analyzed. Note that the observation system observes the projected image from the z direction, so that the z coordinate cannot be measured. However, since four simultaneous equations can be defined by the x, y coordinates of the vector s ′ and the x, y coordinates of the vector t ′, It is possible to specify two variables.
【0027】上記工程により、形状が既知の試料を用い
なくても、試料内の特徴点を用いて傾斜軸14を画像解
析によって解析することができる。尚、読み取り誤差等
を避けるため、試料内の2点はベクトルs、tの長さが
出来るだけ大きくなる様に選択する。また、ベクトル
s、tの長さにあまり差がでないようにするために、回
転角δは出来るだけ大きく取る方が望ましい。また特徴
点としては、どの方向から観察してもその位置を特定で
きる形状、例えば微粒子、直方体の頂点などが望まし
い。適当な特徴点が試料内に存在しない場合は、収束し
た電子線を注目領域の四角に照射して特徴点例えば欠陥
又はコンタミネーション跡を作製する。Through the above steps, the tilt axis 14 can be analyzed by image analysis using feature points in the sample without using a sample having a known shape. In order to avoid a reading error or the like, two points in the sample are selected so that the lengths of the vectors s and t are as large as possible. Further, it is desirable to set the rotation angle δ as large as possible so that the lengths of the vectors s and t are not so different. The feature point is desirably a shape that can specify its position even when observed from any direction, for example, fine particles, the top of a rectangular parallelepiped, or the like. If an appropriate feature point does not exist in the sample, a focused electron beam is applied to the square of the region of interest to create a feature point, for example, a defect or a contamination trace.
【0028】次に、前記傾斜軸14を設計仕様通りに設
定する工程を示す。まず、傾斜軸の設計仕様を図9に示
す。z方向から2次元投影像13を観察した場合、傾斜
軸14が投影像面であるxy平面と平行であれば、2次
元投影像13上に写る傾斜軸14と直交するラインプロ
ファイルは、2次元断面像1の1次元の投影データ2と
なる。試料傾斜機構8を用いて傾斜軸14がxy平面と
平行になるように設定し、前記傾斜軸解析法を用いて傾
斜軸の方向が前記設計仕様を満たしているかを確認す
る。仕様を満たしていない場合は試料傾斜機構を用いて
傾斜軸の方向を補正する。Next, a process for setting the tilt axis 14 according to the design specification will be described. First, the design specifications of the tilt axis are shown in FIG. When observing the two-dimensional projection image 13 from the z direction, if the tilt axis 14 is parallel to the xy plane that is the projection image plane, the line profile orthogonal to the tilt axis 14 that appears on the two-dimensional projection image 13 is two-dimensional. The one-dimensional projection data 2 of the cross-sectional image 1 is obtained. The tilt axis 14 is set so as to be parallel to the xy plane by using the sample tilt mechanism 8, and it is confirmed whether the direction of the tilt axis satisfies the design specification by using the tilt axis analysis method. If the specification is not satisfied, the direction of the tilt axis is corrected using a sample tilt mechanism.
【0029】次に、各2次元断面像を構築する工程を示
す。該工程は、前記設計仕様方向に設定された傾斜軸1
4回りに傾斜させて観察された複数の2次元投影像13
から該投影像と直交する2次元断面像の1次元投影デー
タを収集する工程、該1次元投影データを逆投影して2
次元再構成像を構築する工程、該2次元再構成像から2
次元断面像の復元が不可能な領域を削除する工程、該2
次元像に欠落角度情報回復処理を施して2次元断面像を
得る工程からなる。Next, steps for constructing each two-dimensional cross-sectional image will be described. The process includes the tilt axis 1 set in the design specification direction.
Plural two-dimensional projection images 13 observed obliquely around 4
Collecting one-dimensional projection data of a two-dimensional cross-sectional image orthogonal to the projection image from
Constructing a two-dimensional reconstructed image;
A step of deleting an area where a two-dimensional cross-sectional image cannot be restored;
A process of performing a missing angle information recovery process on the two-dimensional image to obtain a two-dimensional cross-sectional image.
【0030】1次元投影データを収集する工程を示す。
まず、1次元投影データ2と2次元断面像1の幾何学的
な関係を図10に示す。試料12は厚さ2dの平板試料
とする。試料12内に注目領域301を設定し、その幅
を2aとする。試料12の最大傾斜角を±γ度とする。
まず、図10(a)に示す様にdがaよりも充分小さい
場合について考察する。試料傾斜角γにおける1次元投
影データ2の両端データ201には、注目領域301以
外の領域の投影データが混在している。そこで両端デー
タ201を削除した1次元投影データ2のみを画像再構
成に用いる。両端データ201の範囲を決定する方法を
以下に幾つか示す。幾何学的な関係から削除する範囲は
データ両端からa(1−cosγ)−2d・sinγで
ある。試料12の厚さ2dが既知でなくとも、注目領域
301の周囲に特徴点が存在すれば、該特徴点の投影デ
ータ上での位置から決定できる。注目領域301の周囲
に特徴点が存在しなければ、収束した電子線を注目領域
の四角に照射して特徴点例えば欠陥又はコンタミネーシ
ョン跡を作製し、該特徴点の投影データ上での位置から
決定する。尚、図10(b)に示す様にdとaがほぼ同
じ長さの場合、試料傾斜角γにおける1次元投影データ
2の全範囲に、注目領域301以外の領域の投影データ
が混在しており、該1次元投影データ2は再構成処理に
は使えない事が分かる。従って、注目領域301の幅2
aは出来るだけ広めに設定する必要がある。The process of collecting one-dimensional projection data will be described.
First, the geometric relationship between the one-dimensional projection data 2 and the two-dimensional cross-sectional image 1 is shown in FIG. The sample 12 is a flat plate sample having a thickness of 2d. A region of interest 301 is set in the sample 12, and its width is set to 2a. The maximum inclination angle of the sample 12 is ± γ degrees.
First, consider the case where d is sufficiently smaller than a as shown in FIG. The end data 201 of the one-dimensional projection data 2 at the sample inclination angle γ includes projection data of an area other than the attention area 301. Therefore, only the one-dimensional projection data 2 from which both end data 201 has been deleted is used for image reconstruction. Several methods for determining the range of the end data 201 will be described below. The range to be deleted from the geometric relationship is a (1-cosγ) -2d · sinγ from both ends of the data. Even if the thickness 2d of the sample 12 is not known, if a feature point exists around the attention area 301, it can be determined from the position of the feature point on the projection data. If there is no feature point around the attention area 301, a convergent electron beam is applied to the square of the attention area to create a feature point, for example, a defect or a contamination trace, and the position of the feature point on the projection data is calculated. decide. When d and a have substantially the same length as shown in FIG. 10B, projection data of an area other than the attention area 301 is mixed in the entire range of the one-dimensional projection data 2 at the sample inclination angle γ. Thus, it can be seen that the one-dimensional projection data 2 cannot be used for reconstruction processing. Therefore, the width 2 of the attention area 301
a must be set as wide as possible.
【0031】次に、前記1次元投影データを逆投影して
2次元再構成像を構築する工程は通常のX線−CTで用
いられている2次元フーリエ変換法、フィルタ補正逆投
影法、重畳積分法などの方法で行う。Next, the step of back-projecting the one-dimensional projection data to construct a two-dimensional reconstructed image includes a two-dimensional Fourier transform method, a filter-corrected back projection method, and a superposition method used in ordinary X-ray-CT. This is performed by a method such as an integration method.
【0032】次に、前記2次元再構成像から2次元断面
像の復元が不可能な領域を削除する工程を示す。1次元
投影データ2を逆投影した段階の2次元再構成像では、
図10(a)に示す注目領域301のうち、全試料傾斜
角度の投影データから逆投影された領域は領域302だ
けである。該領域302以外の領域は像に含まれる投影
データの情報量が極端に少なくなっている。電子顕微鏡
では投影角度範囲が制限されているため、既知情報を用
いて適当な欠落角度情報回復の処理を施す必要がある
が、この処理を注目領域301にそのまま適応すると、
領域302以外の領域の断面像を回復できないだけでな
く、領域302以外の領域が復元可能な領域302にア
ーティファクトを発生させる原因となる場合もある。そ
こで、領域302以外の領域を削除し、適当な試料構造
例えば基板結晶に置き換え、アーティファクトが発生し
ない様にする必要がある。領域302以外の領域は、幾
何学的には注目構造の端から各投影方向に直線を引いた
場合、その外側にある領域として特定できる。Next, a step of deleting a region where a two-dimensional cross-sectional image cannot be restored from the two-dimensional reconstructed image will be described. In the two-dimensional reconstructed image at the stage of back-projecting the one-dimensional projection data 2,
In the region of interest 301 shown in FIG. 10A, only the region 302 is back-projected from the projection data of all sample inclination angles. In an area other than the area 302, the information amount of the projection data included in the image is extremely small. In the electron microscope, since the projection angle range is limited, it is necessary to perform appropriate missing angle information recovery processing using known information. However, if this processing is directly applied to the attention area 301,
Not only cannot the cross-sectional image of the area other than the area 302 be recovered, but also an area other than the area 302 may cause an artifact in the recoverable area 302. Therefore, it is necessary to delete a region other than the region 302 and replace it with an appropriate sample structure, for example, a substrate crystal so that no artifact occurs. Regions other than the region 302 can be specified geometrically as regions outside the region when a straight line is drawn in each projection direction from the end of the target structure.
【0033】前記該処理を施した2次元像3に欠落角度
情報回復処理を施して2次元断面像を得る工程を示す。
欠落角度情報回復処理には2次元断面像に関する既知情
報、例えば確率情報、対称性などの情報をもとにして行
う。A process for obtaining a two-dimensional cross-sectional image by performing a missing angle information recovery process on the two-dimensional image 3 subjected to the above-described process will be described.
The missing angle information recovery process is performed based on known information regarding the two-dimensional cross-sectional image, for example, information such as probability information and symmetry.
【0034】次に、前記2次元断面像1を積み重ねて構
築した3次元像から3次元原子配列と原子種を解析する
工程を示す。試料傾斜軸にそって各2次元断面像を順次
再構成し、それらを積み重ねて3次元構造を構築する。
2次元投影像3における像コントラストは電子線が通過
した経路上に存在した原子数とその原子番号Zに依存し
たコントラストであるため、2次元投影像3のみから原
子番号Zを特定することは困難であった。3次元再構成
によって試料形状を解析することによって、試料を構成
する原子の原子番号Zを特定できるようになる。Next, a process of analyzing a three-dimensional atomic arrangement and atomic species from a three-dimensional image constructed by stacking the two-dimensional sectional images 1 will be described. Each two-dimensional cross-sectional image is sequentially reconstructed along the sample tilt axis, and the three-dimensional structure is constructed by stacking them.
Since the image contrast in the two-dimensional projected image 3 is a contrast depending on the number of atoms existing on the path through which the electron beam has passed and the atomic number Z, it is difficult to specify the atomic number Z only from the two-dimensional projected image 3. Met. By analyzing the sample shape by three-dimensional reconstruction, the atomic number Z of the atoms constituting the sample can be specified.
【0035】[0035]
【発明の効果】本発明によれば、様々な観察方向から観
察した電子顕微鏡像から一般の画像再構成の理論を用い
て3次元的な原子配列像を高精度で構成できる。これに
よって、結晶中の不純物原子及びそれらのクラスタの3
次元的な構造を原子1個のレベルで解析できる。従っ
て、リーク電流や耐圧不良等のULSI素子の不良原因
解析に有効な情報を提供する。According to the present invention, a three-dimensional atomic arrangement image can be formed with high precision from the electron microscope images observed from various observation directions by using a general image reconstruction theory. Thereby, three atoms of impurity atoms and their clusters in the crystal are obtained.
The dimensional structure can be analyzed at the level of one atom. Therefore, the present invention provides effective information for analyzing the cause of the failure of the ULSI element such as the leak current and the breakdown voltage failure.
【0036】[0036]
【図1】(a)は投影を、(b)は逆投影による画像再
構成の原理を示す説明図。FIGS. 1A and 1B are explanatory diagrams illustrating the principle of image reconstruction by back projection and FIG.
【図2】本発明の実施例に用いた装置の全体構成図。FIG. 2 is an overall configuration diagram of an apparatus used in an embodiment of the present invention.
【図3】3次元原子配列像を構築する工程を示すフロー
チャート。FIG. 3 is a flowchart showing steps for constructing a three-dimensional atomic array image.
【図4】原子番号が異なる原子における、散乱電子線量
の角度分布を示す説明図。FIG. 4 is an explanatory diagram showing an angular distribution of a scattered electron dose for atoms having different atomic numbers.
【図5】電子線を各試料位置に入射したときに散乱角度
範囲α〜βに散乱される電子線量を示す説明図。FIG. 5 is an explanatory diagram showing an electron dose scattered in a scattering angle range α to β when an electron beam is incident on each sample position.
【図6】弾性散乱と熱散漫散乱の割合の散乱角度依存性
を示す説明図。FIG. 6 is an explanatory diagram showing the scattering angle dependence of the ratio of elastic scattering and thermal diffuse scattering.
【図7】座標系xyzと座標系ξηζ及びオイラー角θ
ψφの関係を示す説明図。FIG. 7 shows a coordinate system xyz, a coordinate system {η}, and an Euler angle θ.
FIG. 4 is an explanatory diagram showing a relationship of ψφ.
【図8】座標軸解析に用いる各ベクトルを示す説明図。FIG. 8 is an explanatory diagram showing each vector used for coordinate axis analysis.
【図9】傾斜軸が2次元投影像と平行な時、2次元投影
像から1次元投影データを収集できる事を示す説明図。FIG. 9 is an explanatory diagram showing that one-dimensional projection data can be collected from a two-dimensional projection image when the tilt axis is parallel to the two-dimensional projection image.
【図10】(a)は試料が薄い場合、(b)は試料が厚
い場合の1次元投影データと2次元断面像の関係を示す
説明図。FIGS. 10A and 10B are explanatory diagrams showing a relationship between one-dimensional projection data and a two-dimensional cross-sectional image when the sample is thin, and FIG.
1…2次元断面像、2…1次元投影データ、201…2
次元断面像再構成には不要な1次元投影データ、3…2
次元再構成像、301…2次元断面像内の注目領域、3
02…2次元断面像が回復可能な領域、4…電界放出型
電子銃、5…コンデンサーレンズ、6…ビーム偏向走査
コイル、7…対物レンズ、8…試料微動・傾斜機構、9
…電子線検出器、10…制御用及び画像処理用プロセッ
サ、11…入射電子線、12…試料、13…2次元投影
像、14…試料傾斜軸、15…角度範囲α〜βに散乱さ
れた電子線。1 ... two-dimensional cross-sectional image, 2 ... one-dimensional projection data, 201 ... 2
One-dimensional projection data unnecessary for three-dimensional cross-sectional image reconstruction, 3 ... 2
Dimensional reconstructed image, 301 ... attention area in two-dimensional cross-sectional image, 3
02: an area from which a two-dimensional cross-sectional image can be recovered, 4: a field emission electron gun, 5: a condenser lens, 6: a beam deflection scanning coil, 7: an objective lens, 8: a sample fine movement / tilt mechanism, 9
... Electron beam detector, 10 ... Processor for control and image processing, 11 ... Electron beam incident, 12 ... Sample, 13 ... 2D projection image, 14 ... Slope axis of sample, 15 ... Scattered in angle range α-β Electron beam.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 関原 謙介 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 本池 順 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 平4−337236(JP,A) 特開 平2−15545(JP,A) 実開 昭59−4408(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 23/04 H01J 37/22 501 H01J 37/28 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kensuke Sekihara 1-280 Higashi Koikekubo, Kokubunji City, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (72) Inventor Jun Jun Ikego 2-280 Higashi Koikekubo, Kokubunji City, Tokyo Hitachi, Ltd. (56) References JP-A-4-337236 (JP, A) JP-A-2-15545 (JP, A) JP-A-59-4408 (JP, U) (58) Fields surveyed (Int .Cl. 7 , DB name) G01N 23/04 H01J 37/22 501 H01J 37/28
Claims (5)
の所定領域に照射する第1の電子光学系と、試料を保持
する試料ホルダと、前記試料ホルダ上の試料を照射する
電子線に対して試料ホルダを傾斜させる試料傾斜装置
と、試料を透過した電子線で投影像を結像する第2の電
子光学系と、該投影像を検出する電子線検出装置と、該
電子線検出装置から前記試料ホルダの回転角に応じ複数
の投影像のデータを処理し、得られる画像の位置と試料
ホルダの角度から試料の3次元像を再構築するデータ処
理装置と、を具備することを特徴とする電子顕微鏡。An electron source for emitting an electron beam, and an electron beam for a sample
A first electron optical system for irradiating a predetermined area of a sample holder for holding a sample, a sample tilting device for tilting the sample holder with respect to the electron beam for irradiating a sample on the sample holder, transmitted through the sample A second electron optical system that forms a projected image with an electron beam, an electron beam detecting device that detects the projected image, and a plurality of electron beam detecting devices that detect the projected image according to a rotation angle of the sample holder.
Processing the data of the projected image of the sample, the position of the obtained image and the sample
Data processing for reconstructing a three-dimensional image of the sample from the angle of the holder
An electron microscope comprising: a processing device .
の中心軸位置を調整する傾斜軸調整装置を有することを
特徴する請求項1記載の電子顕微鏡。 2. The electron microscope according to claim 1, further comprising a tilt axis adjusting device for adjusting a center axis position of the tilt of the sample holder as the sample tilt device.
程と、電子源から電子線を試料に照射する工程と、試料
を傾斜して複数の傾斜角度で透過電子像を取得する工
程、前記取得工程で得られた画像から画像中の特徴量か
ら前記試料ホルダの回転中心位置を算出する工程と、得
られた複数の画像取得時の前記試料ホルダの角度と前記
取得した回転中心からの位置から試料の3次元構造を再
構成する工程と、を有することを特徴とする3次元原子
配列観察方法。 3. A step of mounting a thinned sample on a sample holder, a step of irradiating the sample with an electron beam from an electron source, and a step of tilting the sample to acquire a transmission electron image at a plurality of tilt angles. Calculating the rotation center position of the sample holder from the feature amount in the image from the image obtained in the obtaining step, and obtaining the plurality of obtained images from the angles of the sample holder and the obtained rotation center at the time of obtaining the plurality of images. Reconstructing a three-dimensional structure of the sample from the position.
欠陥又はコンタミネーション跡のいずれかを用いること
を特徴する請求項3記載の3次元原子配列観察方法。The method according to claim 4, wherein the feature amount, the three-dimensional atomic arrangement observation method according to claim 3 characterized by using any of Ag or defects or contamination remains in the Si crystal.
を各2次元投影像から削除する工程を付加したことを特
徴とする請求項3記載の3次元原子配列観察方法。 5. A three-dimensional atomic arrangement observation method according to claim 3, characterized in that by adding the step of deleting the region in which the structure other than the feature quantity is mixed from the two-dimensional projection image.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09920295A JP3304681B2 (en) | 1995-04-25 | 1995-04-25 | Electron microscope and three-dimensional atomic array observation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09920295A JP3304681B2 (en) | 1995-04-25 | 1995-04-25 | Electron microscope and three-dimensional atomic array observation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08292164A JPH08292164A (en) | 1996-11-05 |
JP3304681B2 true JP3304681B2 (en) | 2002-07-22 |
Family
ID=14241070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09920295A Expired - Fee Related JP3304681B2 (en) | 1995-04-25 | 1995-04-25 | Electron microscope and three-dimensional atomic array observation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3304681B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005331428A (en) * | 2004-05-21 | 2005-12-02 | Sony Corp | Image information processing apparatus and method, and program |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1353294A1 (en) * | 2000-12-15 | 2003-10-15 | Eisaku Katayama | Mage processor, image processing method, recording medium and program |
JP3603204B2 (en) | 2001-03-12 | 2004-12-22 | 株式会社東京大学Tlo | 3D structure verification support device, 3D structure verification support method, and program |
KR100438212B1 (en) * | 2002-08-09 | 2004-07-01 | 학교법인고려중앙학원 | Extraction method for 3-dimensional spacial data with electron microscope and apparatus thereof |
JP4974680B2 (en) | 2004-12-07 | 2012-07-11 | 国立大学法人 東京大学 | Stereoscopic image reconstruction device, stereoscopic image reconstruction method, and stereoscopic image reconstruction program |
JP4893943B2 (en) * | 2006-10-31 | 2012-03-07 | 独立行政法人産業技術総合研究所 | Structure estimation system, structure estimation method and program |
JP4538472B2 (en) * | 2007-03-15 | 2010-09-08 | 株式会社日立ハイテクノロジーズ | Image forming method and electron microscope |
JP5309552B2 (en) * | 2007-12-21 | 2013-10-09 | 富士通株式会社 | Electron beam tomography method and electron beam tomography apparatus |
JP5670096B2 (en) * | 2009-11-17 | 2015-02-18 | 日本電子株式会社 | Method and apparatus for acquiring three-dimensional image of sample using tomography method |
KR101290869B1 (en) * | 2012-04-26 | 2013-07-29 | 세종대학교산학협력단 | Apparatus for monitoring electronic structures in atom and method for thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS594408U (en) * | 1982-06-30 | 1984-01-12 | 日本電子株式会社 | transmission electron microscope |
JP2602287B2 (en) * | 1988-07-01 | 1997-04-23 | 株式会社日立製作所 | X-ray mask defect inspection method and apparatus |
JP3287858B2 (en) * | 1991-05-15 | 2002-06-04 | 株式会社日立製作所 | Electron microscope device and electron microscope method |
-
1995
- 1995-04-25 JP JP09920295A patent/JP3304681B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005331428A (en) * | 2004-05-21 | 2005-12-02 | Sony Corp | Image information processing apparatus and method, and program |
Also Published As
Publication number | Publication date |
---|---|
JPH08292164A (en) | 1996-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3287858B2 (en) | Electron microscope device and electron microscope method | |
US7400704B1 (en) | High resolution direct-projection type x-ray microtomography system using synchrotron or laboratory-based x-ray source | |
US9383324B2 (en) | Laboratory X-ray micro-tomography system with crystallographic grain orientation mapping capabilities | |
JP5309552B2 (en) | Electron beam tomography method and electron beam tomography apparatus | |
CN110998780B (en) | Inclination angle amount calculation device, sample stage, charged particle beam device and program | |
US11428828B2 (en) | Acquisition and processing of data in a tomographic imaging apparatus | |
CN111223734B (en) | Methods for imaging samples using electron microscopy | |
JPWO2010029862A1 (en) | X-ray inspection apparatus and X-ray inspection method | |
JP3304681B2 (en) | Electron microscope and three-dimensional atomic array observation method | |
JP2021001887A (en) | Method and system for determining molecular structure | |
US20140233691A1 (en) | Computed tomography imaging process and system | |
US10784078B2 (en) | Electron diffraction imaging system for determining molecular structure and conformation | |
US10152785B2 (en) | Positional error correction in a tomographic imaging apparatus | |
JP2024071371A (en) | Method for generating perspective images for reconstructing the spatial extent of a flat object using an X-ray system - Patents.com | |
EP4067886A1 (en) | Method and system to determine crystal structure | |
JP7457607B2 (en) | Soft X-ray spectrometer and analysis method | |
KR20180096527A (en) | A method and apparatus for transmission electron microscopy | |
JP2019129072A (en) | Scan electronic microscope and method for measuring the same | |
US11499926B2 (en) | Method for diffraction pattern acquisition | |
JP3288972B2 (en) | Three-dimensional atomic array observation method and apparatus | |
JP7323574B2 (en) | Charged particle beam device and image acquisition method | |
JP2001289754A (en) | How to make a sample for 3D atomic array observation | |
KR20240150268A (en) | 3d atomic structure determination method and a 3d atomic structure determination device using 4d-stem data | |
Gurker et al. | Fast X‐ray imaging using a position sensitive proportional counter | |
CN119064389A (en) | Method for three-dimensional tomography of elongated samples |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080510 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090510 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100510 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110510 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110510 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120510 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130510 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130510 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |