[go: up one dir, main page]

JP3304678B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine

Info

Publication number
JP3304678B2
JP3304678B2 JP09083295A JP9083295A JP3304678B2 JP 3304678 B2 JP3304678 B2 JP 3304678B2 JP 09083295 A JP09083295 A JP 09083295A JP 9083295 A JP9083295 A JP 9083295A JP 3304678 B2 JP3304678 B2 JP 3304678B2
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
adsorbent
temperature
purification catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09083295A
Other languages
Japanese (ja)
Other versions
JPH08284646A (en
Inventor
孝太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP09083295A priority Critical patent/JP3304678B2/en
Publication of JPH08284646A publication Critical patent/JPH08284646A/en
Application granted granted Critical
Publication of JP3304678B2 publication Critical patent/JP3304678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の排気浄化装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関の排気通路に配置した排気浄化
触媒を用いて、排気中のHC、CO、NOX 等の有害成
分を浄化する排気浄化装置が一般に知られている。排気
浄化触媒は、一般に特定の活性化温度以上にならない
と、排気浄化能力を発揮しないため、触媒温度が低いと
きには排気中の有害成分が触媒を通過して大気に放出さ
れるおそれがある。そこで、排気通路の排気浄化触媒の
上流側に、低温で排気中のHC成分を吸着し、高温で吸
着したHC成分を放出するHC吸着剤を配置して低温時
のHC成分の大気放出を防止するようにした排気浄化装
置が考案されている。これらの装置では、機関始動時
等、排気温度が低く排気浄化触媒が活性化温度に到達し
ていない場合には排気浄化触媒上流側のHC吸着剤で排
気中のHC成分を吸着し、低温時のHCの大気放出を防
止するとともに、排気温度が上昇して排気浄化触媒が活
性化温度に到達した後は排気中のHC成分とHC吸着剤
から放出されるHC成分との両方を下流側の排気浄化触
媒で浄化するようにしている。
Using BACKGROUND ART An exhaust gas purifying catalyst disposed in an exhaust passage of an internal combustion engine, HC in the exhaust gas, CO, exhaust gas purification device for purifying harmful components such as NO X are generally known. Exhaust purification catalysts generally do not exhibit exhaust purification performance unless they have a specific activation temperature or higher. Therefore, when the catalyst temperature is low, harmful components in exhaust gas may pass through the catalyst and be released to the atmosphere. Therefore, an HC adsorbent that adsorbs HC components in exhaust gas at low temperature and releases HC components adsorbed at high temperature is disposed upstream of the exhaust purification catalyst in the exhaust passage to prevent HC components from being released into the atmosphere at low temperatures. An exhaust gas purifying device designed to perform the above has been devised. In these devices, when the exhaust gas temperature is low and the exhaust purification catalyst has not reached the activation temperature, such as when the engine is started, the HC component in the exhaust gas is adsorbed by the HC adsorbent on the upstream side of the exhaust purification catalyst. After the exhaust gas temperature rises and the exhaust gas purification catalyst reaches the activation temperature, both the HC component in the exhaust gas and the HC component released from the HC adsorbent are reduced to the downstream side. It purifies with an exhaust purification catalyst.

【0003】この種の排気浄化装置としては、例えば実
開平4−1617号公報に記載されたものがある。同公
報の排気浄化装置は、酸化雰囲気下でHC成分を消費し
てNOX を選択的に浄化するNOX 浄化触媒を排気通路
に配置し、その上流側の排気通路にHC吸着剤を配置す
るとともに排気中にHCが多い運転領域ではHC吸着剤
にHCを吸着させ、排気中にHCが少ない運転領域では
HC吸着剤からHCを放出させる制御手段を設けたもの
である。同公報の装置では、例えば機関始動直後等の排
気温度が低く、かつ排気中のHC成分が比較的多くなる
ような領域ではHC吸着剤にHCを吸着させ、機関排気
温度が高く排気中のHC成分が比較的少なくなるような
運転領域ではHC吸着剤から吸着したHCを放出させる
ようにしている。
[0003] As this type of exhaust gas purifying apparatus, for example, there is an apparatus described in Japanese Utility Model Laid-Open No. 4-1617. Exhaust purification system of this publication, the NO X purification catalyst which selectively purify NO X by consuming HC component in an oxidizing atmosphere is arranged in an exhaust passage, arranging an HC adsorbent in the exhaust passage on the upstream side At the same time, a control means is provided for causing the HC adsorbent to adsorb HC in the operating region where the amount of HC is large in the exhaust gas and releasing HC from the HC adsorbent in the operating region where the amount of HC is small in the exhaust gas. In the device disclosed in the publication, for example, in a region where the exhaust gas temperature is low immediately after the start of the engine and the HC component in the exhaust gas is relatively large, HC is adsorbed by the HC adsorbent, and the engine exhaust gas temperature is high and the HC gas in the exhaust gas is high. In the operation region where the components are relatively small, the HC adsorbed from the HC adsorbent is released.

【0004】機関始動直後等の排気温度が低い領域では
NOX 浄化触媒が活性化温度に到達しておらず、排気中
のHC成分を消費してNOX を浄化できないためNOX
浄化触媒にHC成分を供給しても触媒で消費されずに触
媒を通過してしまう可能性がある。また、NOX 浄化触
媒が活性化温度に到達しても排気中のHC成分の量が少
ないと十分にNOX を浄化することができない。そこ
で、同公報の装置では、排気温度が低く触媒が活性化温
度に到達していないときに排気中のHC成分をHC吸着
剤に吸着するとともに、排気温度が高く触媒が活性化温
度に到達したときに吸着したHCをHC吸着剤から放出
させることにより、低温におけるHCの大気放出を防止
しながら、高温におけるNOX の浄化効率を向上させて
いる。
[0004] NO X purification catalyst exhaust temperature, such as immediately after engine startup is low region has not reached the activation temperature, can not purify NO X by consuming HC components in the exhaust NO X
Even if the HC component is supplied to the purification catalyst, it may pass through the catalyst without being consumed by the catalyst. Further, even if the NO X purification catalyst reaches the activation temperature, if the amount of HC component in the exhaust gas is small, it is not possible to sufficiently purify NO X. Therefore, in the device of the publication, when the exhaust gas temperature is low and the catalyst has not reached the activation temperature, the HC component in the exhaust gas is adsorbed by the HC adsorbent, and the exhaust gas temperature is high and the catalyst has reached the activation temperature. the adsorbed HC can be released from the HC adsorbent when, while preventing atmospheric emission of HC at low temperatures, thereby improving the purification efficiency of the NO X at a high temperature.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記実開平
4−1617号公報の装置のように排気浄化触媒の上流
側にHC吸着剤を配置し、HC吸着剤を通過した排気を
排気浄化触媒に流入させるようにした場合には、排気浄
化触媒の温度上昇が遅くなり機関始動後排気浄化触媒が
活性化温度に到達するのに時間を要する問題がある。
However, an HC adsorbent is arranged upstream of the exhaust purification catalyst as in the apparatus disclosed in Japanese Utility Model Application Laid-Open No. 4-1617, and the exhaust gas passing through the HC adsorbent is used as the exhaust purification catalyst. In the case where the exhaust gas is made to flow, there is a problem that the temperature rise of the exhaust gas purification catalyst becomes slow and it takes time for the exhaust gas purification catalyst to reach the activation temperature after the engine is started.

【0006】例えば、排気浄化触媒は機関冷間始動時に
は低温になっており、機関始動後に通過する排気により
加熱されて触媒活性化温度に到達するが、上記のように
機関からの排気がまずHC吸着剤を通過した後に排気浄
化触媒に流入するようにすると、上流側のHC吸着剤を
通過する際に排気の熱がHC吸着剤に奪われてしまい、
排気浄化触媒に流入する排気の温度が低くなってしま
う。従って、下流側の排気浄化触媒の温度上昇が遅くな
り、機関始動後に活性化温度に到達するのが遅れ、機関
始動後排気浄化作用が開始されるまでに時間を要するよ
うになる。このため、この間排気浄化が十分に行われず
排気性状が悪化する問題が生じる。
[0006] For example, the exhaust purification catalyst is cold at the time of cold start of the engine, and is heated by the exhaust gas passing after the engine is started to reach the catalyst activation temperature. If it is made to flow into the exhaust purification catalyst after passing through the adsorbent, the heat of the exhaust gas is taken by the HC adsorbent when passing through the HC adsorbent on the upstream side,
The temperature of the exhaust gas flowing into the exhaust purification catalyst becomes low. Therefore, the temperature rise of the exhaust purification catalyst on the downstream side is delayed, and it is delayed to reach the activation temperature after the engine is started, and it takes time until the exhaust purification action is started after the engine is started. For this reason, during this time, there is a problem that the exhaust gas is not sufficiently purified and the exhaust properties are deteriorated.

【0007】また、ディーゼルエンジン等の排気温度が
比較的低い機関に使用した場合、加速時等で排気温度が
上昇した場合でも、同じ理由から下流側の排気浄化触媒
の温度上昇が遅れるため、加速時に速やかに排気浄化触
媒の排気浄化作用が開始されず、加速時の排気浄化が不
十分になる問題が生じる。本発明は上記問題を解決し、
排気浄化触媒上流側にHC吸着剤を配置して触媒が活性
化温度に到達するまで排気中のHCを吸着させる際に、
下流側の排気浄化触媒の活性化温度到達の遅れのために
未浄化のHC成分が大気に放出されることを防止するこ
とが可能な排気浄化装置を提供することを目的としてい
る。
When the exhaust gas temperature is relatively low, such as in a diesel engine, the temperature rise of the downstream exhaust purification catalyst is delayed for the same reason even if the exhaust gas temperature rises during acceleration. At times, the exhaust gas purification operation of the exhaust gas purification catalyst is not started immediately, which causes a problem that exhaust gas purification during acceleration becomes insufficient. The present invention solves the above problems,
When an HC adsorbent is arranged upstream of the exhaust purification catalyst to adsorb HC in exhaust gas until the catalyst reaches the activation temperature,
It is an object of the present invention to provide an exhaust gas purifying apparatus capable of preventing unpurified HC components from being released into the atmosphere due to a delay in reaching an activation temperature of a downstream side exhaust gas purifying catalyst.

【0008】[0008]

【0009】[0009]

【課題を解決するための手段】請求項に記載の発明に
よれば、内燃機関の排気通路に配置した、所定の温度以
上のときに流入する排気中の少なくとも炭化水素成分を
浄化する排気浄化触媒と、該排気浄化触媒の上流側排気
通路に配置した、流入する排気中の炭化水素を吸着する
HC吸着剤と、を備えた内燃機関の排気浄化装置におい
て、前記HC吸着剤の単位体積当たりの熱容量を前記排
気通路軸線に直角な方向に変化させ、HC吸着剤を通過
する排気流速の熱容量が大きい部分での平均値より熱容
量が小さい部分での平均値が大きくなるように設定した
ことを特徴とする内燃機関の排気浄化装置が提供され
る。
According to the first aspect of the present invention, there is provided an exhaust gas purification device for purifying at least a hydrocarbon component in exhaust gas flowing when the temperature is equal to or higher than a predetermined temperature, which is disposed in an exhaust passage of an internal combustion engine. In an exhaust gas purifying apparatus for an internal combustion engine, comprising: a catalyst; and an HC adsorbent disposed in an exhaust passage upstream of the exhaust gas purifying catalyst and adsorbing hydrocarbons in the exhaust gas flowing into the exhaust gas purifying catalyst. Is changed in a direction perpendicular to the axis of the exhaust passage so that the average value of the heat flow rate of the exhaust gas passing through the HC adsorbent is set to be larger in the portion where the heat capacity is small than in the portion where the heat capacity is large. An exhaust gas purification device for an internal combustion engine is provided.

【0010】請求項に記載の発明によれば、内燃機関
の排気通路に配置した、所定の温度以上のときに流入す
る排気中の少なくとも炭化水素成分を浄化する排気浄化
触媒と、該排気浄化触媒の上流側排気通路に配置した、
流入する排気中の炭化水素を吸着するHC吸着剤と、を
備えた内燃機関の排気浄化装置において、前記排気浄化
触媒の一部に、受けた排気の熱を触媒の他の部分に伝達
する受熱部を形成するとともに、該受熱部の位置を、前
記HC吸着剤の前記受熱部の直上流に位置する部分を通
過する排気の平均流速が、前記HC吸着剤の前記受熱部
の直上流以外の部分を通過する排気の平均流速より大き
くなる位置に設定したことを特徴とする内燃機関の排気
浄化装置が提供される。
According to the second aspect of the present invention, an exhaust purification catalyst disposed in an exhaust passage of an internal combustion engine for purifying at least a hydrocarbon component in exhaust gas flowing when the temperature is equal to or higher than a predetermined temperature, and the exhaust purification catalyst Located in the exhaust passage upstream of the catalyst,
An HC adsorbent for adsorbing hydrocarbons in the exhaust gas flowing into the exhaust gas purifying device for an internal combustion engine, the heat receiving device transmitting heat of exhaust gas received to a part of the exhaust gas purifying catalyst to another portion of the catalyst. And the average flow velocity of the exhaust gas passing through the portion of the HC adsorbent that is located immediately upstream of the heat receiving portion, except for the position of the heat receiving portion, An exhaust gas purification device for an internal combustion engine is provided, wherein the exhaust gas purification device is set at a position that is larger than an average flow velocity of exhaust gas passing through the portion.

【0011】[0011]

【0012】[0012]

【0013】[0013]

【作用】請求項1の排気浄化装置ではHC吸着剤の単位
体積当たりの熱容量は排気通路軸線に直角な方向に変化
しており、HC吸着剤を通過する排気の流速の平均値
が、熱容量の大きい部分では小さく、熱容量の小さい部
分では大きくなるように設定してある。このため、HC
吸着剤の熱容量の小さい部分を通過する排気流量は熱容
量の大きい部分を通過する排気流量より多くなる。HC
吸着剤の熱容量が小さい部分では吸着剤温度が速やかに
上昇し、熱容量の小さい部分を通過する排気の温度低下
は少なくなるため、これによりHC吸着剤で熱を奪われ
ずに高温のまま下流側の排気浄化触媒に到達する排気の
量が増大する。
[Action] is the thermal capacity per unit volume of the HC adsorbent in the exhaust gas purification device according to claim 1 is changed in a direction perpendicular to the exhaust passage axis, an average value of the flow velocity of the exhaust gas passing through the HC adsorbent, the heat capacity It is set so that it is small in a large part and large in a part with a small heat capacity. Therefore, HC
The flow rate of exhaust gas passing through the portion having a small heat capacity of the adsorbent is larger than the flow rate of exhaust gas passing through the portion having a large heat capacity. HC
Since the temperature of the adsorbent quickly rises in the portion where the heat capacity of the adsorbent is small, and the temperature of the exhaust gas passing through the portion where the heat capacity is small decreases, the temperature of the downstream side remains high without being deprived of heat by the HC adsorbent. The amount of exhaust reaching the exhaust purification catalyst increases.

【0014】請求項2の排気浄化装置では、下流側排気
浄化触媒に排気の熱を伝達する受熱部が、HC吸着剤を
通過する排気の平均流速が大きくなる部分の直下流側に
配置されているため、受熱部に接触する排気流量が他の
部分より大きくなり受熱部から排気浄化触媒に伝達され
る熱量が増大する。
According to a second aspect of the present invention, the heat receiving portion for transmitting the heat of the exhaust gas to the downstream side exhaust purification catalyst is disposed immediately downstream of a portion where the average flow velocity of the exhaust gas passing through the HC adsorbent is increased. Therefore, the flow rate of exhaust gas coming into contact with the heat receiving section becomes larger than that of the other sections, and the amount of heat transferred from the heat receiving section to the exhaust gas purification catalyst increases.

【0015】[0015]

【実施例】以下添付図面を用いて本発明の実施例につい
て説明する。図1は、本発明の排気浄化装置の1実施例
を示す断面図である。図1において、10でその全体を
示す排気浄化装置は、ハウジング11とその中に収容さ
れた排気浄化触媒1とHC吸着剤3とを備えている。排
気浄化装置10はハウジング11のフランジ11aを介
してディーゼルエンジン等の内燃機関20の排気通路2
1に接続されている。図1に示すように、ハウジング1
1は排気流れ方向から見てHC吸着剤3が排気浄化触媒
1の上流側に位置するように排気通路21に接続されて
おり、機関20の排気は、まずHC吸着剤3を通過した
後に排気浄化触媒1を通過するようにされている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a sectional view showing one embodiment of the exhaust gas purification apparatus of the present invention. In FIG. 1, an exhaust gas purifying apparatus, which is indicated as a whole by 10, includes a housing 11, an exhaust gas purifying catalyst 1 and an HC adsorbent 3 housed therein. The exhaust gas purification device 10 is connected to an exhaust passage 2 of an internal combustion engine 20 such as a diesel engine through a flange 11a of a housing 11.
1 connected. As shown in FIG.
1 is connected to the exhaust passage 21 so that the HC adsorbent 3 is located on the upstream side of the exhaust purification catalyst 1 when viewed from the exhaust flow direction. It passes through the purification catalyst 1.

【0016】HC吸着剤3は、シリカを主成分とする多
孔質吸着剤(例えばSiO4 の層状結晶間にSiO2
担持させたもの)やゼオライト等の多孔質材料等を、多
数の細い軸線方向流路(セル)を有する円筒状に形成し
たものであり、通常の排気浄化触媒に使用されるモノリ
ス担体と略同一の形状を有している。また、HC吸着剤
3としては、通常のコージェライト等のモノリス触媒担
体のセル壁面にアルミナ、シリカ等の無機多孔質材料を
担持させたものも使用可能である。また、排気中のHC
成分を吸着することのできる触媒(例えば触媒担体に触
媒成分とともにゼオライト、アルミナ、シリカ、チタニ
ア等を担持させたもの)をHC吸着剤として使用しても
良い。
The HC adsorbent 3 is made of a porous adsorbent containing silica as a main component (eg, SiO 2 supported between layered crystals of SiO 4 ), a porous material such as zeolite, etc. It is formed in a cylindrical shape having a directional flow path (cell), and has substantially the same shape as a monolithic carrier used for a normal exhaust gas purification catalyst. Further, as the HC adsorbent 3, a material in which an inorganic porous material such as alumina or silica is supported on the cell wall surface of a monolithic catalyst carrier such as ordinary cordierite can be used. In addition, HC in the exhaust
A catalyst capable of adsorbing the component (for example, a catalyst carrier in which zeolite, alumina, silica, titania, or the like is supported together with the catalyst component) may be used as the HC adsorbent.

【0017】HC吸着剤3は、吸着剤温度が低いときに
流入する排気中のHC成分を多孔質の細孔内に吸着し、
吸着剤温度が高いときに吸着したHC成分を放出するH
Cの吸放出作用を行う。HC吸着剤3はシール13を介
してハウジング11内面に固定されており、吸着剤3外
周とハウジング11内面との間から下流側に排気が洩れ
ることを防止している。
The HC adsorbent 3 adsorbs the HC component in the exhaust gas flowing in when the temperature of the adsorbent is low into the porous pores,
H that releases adsorbed HC components when the adsorbent temperature is high
Performs the absorption / release action of C. The HC adsorbent 3 is fixed to the inner surface of the housing 11 via the seal 13 to prevent the exhaust gas from leaking downstream from between the outer periphery of the adsorbent 3 and the inner surface of the housing 11.

【0018】また、本実施例ではHC吸着剤3下流側に
配置される排気浄化触媒1としては、例えばゼオライト
ZSM−5にFe、Cu等の金属をイオン交換して担持
させたNOX 選択還元触媒、或いはモルデナイト等のゼ
オライトに白金Pt等の貴金属を担持させたNOX 選択
還元触媒が用いられる。このNOX 選択還元触媒は、酸
化雰囲気(排気空燃比がリーン空燃比のとき)下でH
C、CO成分を単独で浄化可能であるとともに、酸化雰
囲気下でも適量なHC成分の存在下で排気中のNOX
分を選択的に還元浄化可能なNOX の選択還元作用を有
する。排気浄化触媒1は保温材15を介してハウジング
11内周面に固定されており、排気浄化触媒1からハウ
ジング11への熱伝達が生じることう防止している。
[0018] In the as an exhaust gas purifying catalyst 1 disposed HC adsorbent 3 downstream the present embodiment, for example, zeolite ZSM-5 in Fe, NO X selective reduction with a metal such as Cu is supported by ion-exchange catalyst or the NO X selective reducing catalyst zeolite was supported noble metal such as platinum Pt, such as mordenite is used. This NO X selective reduction catalyst has a high H value under an oxidizing atmosphere (when the exhaust air-fuel ratio is lean).
It is capable of purifying C and CO components alone, and has a selective reduction function of NO X capable of selectively reducing and purifying NO X components in exhaust gas even in an oxidizing atmosphere in the presence of an appropriate amount of HC component. The exhaust gas purification catalyst 1 is fixed to the inner peripheral surface of the housing 11 via a heat insulating material 15 to prevent heat transfer from the exhaust gas purification catalyst 1 to the housing 11.

【0019】排気浄化触媒1は温度により排気浄化能力
が変化し、触媒の活性化温度以下では排気浄化能力が著
しく低下する。図2は排気浄化触媒1のHC、CO成分
の浄化率の温度変化の一例を示す図である。図2に示す
ように、HC、COの浄化率は特定の活性化温度(図2
では200度C程度)以下では急激に低下する。また、
後述するように、NOX の浄化率は或る狭い温度範囲で
のみ発揮され、この温度範囲(NOX 浄化温度ウィンド
ウと言う)より低温側でも高温側でもNOX 浄化率は著
しく低下する。図2は排気浄化触媒1の活性化温度が2
00度C付近にある場合を示しているが、この活性化温
度は排気浄化触媒の材質、形状等を変えることによりあ
る程度の範囲で任意に設定することが可能である。
The exhaust gas purifying catalyst 1 changes its exhaust gas purifying ability depending on the temperature. When the temperature is lower than the activation temperature of the catalyst, the exhaust gas purifying ability is significantly reduced. FIG. 2 is a diagram showing an example of a temperature change of the purification rate of the HC and CO components of the exhaust purification catalyst 1. As shown in FIG. 2, the purification rates of HC and CO are determined by a specific activation temperature (FIG. 2).
Below 200 ° C.), the temperature drops sharply. Also,
As will be described later, the NO X purification rate is exhibited only in a certain narrow temperature range, and the NO X purification rate is remarkably reduced both at a lower temperature and at a higher temperature than this temperature range (referred to as a NO X purification temperature window). FIG. 2 shows that the activation temperature of the exhaust purification catalyst 1 is 2
Although the case where the temperature is around 00 degrees C is shown, the activation temperature can be arbitrarily set within a certain range by changing the material, shape, and the like of the exhaust gas purification catalyst.

【0020】図1で説明したように、本実施例では内燃
機関20としてディーゼルエンジンが使用されているた
め、排気温度はガソリン機関より全般的に低く、低負荷
運転時等では排気浄化触媒1が活性化温度に到達してお
らず触媒による排気浄化作用が得られない場合がある。
このため、排気浄化触媒1のみでは機関排気温度が低い
場合の排気中のHC成分が浄化されず大気に放出される
おそれが生じる。
As described with reference to FIG. 1, in this embodiment, since the diesel engine is used as the internal combustion engine 20, the exhaust gas temperature is generally lower than that of the gasoline engine. In some cases, the activation temperature has not been reached, and the exhaust gas purifying action of the catalyst cannot be obtained.
For this reason, there is a possibility that the HC component in the exhaust gas when the engine exhaust gas temperature is low is not purified and is released to the atmosphere only with the exhaust gas purification catalyst 1.

【0021】そこで、本実施例では排気浄化触媒1の上
流側にHC吸着剤3を配置することにより低温時のHC
成分の大気放出を防止している。前述のように、HC吸
着剤3は低温時に排気中のHC成分を吸着し、高温時に
吸着したHC成分を放出するHC成分の吸放出作用を行
う。このため、機関の排気温度が低い状態では排気中の
HC成分は上流側のHC吸着剤3に吸着され下流側に流
出せず、低温時のHC成分の大気放出が防止される。一
方、排気温度が高くなるとHC吸着剤3は吸着したHC
を放出するようになるが、排気温度の上昇とともに下流
側の排気浄化触媒1温度も上昇し、HC、CO成分の浄
化作用が生じるため、HC吸着剤3から放出されたHC
成分と機関から排出されたHC、CO成分とは排気浄化
触媒1により浄化され、大気への放出が生じない。
Therefore, in the present embodiment, the HC adsorbent 3 is arranged upstream of the exhaust purification catalyst 1 so that the HC
Prevents atmospheric release of components. As described above, the HC adsorbent 3 adsorbs the HC component in the exhaust gas at a low temperature and performs the action of absorbing and releasing the HC component that releases the adsorbed HC component at a high temperature. Therefore, when the exhaust gas temperature of the engine is low, the HC component in the exhaust gas is adsorbed by the HC adsorbent 3 on the upstream side and does not flow out to the downstream side, thereby preventing the HC component from being released into the atmosphere at low temperatures. On the other hand, when the exhaust gas temperature rises, the HC adsorbent 3
However, since the temperature of the exhaust gas purification catalyst 1 on the downstream side also rises with the rise of the exhaust gas temperature and the action of purifying HC and CO components occurs, the HC discharged from the HC adsorbent 3 is released.
The components and the HC and CO components discharged from the engine are purified by the exhaust purification catalyst 1, and are not released to the atmosphere.

【0022】ところが、このように排気浄化触媒1上流
側にHC吸着剤3を配置したため、別の問題が生じる場
合がある。すなわち、機関20からの排気はまずHC吸
着剤3を通過してから排気浄化触媒1に到達することに
なるため、機関の冷間始動時等でHC吸着剤3、排気浄
化触媒1の両方が低温になっている場合、上流側のHC
吸着剤3を通過する際に排気温度が低下してしまい、下
流側の排気浄化触媒1の温度上昇がおくれる問題が生じ
るのである。
However, since the HC adsorbent 3 is disposed on the upstream side of the exhaust purification catalyst 1, another problem may occur. That is, since the exhaust gas from the engine 20 first passes through the HC adsorbent 3 and then reaches the exhaust purification catalyst 1, both the HC adsorbent 3 and the exhaust purification catalyst 1 are used when the engine is cold started. If the temperature is low, the upstream HC
When passing through the adsorbent 3, the temperature of the exhaust gas decreases, causing a problem that the temperature of the exhaust gas purification catalyst 1 on the downstream side increases.

【0023】本実施例では、下流側の排気浄化触媒の熱
容量を上流側のHC吸着剤の熱容量より小さく設定する
ことによりこの問題を解決している。下流側の排気浄化
触媒に到達する排気温度が低い場合、触媒と排気温度と
の差が小さくなり排気から触媒に与えられる熱量が小さ
くなるため、触媒熱容量が大きいと触媒温度上昇が遅く
なるが、触媒の熱容量を小さく設定したことにより排気
から触媒に与えられる熱量が小さい場合でも触媒の温度
は速やかに上昇するようになるため、触媒の温度上昇の
遅れが防止される。
In this embodiment, this problem is solved by setting the heat capacity of the downstream exhaust purification catalyst to be smaller than the heat capacity of the upstream HC adsorbent. When the exhaust gas temperature reaching the exhaust gas purification catalyst on the downstream side is low, the difference between the catalyst and the exhaust gas temperature becomes small, and the amount of heat given to the catalyst from the exhaust gas becomes small. By setting the heat capacity of the catalyst small, even when the amount of heat given from the exhaust gas to the catalyst is small, the temperature of the catalyst quickly rises, so that a delay in the temperature rise of the catalyst is prevented.

【0024】図3(A) は、本実施例の上流側HC吸着剤
の軸線に直角な断面を示す拡大図である。前述のように
HC吸着剤3は通常使用されるモノリス触媒担体と同様
な構造を有し、コージェライト、ゼオライト等の単位体
積当たりの熱容量が比較的大きい材質中に図3(A) に3
1で示すような軸線方向の流路(セル)を多数形成した
構造となっている。
FIG. 3A is an enlarged view showing a cross section perpendicular to the axis of the upstream HC adsorbent of this embodiment. As described above, the HC adsorbent 3 has the same structure as a commonly used monolithic catalyst carrier, and is made of a material having a relatively large heat capacity per unit volume, such as cordierite or zeolite, as shown in FIG.
The structure is such that a large number of flow paths (cells) in the axial direction as shown in FIG.

【0025】一方、図3(B) は、本実施例の下流側排気
浄化触媒の軸線に直角な断面を示す拡大図である。本実
施例では、排気浄化触媒1は、単位体積当たりの熱容量
が比較的小さい金属を担体として使用し、この金属担体
中にハニカム状のセル32を形成するとともに、セル壁
面にゼオライト等の触媒担持成分の層を形成した構成と
なっている。
On the other hand, FIG. 3B is an enlarged view showing a cross section perpendicular to the axis of the downstream side exhaust purification catalyst of this embodiment. In this embodiment, the exhaust purification catalyst 1 uses a metal having a relatively small heat capacity per unit volume as a carrier, forms a honeycomb-shaped cell 32 in this metal carrier, and supports a catalyst such as zeolite on the cell wall. It has a configuration in which a component layer is formed.

【0026】図3(A) 、(B) を比較すると明らかなよう
に、本実施例では下流側排気浄化触媒1のセル32間の
隔壁32aの厚さは上流側HC吸着剤3のセル31間の
隔壁31aの厚さに較べて非常に薄くなっているので、
下流側排気浄化触媒1では担体部分の体積は小さく、上
流側HC吸着剤3では担体部分の体積が大きくなってい
る。このため、全体として下流側排気浄化触媒1の熱容
量は上流側HC吸着剤3の熱容量より大幅に小さくなっ
ている。
As is apparent from a comparison between FIGS. 3A and 3B, in the present embodiment, the thickness of the partition wall 32a between the cells 32 of the downstream side exhaust purification catalyst 1 is different from that of the cell 31 of the upstream side HC adsorbent 3. Since it is very thin compared to the thickness of the partition wall 31a,
In the downstream side exhaust purification catalyst 1, the volume of the carrier portion is small, and in the upstream side HC adsorbent 3, the volume of the carrier portion is large. Therefore, the heat capacity of the downstream side exhaust purification catalyst 1 is significantly smaller than the heat capacity of the upstream side HC adsorbent 3 as a whole.

【0027】また、上述のように、上流側HC吸着剤3
のセル31は流路面積が大きく且つ壁が厚く、下流側排
気浄化触媒のセル32の流路面積は小さく且つ壁が薄い
ため、排気流れ方向の単位面積当たりのセル数は上流側
HC吸着剤3では下流側排気浄化触媒1より大幅に少な
くなる。このことは、排気と接触するセル壁面面積の合
計が上流側HC吸着剤3では小さく下流側排気浄化触媒
1では大きくなることを意味している。これにより、上
流側HC吸着剤3で排気からセル壁面へ与えられる熱量
が少なくなり上流側HC吸着剤3通過の際の排気温度の
低下が少なくなる。
As described above, the upstream HC adsorbent 3
The cell 31 has a large flow path area and a thick wall, and the flow path area of the cell 32 of the downstream exhaust purification catalyst is small and the wall is thin, so that the number of cells per unit area in the exhaust flow direction is the upstream HC adsorbent. In the case of No. 3, the amount is significantly smaller than that of the downstream side exhaust purification catalyst 1. This means that the total cell wall area in contact with the exhaust gas is small in the upstream HC adsorbent 3 and large in the downstream exhaust purification catalyst 1. Thus, the amount of heat given from the exhaust gas to the cell wall surface by the upstream HC adsorbent 3 is reduced, and the decrease in the exhaust gas temperature when passing through the upstream HC adsorbent 3 is reduced.

【0028】従って、本実施例では下流側排気浄化触媒
1の熱容量は小さく、しかも下流側排気浄化触媒1に到
達するまでの排気温度の低下も比較的少なくなるため、
下流側排気浄化触媒1の温度は速やかに上昇する。ま
た、本実施例では図1に示すように、上流側HC吸着剤
3と下流側排気浄化触媒1とは僅かな間隙4をを隔てて
配置するとともに、下流側排気浄化触媒1外周とハウジ
ング11内周との間には保温材15を介挿している。こ
れにより、下流側排気浄化触媒1が活性化温度に到達し
てHC、COの酸化反応が開始された後、上流側HC吸
着剤3やハウジング11との直接接触を通した熱伝達に
より下流側排気浄化触媒1からの熱放散が生じることが
防止され、下流側排気浄化触媒1の温度を高い状態に保
持することが可能となる。
Therefore, in this embodiment, the heat capacity of the downstream side exhaust purification catalyst 1 is small, and the decrease in the exhaust gas temperature before reaching the downstream side exhaust purification catalyst 1 is relatively small.
The temperature of the downstream side exhaust purification catalyst 1 quickly rises. In this embodiment, as shown in FIG. 1, the upstream HC adsorbent 3 and the downstream exhaust purification catalyst 1 are arranged with a slight gap 4 therebetween, and the outer periphery of the downstream exhaust purification catalyst 1 and the housing 11 are separated from each other. A heat insulating material 15 is interposed between the inner circumference. Thereby, after the downstream side exhaust purification catalyst 1 reaches the activation temperature and the HC and CO oxidation reactions are started, the downstream side exhaust heat purification catalyst 1 and the upstream side HC adsorbent 3 and the heat transfer through the direct contact with the housing 11 cause the downstream side exhaust heat transfer catalyst 1 to perform the heat transfer. The heat dissipation from the exhaust gas purification catalyst 1 is prevented, and the temperature of the downstream side exhaust gas purification catalyst 1 can be maintained at a high state.

【0029】ところで、前述したように排気浄化触媒1
が排気中のHC、CO成分のみならずNOX 成分をも浄
化するようにするためには、排気浄化触媒1の温度が活
性化温度以上になっているだけでなく、比較的狭い温度
範囲(NOX 浄化温度ウィンドウ)に入っている必要が
ある。図4は排気浄化触媒1のNOX 浄化率の温度によ
る変化の一例を示す図である。図4に示すように、排気
浄化触媒1のNOX 浄化率は比較的狭い温度範囲(図4
では200から250度C程度)内でのみ発揮され、こ
の範囲から外れるとNOX の浄化を十分に行うことがで
きなくなる。
By the way, as described above, the exhaust purification catalyst 1
There in order to purify also the NO X components not HC, CO components only in the exhaust gas, not only the temperature of the exhaust gas purifying catalyst 1 is equal to or higher than the activation temperature, a relatively narrow temperature range ( there is a need to be entered in the NO X purification temperature window). FIG. 4 is a diagram illustrating an example of a change in the NO X purification rate of the exhaust purification catalyst 1 with temperature. As shown in FIG. 4, the NO X purification rate of the exhaust purification catalyst 1 is within a relatively narrow temperature range (FIG. 4).
In this case, it is exhibited only within the range of about 200 to 250 ° C.), and if it is out of this range, it becomes impossible to sufficiently purify NO X.

【0030】ところが、排気温度は機関運転状態により
大きく変動するため加速、減速を繰り返すような運転状
態では排気浄化触媒1がNOX 浄化温度ウィンドウ内に
ある時間が少なくなり全体としてNOX の浄化率が低く
なる問題がある。しかし、本実施例では、排気浄化触媒
1上流側に比較的熱容量の大きいHC吸着剤3を配置し
ているため機関運転状態により排気温度が変動するよう
な場合でも下流側の排気浄化触媒1に到達する排気の温
度変動が緩和される。
However, since the exhaust gas temperature fluctuates greatly depending on the engine operating condition, in an operating condition in which acceleration and deceleration are repeated, the time during which the exhaust gas purifying catalyst 1 is within the NO X purifying temperature window decreases, and the NO X purifying rate as a whole is reduced. Is low. However, in the present embodiment, since the HC adsorbent 3 having a relatively large heat capacity is disposed upstream of the exhaust purification catalyst 1, even if the exhaust gas temperature fluctuates due to the engine operating state, the downstream side exhaust purification catalyst 1 is used. Fluctuations in the temperature of the exhaust gas that arrives are reduced.

【0031】図5は、本実施例における排気浄化装置1
0に流入する機関排気温度の変化と、実際に下流側排気
浄化触媒1に到達する排気温度の変化とを説明する図で
ある。図5において実線T1 は装置10入口での排気温
度を、破線T2 は排気浄化触媒1に到達する排気温度を
示す。排気浄化触媒1上流側にHC吸着剤3を配置する
ことにより、例えば図5に示すように加速、減速を繰り
返すような運転を行い機関排気温度T1 が大きく変動し
たような場合でも、排気浄化触媒1に到達する排気の温
度T2 の変動は少なくなる。すなわち、T1 がNOX
化温度ウィンドウを越えて変動するような場合でも、排
気浄化触媒1温度がウィンドウ内に留まる機会(図5、
斜線部分)が多くなるため、全体としてNOX の浄化率
を向上させることが可能となる。さらに、加速時等に一
時的に排気温度が高くなり、触媒でサルフェートが生成
される温度以上になるような場合でも、排気浄化触媒1
に到達する排気の温度上昇は上流側のHC吸着剤3で緩
和されるため、触媒でのサルフェート発生を抑制するこ
とが可能なる。
FIG. 5 shows an exhaust gas purifying apparatus 1 according to this embodiment.
FIG. 3 is a diagram for explaining a change in the temperature of the exhaust gas flowing into the engine and a change in the temperature of the exhaust gas actually reaching the downstream side exhaust purification catalyst 1. In FIG. 5, the solid line T 1 indicates the exhaust gas temperature at the inlet of the device 10, and the broken line T 2 indicates the exhaust gas temperature reaching the exhaust gas purification catalyst 1. By placing the HC adsorbent 3 into the exhaust purification catalyst 1 upstream, for example, an acceleration as shown in FIG. 5, even when the engine exhaust temperatures T 1 performs the operation to repeat the deceleration as fluctuates greatly, the exhaust gas purification variation of the temperature T 2 of the exhaust gas reaching the catalyst 1 decreases. That is, even when T 1 fluctuates beyond the NO X purification temperature window, the opportunity that the temperature of the exhaust purification catalyst 1 stays within the window (FIG. 5,
Since the number of hatched portions) increases, it is possible to improve the NO X purification rate as a whole. Further, even when the temperature of the exhaust gas temporarily rises during acceleration or the like and becomes equal to or higher than the temperature at which sulfate is generated by the catalyst, the exhaust gas purification catalyst 1
Is reduced by the HC adsorbent 3 on the upstream side, so that the generation of sulfate in the catalyst can be suppressed.

【0032】また、HC吸着材3はある温度を越えると
吸着したHCを放出するようになるが、このHC放出温
度は吸着材の材質、形状を変更することによりある程度
変更することが可能である。また、排気浄化触媒1のN
X 浄化温度ウィンドウもウィンドウの幅を拡げること
は困難であるが、同様に材質、形状の変更によりウィン
ドウ位置をある程度高温側または低温側に移動させるこ
とは可能である。
The HC adsorbent 3 releases adsorbed HC when it exceeds a certain temperature. The HC release temperature can be changed to some extent by changing the material and shape of the adsorbent. . Further, the N of the exhaust purification catalyst 1
O X purification temperature window is also difficult to expand the width of the window, the same as the material, possible to move the window position somewhat on the high temperature side or the low-temperature side by changing the shape.

【0033】そこで、本実施例では上流側のHC吸着剤
3のHC放出温度と下流側の排気浄化触媒1のNOX
化温度ウィンドウの下限値(図4では200度C)が一
致するようにHC吸着剤と排気浄化触媒との材質、形状
を調整してある。このため、排気温度が低く下流側の排
気浄化触媒1が活性化温度に到達しない間は上流側のH
C吸着剤3で排気中のHC成分が吸着され排気浄化触媒
1には到達しないため、未浄化のHC成分が排気浄化触
媒1を通過して大気に放出される事態が防止される。ま
た、排気温度が上昇し、排気浄化触媒1が活性化温度に
到達すると上流側HC吸着剤3からHCが放出されるよ
うになるが、このHCは下流側排気浄化触媒1で上かさ
れるため、未浄化のHC成分が大気に放出されることは
ない。
Therefore, in this embodiment, the HC release temperature of the upstream HC adsorbent 3 and the lower limit value (200 ° C. in FIG. 4) of the NO X purification temperature window of the exhaust purification catalyst 1 on the downstream side are matched. The materials and shapes of the HC adsorbent and the exhaust purification catalyst are adjusted. For this reason, while the exhaust gas temperature is low and the downstream exhaust purification catalyst 1 does not reach the activation temperature, the upstream H
Since the HC component in the exhaust gas is adsorbed by the C adsorbent 3 and does not reach the exhaust purification catalyst 1, the situation where the unpurified HC component passes through the exhaust purification catalyst 1 and is released to the atmosphere is prevented. Further, when the exhaust gas temperature rises and the exhaust purification catalyst 1 reaches the activation temperature, HC is released from the upstream HC adsorbent 3, and this HC is moved up by the downstream exhaust purification catalyst 1. Therefore, unpurified HC components are not released to the atmosphere.

【0034】また、本実施例では内燃機関20としてデ
ィーゼルエンジンが使用されているが、ディーゼルエン
ジンの燃焼は空気過剰率が高く排気中のNOX 成分量が
比較的多い。一方、排気浄化触媒1としてNOX 選択還
元触媒を使用した場合には排気中のNOX を浄化するた
めには適量のHC成分が存在することが必要となる。と
ころが、機関燃焼温度が高くなるとNOX の発生量が増
大し、同時にHC成分の発生量が低下するため、排気温
度が高い領域では、排気浄化触媒1の温度がNOX 浄化
温度ウィンドウに入っているにもかかわらずHC成分が
不足して排気中のNOX を浄化できない場合が生じる。
Further, in this embodiment, a diesel engine is used as an internal combustion engine 20, the combustion of diesel engine is relatively high NO X component amount in the high exhaust gas excess air ratio. On the other hand, it is necessary that there is an appropriate amount of HC component in order to purify NO X in the exhaust gas when using the NO X selective reducing catalyst as an exhaust gas purifying catalyst 1. However, increasing the amount of generation of the engine combustion temperature becomes higher when the NO X, since the generation amount of HC component is reduced at the same time, the exhaust temperature is high region, the temperature of the exhaust gas purifying catalyst 1 is entered in the NO X purification temperature window If HC components despite there can not purify nO X in the exhaust gas is insufficient arises.

【0035】本実施例では、上述のように排気浄化触媒
1の上流側にHC吸着剤3を配置したことにより、排気
温度が低く排気中のNOX 成分が少ない場合にHC吸着
材3により排気中のHC成分を吸着し、排気温度が高く
排気中のNOX 成分が増大する領域ではHC吸着剤3か
らHC成分を放出させるようにしたことにより、排気中
のNOX 成分が増大する領域でも十分なHCを排気浄化
触媒1に供給することができるため、排気浄化触媒1で
のNOX 浄化が十分に行われる。この場合、上流側のH
C吸着剤3は、排気中の低濃度のHC成分を吸着し、排
気温度が高くNOX の発生量が増大するときに吸着した
HC成分を濃縮した形で放出することになる。
[0035] In this embodiment, by disposing the HC adsorbent 3 on the upstream side of the exhaust gas purifying catalyst 1 as described above, the HC adsorbent 3 when less NO X components in the exhaust the exhaust gas temperature is low exhaust The HC component in the exhaust gas is adsorbed and the HC component is released from the HC adsorbent 3 in a region where the exhaust temperature is high and the NO X component in the exhaust gas increases, so that even in a region where the NO X component in the exhaust gas increases. it is possible to supply a sufficient HC in the exhaust gas purifying catalyst 1, is carried out sufficiently NO X purification of the exhaust gas purifying catalyst 1. In this case, the upstream H
The C adsorbent 3 adsorbs a low-concentration HC component in the exhaust gas, and releases the adsorbed HC component in a concentrated form when the exhaust gas temperature is high and the amount of generated NO X increases.

【0036】次に本発明の上記とは別の実施例を示す。
本実施例では上流側のHC吸着剤3の単位体積当たりの
熱容量が排気流れ方向に対して直角な方向に変化するよ
うにHC吸着剤3の形状等を調節している。図6は本実
施例のHC吸着剤3の熱容量の分布をしめしている。図
6に示すように、本実施例では上流側HC吸着剤3の単
位体積当たりの熱容量はHC吸着剤の中心軸線近傍で最
も小さく、中心部から外周部に向かうに連れて大きくな
るように設定されている。すなわち、本実施例のHC吸
着剤3は、中心部ではセル31の流路面積を小さく、か
つ単位面積当たりのセル数を多くすることによりセル隔
壁31aを薄くして単位体積当たりの熱容量を小さく設
定しており、外周に向かうにつれて、セル31流路面積
を大きくセル数を減少させることによりセル隔壁31a
の厚さを増して単位体積当たりの熱容量が徐々に増大す
るように設定される。
Next, another embodiment of the present invention will be described.
In this embodiment, the shape and the like of the HC adsorbent 3 are adjusted such that the heat capacity per unit volume of the HC adsorbent 3 on the upstream side changes in a direction perpendicular to the exhaust flow direction. FIG. 6 shows the distribution of the heat capacity of the HC adsorbent 3 of this embodiment. As shown in FIG. 6, in the present embodiment, the heat capacity per unit volume of the upstream HC adsorbent 3 is set to be the smallest near the central axis of the HC adsorbent, and to increase from the center to the outer periphery. Have been. That is, in the HC adsorbent 3 of the present embodiment, the cell partition wall 31a is thinned by reducing the flow path area of the cell 31 and increasing the number of cells per unit area at the center, thereby reducing the heat capacity per unit volume. The cell partition wall 31a is set by increasing the flow path area of the cell 31 toward the outer periphery and decreasing the number of cells.
Is set so that the heat capacity per unit volume gradually increases by increasing the thickness.

【0037】一般に排気通路内の排気流速は排気通路壁
面付近では低く、中心部付近では大きくなっている。特
に、加速時等急激に排気流量が増大するような場合に
は、特に排気通路中心部の流速と周辺部の流速との差が
大きくなる。このような場合にはHC吸着剤3を通過す
る排気流量もHC吸着剤3中心部では大きく外周部に向
かうにつれて小さくなる。従って、本実施例のようにH
C吸着剤3の単位体積当たりの熱容量を中心部で小さ
く、外周部に向かうにつれて大きく設定することによ
り、HC吸着剤3を通過する排気の流量は単位体積当た
りの熱容量が小さい部分程大きくなる。
Generally, the exhaust flow velocity in the exhaust passage is low near the wall surface of the exhaust passage and large near the center. In particular, when the flow rate of the exhaust gas suddenly increases, such as during acceleration, the difference between the flow velocity in the central portion of the exhaust passage and the flow velocity in the peripheral portion increases. In such a case, the flow rate of exhaust gas passing through the HC adsorbent 3 is large at the center of the HC adsorbent 3 and decreases toward the outer periphery. Therefore, as in this embodiment, H
By setting the heat capacity per unit volume of the C adsorbent 3 to be smaller at the center and larger toward the outer periphery, the flow rate of exhaust gas passing through the HC adsorbent 3 becomes larger as the heat capacity per unit volume becomes smaller.

【0038】熱容量が小さい部分では、HC吸着剤3は
速やかに温度が上昇しこの部分を通過する排気の温度低
下は少なくなるため、このように通過する排気の流量が
大きい部分のHC吸着剤3の熱容量を小さく設定するこ
とにより、全体の排気流量に対して温度低下の幅が小さ
い排気が占める割合が増大し、これにより、上流側HC
吸着剤3で奪われずに下流側排気浄化触媒まで到達する
排気の熱量が増大することになる。
In the portion where the heat capacity is small, the temperature of the HC adsorbent 3 quickly rises, and the temperature of the exhaust gas passing through this portion decreases less. Therefore, the HC adsorbent 3 in the portion where the flow rate of the exhaust gas thus passed is large is small. By setting the heat capacity of the exhaust gas to a small value, the proportion of the exhaust gas having a small temperature decrease with respect to the entire exhaust gas flow rate increases.
The calorific value of the exhaust gas that reaches the downstream side exhaust purification catalyst without being deprived by the adsorbent 3 increases.

【0039】従って、上記のようにHC吸着剤3の単位
体積当たりの熱容量を排気流れに対して直角方向に変化
させることにより、短時間で下流側排気浄化触媒1の温
度を上昇させることが可能となるのである。なお、図6
の例ではHC吸着剤3の流路抵抗は排気流れに対して直
角な方向ではほぼ一様になるようにセルの大きさと分布
とを設定しているが、例えば外周部に近づくほど流路抵
抗が大きくなるようにセルの大きさ、数等の分布を設定
すれば熱容量の小さい中心部分を通過する排気流量を更
に増大することができるため、下流側排気浄化触媒1の
昇温を一層早めることができる。
Therefore, by changing the heat capacity per unit volume of the HC adsorbent 3 in the direction perpendicular to the exhaust flow as described above, it is possible to raise the temperature of the downstream side exhaust purification catalyst 1 in a short time. It becomes. FIG.
In the example, the size and distribution of the cells are set so that the flow resistance of the HC adsorbent 3 is substantially uniform in a direction perpendicular to the exhaust flow. If the distribution of the size, number, etc. of the cells is set so as to increase the flow rate of the exhaust gas passing through the central portion having a small heat capacity, it is possible to further increase the flow rate. Can be.

【0040】次に、図7を用いて本発明の更に別の実施
例について説明する。本実施例では、上流側のHC吸着
剤3には下流側端面に開口する凹部35が中央部に形成
されており、下流側の排気浄化触媒1には、この凹部内
に嵌入する受熱部としての突部37が形成されている。
また、下流側排気浄化触媒1は前述の各実施例と同様金
属担体から形成され、突部37外周とHC吸着剤3の凹
部35内周面との間には保温材17を配置して突部37
外周と凹部35内周とが直接接触することを防止してい
る。また、HC吸着剤3の下流側端面と排気浄化触媒1
上流側端面との間には間隙39が設けられている。
Next, still another embodiment of the present invention will be described with reference to FIG. In this embodiment, the upstream HC adsorbent 3 has a concave portion 35 opened at the downstream end surface at the center thereof, and the downstream exhaust purification catalyst 1 has a heat receiving portion fitted into the concave portion. Are formed.
Further, the downstream side exhaust purification catalyst 1 is formed of a metal carrier as in each of the above-described embodiments, and the heat retaining material 17 is disposed between the outer periphery of the projection 37 and the inner periphery of the concave portion 35 of the HC adsorbent 3. Part 37
This prevents direct contact between the outer circumference and the inner circumference of the recess 35. Further, the downstream end face of the HC adsorbent 3 and the exhaust purification catalyst 1
A gap 39 is provided between the upstream end face.

【0041】前述のように、HC吸着剤3を通過する排
気の流量は中央部付近で最も大きくなるが、本実施例で
はこの部分のHC吸着剤3の直下流側に受熱部37を配
置しているため、受熱部37を通過する排気流量が他の
部分を通過する流量より増大する。また、受熱部37直
上流部のHC吸着剤3部分(凹部35の底部を形成する
部分)は他のHC吸着剤3より排気流れ方向の厚さが薄
くなっているため、この部分で受熱部37に流入する排
気温度の低下は少ない。従って、受熱部37には排気浄
化触媒1の他の部分より高温の排気が大量に流入するこ
とになる。従って、受熱部37には排気から多量の熱が
伝達されるが、本実施例では受熱部37を含む排気浄化
触媒1は熱伝導の良好な金属担体を用いているため、受
熱部37が排気から受けた熱は担体の他の部分に速やか
に伝達され、排気浄化触媒1全体が速やかに昇温する。
As described above, the flow rate of the exhaust gas passing through the HC adsorbent 3 is greatest near the center, but in this embodiment, the heat receiving section 37 is disposed immediately downstream of the HC adsorbent 3 in this portion. Therefore, the flow rate of exhaust gas passing through the heat receiving section 37 is larger than the flow rate passing through other portions. Further, the portion of the HC adsorbent 3 immediately upstream of the heat receiving portion 37 (the portion forming the bottom of the concave portion 35) is thinner in the exhaust gas flow direction than the other HC adsorbents 3, so that the heat receiving portion is formed at this portion. The temperature of the exhaust gas flowing into the 37 is hardly reduced. Therefore, a large amount of exhaust gas having a higher temperature than other portions of the exhaust gas purification catalyst 1 flows into the heat receiving section 37. Therefore, a large amount of heat is transmitted from the exhaust gas to the heat receiving unit 37. However, in this embodiment, the exhaust gas purifying catalyst 1 including the heat receiving unit 37 uses a metal carrier having good heat conductivity, and thus the heat receiving unit 37 emits heat. The heat received from the catalyst is quickly transmitted to other parts of the carrier, and the entire exhaust purification catalyst 1 quickly rises in temperature.

【0042】特に、機関加速時等で排気流量が急増する
ような場合にはHC吸着剤3中央付近を通過する排気流
量が周辺部を通過する排気流量より大幅に増大するた
め、上記構成により加速時の排気浄化触媒1の昇温は更
に迅速に行われ、加速時に増大する排気中のHC、NO
X 等を遅延を生じることなく十分に行うことが可能とな
る。
In particular, when the exhaust gas flow rate suddenly increases at the time of engine acceleration or the like, the exhaust gas flow passing near the center of the HC adsorbent 3 is significantly larger than the exhaust gas flow passing the peripheral portion. The temperature of the exhaust purification catalyst 1 at the time is increased more quickly, and the HC, NO
X and the like can be performed sufficiently without delay.

【0043】図8は図7の実施例の変形例を示す。本実
施例では、上流側HC吸着剤3の中央の凹部35はHC
吸着剤3上流側端面に開口しており。下流側排気浄化触
媒1には突部37は設けられていない。しかし、この場
合もHC吸着剤3の中央の凹部35を通過して、高温か
つ多量の排気が凹部35の直下流の排気浄化触媒1部分
に流入するため、この凹部35直下流の部分から排気浄
化触媒1全体に熱が伝達され排気浄化触媒1全体が速や
かに昇温する。すなわち、本実施例では、HC吸着剤3
に形成された凹部35の直下流の排気浄化触媒1部分が
受熱部として機能している。
FIG. 8 shows a modification of the embodiment of FIG. In this embodiment, the central recess 35 of the upstream HC adsorbent 3 is
The adsorbent 3 is open at the upstream end face. The projection 37 is not provided on the downstream side exhaust purification catalyst 1. However, in this case, too, a high temperature and a large amount of exhaust gas flow into the exhaust purification catalyst 1 portion immediately downstream of the concave portion 35 through the central concave portion 35 of the HC adsorbent 3. Heat is transmitted to the entire purification catalyst 1 and the entire exhaust purification catalyst 1 quickly rises in temperature. That is, in the present embodiment, the HC adsorbent 3
The portion of the exhaust gas purification catalyst 1 immediately downstream of the concave portion 35 formed as a function as a heat receiving portion.

【0044】[0044]

【発明の効果】各請求項に記載の発明によれば、排気浄
化触媒の上流側排気通路にHC吸着剤を配置して排気中
のHC成分の吸着、放出を行う場合に、下流側の排気浄
化触媒の昇温の遅れにより未浄化の排気成分が大気に放
出されることを防止できるという共通の効果を奏する。
According to the present invention, when the HC adsorbent is disposed in the exhaust passage on the upstream side of the exhaust purification catalyst to adsorb and release the HC component in the exhaust gas, the exhaust gas on the downstream side is exhausted. This has a common effect that it is possible to prevent unpurified exhaust components from being released into the atmosphere due to a delay in temperature rise of the purification catalyst.

【0045】[0045]

【0046】すなわち、請求項1に記載の発明によれ
ば、上流側HC吸着剤の単位体積当たりの熱容量が小さ
い部分では排気流量が大きくなるため、熱容量の小さい
部分を通過した温度低下の少ない排気の流量が増大し、
下流側の排気浄化触媒の昇温が早まるので、未浄化の排
気成分の大気放出が防止される。また、請求項2に記載
の発明によれば、下流側排気浄化触媒に排気の熱を伝達
する受熱部が、HC吸着剤を通過する排気の平均流速が
大きくなる部分の直下流側に配置されているため、受熱
部に接触する排気流量が他の部分より大きくなり受熱部
から排気浄化触媒に伝達される熱量が増大し、下流側排
気浄化触媒の温度上昇が早まるので、未浄化の排気成分
の大気放出が防止される。
That is, according to the first aspect of the present invention, since the exhaust flow rate is large in the portion where the heat capacity per unit volume of the upstream HC adsorbent is small, the exhaust gas which has passed through the portion where the heat capacity is small and whose temperature drop is small is small. The flow rate of
Since the temperature of the exhaust purification catalyst on the downstream side is accelerated, the emission of unpurified exhaust components to the atmosphere is prevented. According to the second aspect of the present invention, the heat receiving portion for transmitting the heat of the exhaust gas to the downstream side exhaust purification catalyst is disposed immediately downstream of the portion where the average flow velocity of the exhaust gas passing through the HC adsorbent is increased. As a result, the flow rate of exhaust gas in contact with the heat receiving section becomes larger than that of the other sections, the amount of heat transferred from the heat receiving section to the exhaust purification catalyst increases, and the temperature of the downstream exhaust purification catalyst rises quickly, so that unpurified exhaust components Is released to the atmosphere.

【0047】[0047]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排気浄化装置の一実施例を示す断面図
である。
FIG. 1 is a cross-sectional view showing one embodiment of an exhaust emission control device of the present invention.

【図2】排気浄化触媒のHC、CO成分の浄化効率の温
度による変化を説明する図である。
FIG. 2 is a diagram illustrating a change in purification efficiency of HC and CO components of an exhaust purification catalyst depending on temperature.

【図3】排気浄化触媒とHC吸着剤との構造を説明する
図である。
FIG. 3 is a diagram illustrating the structure of an exhaust purification catalyst and an HC adsorbent.

【図4】排気浄化触媒のNOX 浄化効率の温度による変
化を説明する図である。
FIG. 4 is a diagram illustrating a change in NO X purification efficiency of an exhaust purification catalyst depending on temperature.

【図5】図1の実施例における排気浄化触媒に流入する
排気温度の変動を説明する図である。
FIG. 5 is a diagram illustrating a change in the temperature of exhaust gas flowing into the exhaust purification catalyst in the embodiment of FIG. 1;

【図6】本発明の排気浄化装置の別の実施例を説明する
図である。
FIG. 6 is a diagram illustrating another embodiment of the exhaust gas purification apparatus of the present invention.

【図7】本発明の排気浄化装置の別の実施例を説明する
図である。
FIG. 7 is a diagram illustrating another embodiment of the exhaust gas purification apparatus of the present invention.

【図8】本発明の排気浄化装置の別の実施例を説明する
図である。
FIG. 8 is a diagram illustrating another embodiment of the exhaust gas purification apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1…排気浄化触媒 3…HC吸着剤 10…排気浄化装置 20…内燃機関 21…排気通路 DESCRIPTION OF SYMBOLS 1 ... Exhaust purification catalyst 3 ... HC adsorbent 10 ... Exhaust purification device 20 ... Internal combustion engine 21 ... Exhaust passage

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F01N 3/08 - 3/38 F01N 9/00 - 11/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F01N 3/08-3/38 F01N 9/00-11/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内燃機関の排気通路に配置した、所定の
温度以上のときに流入する排気中の少なくとも炭化水素
成分を浄化する排気浄化触媒と、 該排気浄化触媒の上流側排気通路に配置した、流入する
排気中の炭化水素を吸着するHC吸着剤と、を備えた内
燃機関の排気浄化装置において、 前記HC吸着剤の単位体積当たりの熱容量を前記排気通
路軸線に直角な方向に変化させ、HC吸着剤を通過する
排気流速の熱容量が大きい部分での平均値より熱容量が
小さい部分での平均値が大きくなるように設定したこと
を特徴とする内燃機関の排気浄化装置。
An exhaust purification catalyst disposed in an exhaust passage of an internal combustion engine for purifying at least a hydrocarbon component in exhaust gas flowing at a predetermined temperature or higher, and disposed in an exhaust passage upstream of the exhaust purification catalyst. An HC adsorbent that adsorbs hydrocarbons in the exhaust gas that flows into the exhaust gas purifying apparatus for an internal combustion engine, wherein a heat capacity per unit volume of the HC adsorbent is changed in a direction perpendicular to the exhaust passage axis. An exhaust gas purifying apparatus for an internal combustion engine, wherein an average value in a portion having a small heat capacity is set to be larger than an average value in a portion having a large heat capacity of an exhaust flow velocity passing through an HC adsorbent.
【請求項2】 内燃機関の排気通路に配置した、所定の
温度以上のときに流入する排気中の少なくとも炭化水素
成分を浄化する排気浄化触媒と、 該排気浄化触媒の上流側排気通路に配置した、流入する
排気中の炭化水素を吸着するHC吸着剤と、を備えた内
燃機関の排気浄化装置において、 前記排気浄化触媒の一部に、受けた排気の熱を触媒の他
の部分に伝達する受熱部を形成するとともに、該受熱部
の位置を、前記HC吸着剤の前記受熱部の直上流に位置
する部分を通過する排気の平均流速が、前記HC吸着剤
の前記受熱部の直上流以外の部分を通過する排気の平均
流速より大きくなる位置に設定したことを特徴とする内
燃機関の排気浄化装置。
2. An exhaust purification catalyst disposed in an exhaust passage of an internal combustion engine for purifying at least a hydrocarbon component in exhaust gas flowing when the temperature is equal to or higher than a predetermined temperature, and disposed in an exhaust passage upstream of the exhaust purification catalyst. , An HC adsorbent for adsorbing hydrocarbons in the inflowing exhaust gas, wherein the heat of the exhaust gas received by one part of the exhaust gas purification catalyst is transmitted to another part of the catalyst. A heat receiving portion is formed, and the position of the heat receiving portion is changed such that the average flow velocity of exhaust gas passing through the portion of the HC adsorbent that is located immediately upstream of the heat receiving portion is other than immediately upstream of the heat receiving portion of the HC adsorbent. An exhaust gas purification device for an internal combustion engine, wherein the exhaust gas purification device is set at a position where the average flow velocity of the exhaust gas passing through the portion is larger than the average flow velocity.
JP09083295A 1995-04-17 1995-04-17 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3304678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09083295A JP3304678B2 (en) 1995-04-17 1995-04-17 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09083295A JP3304678B2 (en) 1995-04-17 1995-04-17 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH08284646A JPH08284646A (en) 1996-10-29
JP3304678B2 true JP3304678B2 (en) 2002-07-22

Family

ID=14009568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09083295A Expired - Fee Related JP3304678B2 (en) 1995-04-17 1995-04-17 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3304678B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072512A (en) * 2005-09-02 2007-03-22 Toyota Motor Corp Road marking line detection device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984142B1 (en) 1997-04-24 2004-06-30 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engines
JP4019523B2 (en) 1997-11-20 2007-12-12 日産自動車株式会社 Catalyst device for exhaust purification in internal combustion engine
JP3252793B2 (en) * 1998-05-15 2002-02-04 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE10027401A1 (en) * 2000-06-02 2001-12-20 Emitec Emissionstechnologie Device, for adsorbing one component of exhaust gas from vehicle engine, has adsorber with volume calculated by equation, through which exhaust gas is made to flow
JP2003201832A (en) * 2001-10-25 2003-07-18 Nissan Motor Co Ltd Exhaust emission control catalyst system
US7048434B2 (en) * 2002-09-17 2006-05-23 Intel Corporation Thermal analysis and characterization of layers and multiple layer structures
JP2006248814A (en) * 2005-03-09 2006-09-21 Hitachi Ltd Apparatus and method for feeding hydrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072512A (en) * 2005-09-02 2007-03-22 Toyota Motor Corp Road marking line detection device
JP4532372B2 (en) * 2005-09-02 2010-08-25 トヨタ自動車株式会社 Road marking line detection device

Also Published As

Publication number Publication date
JPH08284646A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
AU2009263542B2 (en) Exhaust gas purification apparatus
US5492679A (en) Zeolite/catalyst wall-flow monolith adsorber
JPH0559942A (en) Cold hc adsorption removal device
JPH0579319A (en) Engine exhaust emission control system
JPH11210451A (en) Exhaust emission control catalyst device of internal combustion engine
CZ151793A3 (en) Process of catalytic purification of automobile exhaust gases with enhanced suppression of hydrocarbon formation during cold start phase
US6155044A (en) Exhaust gas purifying system for internal combustion engine
JP4062231B2 (en) Exhaust gas purification device for internal combustion engine
US6113864A (en) Adsorber-catalyst combination for internal combustion engines
JP3304678B2 (en) Exhaust gas purification device for internal combustion engine
JP2001221038A (en) Muffling type exhaust converter
EP1255918A1 (en) Light-duty diesel catalysts
JP2000054832A (en) Exhaust emission control device for internal combustion engine
CA2240691A1 (en) System for exhaust gas purification
KR100525038B1 (en) Honeycomb body having an adsorption material for a hydrocarbon trap
JP2007218177A (en) Exhaust gas purification system
US6447735B1 (en) Exhaust purifier and manufacturing method of same
JPH11324662A (en) Catalyst converter device
JP4058588B2 (en) Exhaust gas purification catalyst
JP3736373B2 (en) Engine exhaust purification system
WO2001012961A1 (en) Compact catalyst/adsorber for exhaust gas treatment
KR100777612B1 (en) Low volume adsorption device
JP2005144294A (en) Catalyst for purifying exhaust gas
JP3402132B2 (en) Engine exhaust purification device
JP3567507B2 (en) Exhaust gas purification catalyst for internal combustion engines

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees