JP3303101B2 - Supercritical gas liquefaction method and apparatus - Google Patents
Supercritical gas liquefaction method and apparatusInfo
- Publication number
- JP3303101B2 JP3303101B2 JP07413192A JP7413192A JP3303101B2 JP 3303101 B2 JP3303101 B2 JP 3303101B2 JP 07413192 A JP07413192 A JP 07413192A JP 7413192 A JP7413192 A JP 7413192A JP 3303101 B2 JP3303101 B2 JP 3303101B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- gas
- supercritical gas
- pressure
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 28
- 238000001816 cooling Methods 0.000 claims description 95
- 239000007788 liquid Substances 0.000 claims description 67
- 230000006837 decompression Effects 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 86
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 37
- 229910001873 dinitrogen Inorganic materials 0.000 description 21
- 239000012530 fluid Substances 0.000 description 19
- FNYLWPVRPXGIIP-UHFFFAOYSA-N Triamterene Chemical compound NC1=NC2=NC(N)=NC(N)=C2N=C1C1=CC=CC=C1 FNYLWPVRPXGIIP-UHFFFAOYSA-N 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000002994 raw material Substances 0.000 description 4
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
- F25J1/0015—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
- F25J1/0017—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
- F25J1/0037—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0201—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
- F25J1/0202—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/06—Splitting of the feed stream, e.g. for treating or cooling in different ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/04—Internal refrigeration with work-producing gas expansion loop
- F25J2270/06—Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/34—Details about subcooling of liquids
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、超臨界ガスの液化方法
及び装置に関し、詳しくは、臨界圧力以上の圧力,臨界
温度以上の温度にある各種ガス、例えば窒素,酸素,メ
タン等を液化する方法及び装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for liquefying a supercritical gas, and more particularly to a method for liquefying various gases having a pressure higher than a critical pressure and a temperature higher than a critical temperature, such as nitrogen, oxygen and methane. Method and apparatus.
【0002】[0002]
【従来の技術】従来から、各種のガスを液化する手段と
して様々な方式が知られている。例えば、特開昭61−
105086号公報に記載される超臨界ガス(同公報に
おいては永久ガス)の液化方法は、図6に示すような構
成を採用している。2. Description of the Related Art Various systems have been known as means for liquefying various gases. For example, JP-A-61-
The method for liquefying a supercritical gas (permanent gas in the publication) described in Japanese Patent No. 105086 employs a configuration as shown in FIG.
【0003】即ち、上記液化方法は、熱交換器1で極低
温にまで冷却した超臨界ガスを、少なくとも3個の減圧
弁2,2で連続して等エンタルピー膨張させ、その結果
生じるフラッシュガスと液体とを、各減圧弁2の後段に
設けた気液分離器3,3で分離し、最終の気液分離器で
分離した液体を除く他の液体を、すぐ次の減圧弁2で膨
張する流体とし、気液分離器3,3で分離したフラッシ
ュガスの少なくとも一部を前記熱交換器1に導入して、
前記超臨界ガスと熱交換させるものである。That is, in the above liquefaction method, the supercritical gas cooled to extremely low temperature in the heat exchanger 1 is isenthalpy-expanded continuously by at least three pressure-reducing valves 2 and 2, and the resulting flash gas is The liquid is separated from the liquid by the gas-liquid separators 3 provided at the subsequent stage of each pressure reducing valve 2, and other liquids except the liquid separated by the final gas-liquid separator are expanded by the next pressure reducing valve 2. As a fluid, at least a part of the flash gas separated by the gas-liquid separators 3, 3 is introduced into the heat exchanger 1,
Heat exchange is performed with the supercritical gas.
【0004】[0004]
【発明が解決しようとする課題】上記方法は、液化効率
においては優れているものの、等エンタルピー膨張後の
フラッシュガスと液体とを分離するための気液分離器が
3基以上必要であるという欠点を有している。即ち、こ
れらの気液分離器の工業的な制御方法としては、気液分
離器内の液面にて制御する方法が使用されているが、そ
の制御性及び停止時の熱交換器からの液流れを考慮し
て、一般に、液流量の数分間分の貯蔵を行える大きさの
気液分離器を必要としている。Although the above-mentioned method is excellent in liquefaction efficiency, it has a disadvantage that at least three gas-liquid separators for separating flash gas and liquid after isenthalpy expansion are required. have. That is, as an industrial control method of these gas-liquid separators, a method of controlling the liquid level in the gas-liquid separator is used, but the controllability and the liquid from the heat exchanger at the time of stoppage are used. In consideration of the flow, a gas-liquid separator sized to store the liquid flow for several minutes is generally required.
【0005】従って、このような大きさの気液分離器を
最低3基も設置する場合、その容量は、他の熱交換器等
の機器に対して大きな割合となり、液化装置が大きなも
のとなり、経済的でなく、また、ヒートロスが大きくな
るなどの欠点がある。[0005] Therefore, when at least three gas-liquid separators of such a size are installed, the capacity thereof is large relative to other devices such as heat exchangers, and the liquefaction apparatus becomes large. It is not economical and has disadvantages such as a large heat loss.
【0006】そこで本発明は、液化効率を落とすことな
く、液化装置に用いられる気液分離器を極力少なくして
経済的な設備とすることができる超臨界ガスの液化方法
及び装置を提供することを目的としている。Accordingly, the present invention provides a method and apparatus for liquefying a supercritical gas, which can reduce the number of gas-liquid separators used in a liquefaction apparatus as much as possible without reducing the liquefaction efficiency, thereby making the equipment economical. It is an object.
【0007】[0007]
【課題を解決するための手段】上記した目的を達成する
ため、本発明の超臨界ガスの液化方法は、高圧の超臨界
ガスを、その臨界温度より低い温度まで冷却した後、そ
の一部を等エンタルピー膨張させて前記超臨界ガスの冷
却源とする予備冷却工程と、該予備冷却工程を終えた低
温の超臨界ガスをさらに低温に冷却する主冷却工程と、
該主冷却工程を終えた超臨界ガスを減圧する減圧工程と
を含む超臨界ガスの液化方法であって、前記主冷却工程
は、各冷却工程導入前又は導出後の低温超臨界ガスの一
部を分岐し、等エンタルピー膨張させて該冷却工程の冷
却源とする2回以上の冷却工程を有し、該冷却工程の少
なくとも一つは、その冷却工程導入前の超臨界ガスの一
部を分岐して冷却源とする工程であり、2回以上の冷却
工程における後段の冷却工程での等エンタルピー膨張後
の圧力を、前段の冷却工程での等エンタルピー膨張後の
圧力よりも低くすることを特徴とし、さらに、前記予備
冷却工程及び主冷却工程のいずれか1か所以上に、冷却
した超臨界ガスを等エンタルピー膨張させた後にフラッ
シュガスと液体とに分離し、分離したフラッシュガスを
前記超臨界ガスの冷却源とし、分離した液体を次の冷却
工程に導入する工程を挿入したことを特徴としている。In order to achieve the above-mentioned object, a method for liquefying a supercritical gas according to the present invention comprises the steps of cooling a high-pressure supercritical gas to a temperature lower than its critical temperature, and then partially cooling the supercritical gas. A pre-cooling step of expanding the supercritical gas by isenthalpy expansion, and a main cooling step of further cooling the low-temperature supercritical gas after the pre-cooling step to a lower temperature,
A decompression step of decompressing the supercritical gas after the main cooling step, wherein the main cooling step is a part of the low-temperature supercritical gas before or after each cooling step introduction or after derivation. And has two or more cooling steps which are isenthalpy expanded and used as a cooling source of the cooling step. At least one of the cooling steps branches a part of the supercritical gas before the introduction of the cooling step. Is a cooling source, and after isenthalpy expansion in a cooling step at a later stage of two or more cooling steps
Pressure after the isenthalpy expansion in the previous cooling step
Characterized in that the pressure is lower than the pressure , and further, in one or more of the pre-cooling step and the main cooling step, the cooled supercritical gas is separated into flash gas and liquid after isenthalpy expansion, The method is characterized in that the separated flash gas is used as a cooling source of the supercritical gas, and a step of introducing the separated liquid into the next cooling step is inserted.
【0008】また、本発明の超臨界ガスの液化装置は、
高圧の超臨界ガスを、その臨界温度より低い温度まで冷
却する熱交換器、及び該熱交換器を導出した低温の超臨
界ガスの一部を分岐して減圧弁で等エンタルピー膨張さ
せた後、前記熱交換器に冷却源として導入する予備冷却
回路と、該予備冷却回路を導出した低温超臨界ガスをさ
らに低温に冷却する熱交換器、及び該熱交換器の導入前
又は導出後の低温超臨界ガスの一部を分岐して減圧弁で
等エンタルピー膨張させた後、前記低温の超臨界ガスの
冷却源として該熱交換器に導入する2回路以上の冷却回
路を有する主冷却回路と、該主冷却回路を導出した超臨
界ガスを減圧する減圧回路とを含み、前記主冷却回路の
2回路以上の冷却回路における後段の冷却回路の減圧弁
での等エンタルピー膨張後の圧力を、前段の冷却回路の
減圧弁での等エンタルピー膨張後の圧力よりも低く設定
したことを特徴とし、さらに、前記予備冷却回路及び主
冷却回路のいずれか1か所以上に、等エンタルピー膨張
した超臨界ガスをフラッシュガスと液体とに分離する気
液分離器を設け、分離したフラッシュガスを前記超臨界
ガスの冷却源として前段の冷却回路の熱交換器に導入す
る回路と、分離した液体を次の冷却回路に導入する回路
とを挿入したことを特徴としている。[0008] The supercritical gas liquefaction apparatus of the present invention comprises:
After a high-pressure supercritical gas is cooled to a temperature lower than its critical temperature, and a part of the low-temperature supercritical gas derived from the heat exchanger is branched and isenthalpy-expanded by a pressure reducing valve, A pre-cooling circuit introduced as a cooling source to the heat exchanger, a heat exchanger for further cooling the low-temperature supercritical gas derived from the pre-cooling circuit to a lower temperature, and a low-temperature superconductor before or after introduction of the heat exchanger. After a part of the critical gas is branched and subjected to isenthalpy expansion by a pressure reducing valve, a cooling circuit of two or more circuits is introduced into the heat exchanger as a cooling source of the low-temperature supercritical gas.
A main cooling circuit having a road, seen including a decompression circuit for decompressing the supercritical gas deriving main cooling circuit, of the main cooling circuit
Pressure-reducing valve in the cooling circuit at the subsequent stage in two or more cooling circuits
The pressure after the isenthalpy expansion at
Set lower than the pressure after isenthalpy expansion at the pressure reducing valve
Was that characterized by, further wherein the pre-cooling circuit and one or more positions either of the main cooling circuit, the gas-liquid separator for separating the isenthalpic expansion with supercritical gas and flash gas and liquid provided, separated A circuit for introducing a flash gas as a cooling source of the supercritical gas into a heat exchanger of a preceding cooling circuit and a circuit for introducing a separated liquid to a next cooling circuit are inserted.
【0009】[0009]
【実施例】以下、本発明を、図面に示す実施例に基づい
て、さらに詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the embodiments shown in the drawings.
【0010】まず、図1は本発明の第1実施例を示すも
ので、本発明の基本的な構成を示すものである。また、
図2は状態変化を説明するT−S線図である。FIG. 1 shows a first embodiment of the present invention and shows a basic configuration of the present invention. Also,
FIG. 2 is a TS diagram illustrating a state change.
【0011】本実施例装置は、3基の熱交換器11,1
2,13と、4個の減圧弁21,22,23,24とを
組合わせて構成したもので、まず、高圧の超臨界ガス
は、管1から第1の熱交換器11に導入され、冷却源と
なる後述の戻り流体により、該超臨界ガスの臨界温度よ
り低い温度まで冷却される(予備冷却工程)。冷却され
た臨界温度以下の低温超臨界ガスは、管2に導出され、
その一部が管3及び管4に分岐し、残りの低温超臨界ガ
スは、第2の熱交換器12に導入される。The apparatus of this embodiment has three heat exchangers 11, 1
2, 13 and four pressure reducing valves 21, 22, 23, 24 are combined, and first, a high-pressure supercritical gas is introduced into the first heat exchanger 11 from the pipe 1, The supercritical gas is cooled to a temperature lower than the critical temperature of the supercritical gas by a later-described return fluid serving as a cooling source (preliminary cooling step). The cooled supercritical gas having a temperature equal to or lower than the critical temperature is led out to the pipe 2,
A part thereof branches into the tubes 3 and 4, and the remaining low-temperature supercritical gas is introduced into the second heat exchanger 12.
【0012】管3に分岐した低温超臨界ガスは、減圧弁
21で等エンタルピー膨張して気液混合状態の流体とな
り、前記第1の熱交換器11に、戻り流体として導入さ
れ、前記高圧の超臨界ガスの冷却源となる。なお、該減
圧弁21での等エンタルピー膨張による冷却工程までを
予備冷却工程と称する。The low-temperature supercritical gas branched to the pipe 3 isenthalpy-expanded by the pressure reducing valve 21 into a fluid in a gas-liquid mixed state, introduced into the first heat exchanger 11 as a return fluid, and introduced into the first heat exchanger 11. It is a cooling source for supercritical gas. The process up to the cooling process by isenthalpy expansion in the pressure reducing valve 21 is referred to as a preliminary cooling process.
【0013】前記管4に分岐した低温超臨界ガスは、減
圧弁22で等エンタルピー膨張して気液混合状態の流体
となり、前記低温超臨界ガスと向流する方向から第2の
熱交換器12に導入され、前記管2から第2の熱交換器
12に導入される低温超臨界ガスの冷却源となる。な
お、この工程以降を主冷却工程と称する。The low-temperature supercritical gas branched to the pipe 4 isentropically expanded by the pressure reducing valve 22 to become a fluid in a gas-liquid mixed state, and flows from the second heat exchanger 12 in a direction countercurrent to the low-temperature supercritical gas. And serves as a cooling source for the low-temperature supercritical gas introduced from the pipe 2 to the second heat exchanger 12. The process after this process is referred to as a main cooling process.
【0014】上記第2の熱交換器12でさらに低温に冷
却され、該第2の熱交換器12から管5に導出された低
温超臨界ガスは、その一部が管6に分岐し、残りの低温
超臨界ガスは、第3の熱交換器13に導入される。The low-temperature supercritical gas which is further cooled to a lower temperature in the second heat exchanger 12 and is led from the second heat exchanger 12 to the pipe 5 is partially branched into the pipe 6 while remaining in the pipe 6. Is introduced into the third heat exchanger 13.
【0015】管6に分岐した低温超臨界ガスは、減圧弁
23で等エンタルピー膨張して気液混合状態の流体とな
り、戻り流体として前記第2の熱交換器12及び第1の
熱交換器11に順次導入され、管1から導入される超臨
界ガスの冷却源となる。The low-temperature supercritical gas branched into the pipe 6 isenthalpy-expanded by the pressure reducing valve 23 to become a gas-liquid mixed fluid, and is returned as the second heat exchanger 12 and the first heat exchanger 11. And is a cooling source for the supercritical gas introduced from the pipe 1.
【0016】管5から第3の熱交換器13に導入され、
上記減圧弁23を経た戻りガスにより、さらに冷却され
て管7に導出された低温超臨界ガスは、減圧弁24で等
エンタルピー膨張し、液化して取り出される。The heat is introduced from the pipe 5 to the third heat exchanger 13,
The low-temperature supercritical gas further cooled by the return gas passing through the pressure reducing valve 23 and led out to the pipe 7 is isenthalpy expanded by the pressure reducing valve 24, liquefied and taken out.
【0017】即ち、管1から供給された高圧の超臨界ガ
スは、前記熱交換器11,12,13で十分に冷却され
た後、減圧弁24で減圧されることにより液化し、低温
液化ガスとなる。なお、この時、減圧後の圧力によって
は一部フラッシュガスが発生する場合もある。That is, the high-pressure supercritical gas supplied from the pipe 1 is sufficiently cooled in the heat exchangers 11, 12, and 13 and then liquefied by being depressurized by the pressure reducing valve 24, so as to be liquefied. Becomes At this time, flash gas may be partially generated depending on the reduced pressure.
【0018】これを窒素のT−S線図上における状態変
化として説明する。図2において、ラインABCDは超
臨界圧力に圧縮されたガスを冷却する等圧線であり、ラ
インUVWは窒素が液体とガスの2相状態にある所を示
し、点Bは第1の熱交換器11の出口,点Cは第2の熱
交換器12の出口,点Dは第3の熱交換器13の出口を
示す。また、ラインBEFG,ラインCHIJ,ライン
DKLM及びラインXNは等エンタルピーラインを示
し、ラインOP,ラインQR及びラインSTはガス状窒
素の等圧線である。This will be described as a state change on the TS diagram of nitrogen. In FIG. 2, line ABCD is an isobar that cools gas compressed to supercritical pressure, line UVW shows where nitrogen is in a two-phase state of liquid and gas, and point B is the first heat exchanger 11. , Point C indicates the outlet of the second heat exchanger 12, and point D indicates the outlet of the third heat exchanger 13. Line BEFG, line CHIJ, line DKLM, and line XN indicate isenthalpy lines, and line OP, line QR, and line ST are equal pressure lines of gaseous nitrogen.
【0019】ここで、図1に示す方法において、超臨界
ガスは、ABCDの等圧線に沿って、点D,Zの中間の
温度まで冷却された後、減圧弁24にて減圧され、液化
して減圧後の状態(圧力,温度)に応じた点より送り出
される。Here, in the method shown in FIG. 1, the supercritical gas is cooled down to a middle temperature between points D and Z along the isobar of ABCD, and then decompressed by the pressure reducing valve 24 to be liquefied. It is sent out from a point corresponding to the state (pressure, temperature) after decompression.
【0020】冷却源としてのガスは、上記超臨界ガスか
らラインAD上の点B,Cより分岐し、各減圧弁21,
22,23により、図2に示す如く順次低い圧力に膨張
し、それぞれラインBEF,BEF′,CHJにより等
エンタルピー変化した液−ガス混合流体となった後、ラ
インFOP,F′QR,JSTの等圧線に沿って被冷却
超臨界ガスと熱交換を行いつつ昇温し、常温に戻され
る。The gas as the cooling source branches off from the supercritical gas at points B and C on the line AD, and the pressure reducing valves 21 and
Due to 22 , 23 , the pressure gradually expands as shown in FIG.
Then , after a liquid-gas mixed fluid having an equal enthalpy change by the lines BEF, BEF ', and CHJ, respectively, it rises while performing heat exchange with the supercritical gas to be cooled along the isobars of the lines FOP, F'QR, JST. Warm and return to room temperature.
【0021】図3は本発明の第2実施例を示すもので、
上記第1実施例において、第3の熱交換器13に導入す
る前に管6に分岐させて減圧弁23で膨張させる経路に
代えて、第3の熱交換器13から管7に導出した低温超
臨界ガスの一部を管8に分岐し、減圧弁25で等エンタ
ルピー膨張させた後、第3の熱交換器13に冷却源とし
て導入するようにしたものである。FIG. 3 shows a second embodiment of the present invention.
In the first embodiment, instead of the path for branching to the pipe 6 and expanding with the pressure reducing valve 23 before being introduced into the third heat exchanger 13, the low temperature led to the pipe 7 from the third heat exchanger 13 is used. A part of the supercritical gas is branched into a pipe 8, subjected to isenthalpy expansion by a pressure reducing valve 25, and then introduced into a third heat exchanger 13 as a cooling source.
【0022】上記管8に分岐した低温超臨界ガスは、減
圧弁25で、図2におけるラインDKLにより等エンタ
ルピー変化した液−ガス混合流体となった後、ラインL
STの等圧線に沿って被冷却超臨界ガスと熱交換を行い
つつ昇温し、常温に戻される。The low-temperature supercritical gas branched to the pipe 8 is converted into a liquid-gas mixed fluid whose isenthalpy has changed by the line DKL in FIG.
The temperature is raised while performing heat exchange with the supercritical gas to be cooled along the isobar of ST, and the temperature is returned to room temperature.
【0023】図3は本発明の第3実施例を示すもので、
工程中に、冷却した超臨界ガスを等エンタルピー膨張さ
せた後の気液混合流体を、フラッシュガスと液体とに分
離し、分離したフラッシュガスを前記超臨界ガスの冷却
源とし、分離した液体を次の冷却工程に導入する工程を
挿入した例を示すものである。FIG. 3 shows a third embodiment of the present invention.
During the process, the gas-liquid mixed fluid after the enthalpy expansion of the cooled supercritical gas is separated into a flash gas and a liquid, and the separated flash gas is used as a cooling source for the supercritical gas. This shows an example in which a step to be introduced into the next cooling step is inserted.
【0024】図4に示す実施例では、上記第2実施例に
おいて、第1の熱交換器11から管2に導出された冷却
後の超臨界ガスは、分岐することなく全量が減圧弁31
に導入されて等エンタルピー膨張し、気液混合状態の流
体となって気液分離器32に導入され、気液分離され
る。気液分離器32で分離したフラッシュガスは、管3
3から前記第1の熱交換器11に戻り流体として導入さ
れ、前記高圧の超臨界ガスの冷却源となる。In the embodiment shown in FIG. 4, in the second embodiment, the cooled supercritical gas led out from the first heat exchanger 11 to the pipe 2 is entirely branched without branching.
And undergoes isenthalpy expansion, becomes a fluid in a gas-liquid mixed state, is introduced into the gas-liquid separator 32, and is separated into gas and liquid. The flash gas separated by the gas-liquid separator 32 is supplied to the pipe 3
3 and is introduced as a fluid back into the first heat exchanger 11 and serves as a cooling source for the high-pressure supercritical gas.
【0025】一方、気液分離器32内の液体は、管34
に導出され、管35に一部が分岐した後、前記同様に、
第2の熱交換器12及び第3の熱交換器13に順次導入
され、十分に冷却された後、減圧弁24で膨張して取り
出される。また、管35に分岐したガスは、減圧弁36
で等エンタルピー膨張した後、第2の熱交換器12の冷
却源、次いで第1の熱交換器11の冷却源として順次用
いられる。On the other hand, the liquid in the gas-liquid separator 32 is
And after branching partially into the tube 35, as described above,
After being sequentially introduced into the second heat exchanger 12 and the third heat exchanger 13 and sufficiently cooled, they are expanded by the pressure reducing valve 24 and taken out. The gas branched to the pipe 35 is supplied to a pressure reducing valve 36.
After being subjected to isenthalpy expansion in step (1), the heat is sequentially used as a cooling source of the second heat exchanger 12 and then as a cooling source of the first heat exchanger 11.
【0026】なお、第2の熱交換器12から管5に導出
された以後は、流体が液である以外は前記第2実施例と
同様であり、同一符号を付して詳細な説明を省略する。After the liquid is led out from the second heat exchanger 12 to the pipe 5, it is the same as the second embodiment except that the fluid is a liquid. I do.
【0027】即ち、図4に示す方法では、前記図3にお
いて、超臨界ガスは、ラインABの等圧線に沿って点B
まで冷却された後、その全量が減圧弁31でラインBE
Fの等エンタルピーラインに沿って膨張し、点Fに達す
る。次いで、点Fの液−ガス混合流体は、気液分離器3
2により、点Xの液体と点Oのフラッシュガスとに分離
する。分離した点Xの液体は、ラインXHKZの等圧線
に沿って点K,Zの中間温度まで冷却された後、減圧弁
24にて減圧され、液化して減圧後の状態(圧力,温
度)に応じた点より送り出される。That is, in the method shown in FIG. 4, in FIG. 3, the supercritical gas is changed to the point B along the isobar of the line AB.
After cooling to the line BE
It expands along the isenthalpy line of F and reaches point F. Next, the liquid-gas mixed fluid at the point F is supplied to the gas-liquid separator 3.
2 separates the liquid at the point X and the flash gas at the point O. The separated liquid at the point X is cooled down to the intermediate temperature between the points K and Z along the isobar of the line XHKZ, and then depressurized by the pressure reducing valve 24, liquefied and according to the state (pressure, temperature) after the pressure reduction. Sent out from the point.
【0028】一方、冷却源としてのガスは、上記液体か
らラインUV上の点X,Kより分岐し、ラインXN,K
Lにより等エンタルピー膨脹した後、ラインNQR,L
STの等圧線、また、前記点Oのフラッシュガスは、ラ
インOPの等圧線に沿って被冷却超臨界ガス及び/又は
被冷却液体と熱交換を行いつつ昇温し、常温に戻され
る。On the other hand, the gas as a cooling source branches from the liquid from the points X and K on the line UV, and the lines XN and K
After the enthalpy expansion by L, the lines NQR, L
The isobar in ST and the flash gas at the point O are heated along the isobar in the line OP while performing heat exchange with the supercritical gas to be cooled and / or the liquid to be cooled, and returned to room temperature.
【0029】図5は、本発明の第4実施例を具体的な装
置構成として示すものである。以下、窒素ガスを液化す
る手順に従って本実施例を説明する。FIG. 5 shows a fourth embodiment of the present invention as a specific apparatus configuration. Hereinafter, the present embodiment will be described in accordance with the procedure for liquefying nitrogen gas.
【0030】管51から、40℃,1.1ata,2
0,000Nm3 /hの原料窒素ガスが導入され、多段
圧縮機71で40℃,38.0ataまで圧縮される。
この多段圧縮機71の各段には、後述する管52,5
3,54からの各段の吸入圧力まで減圧された窒素ガス
が導入され、原料窒素ガスと共に圧縮される。このとき
原料窒素ガスの圧力が多段圧縮機71の中間段の吸入圧
力程度の場合には、原料窒素ガスを、その圧力に見合っ
た段から導入することができる。From tube 51, 40 ° C., 1.1 ata, 2
A raw material nitrogen gas of 000 Nm 3 / h is introduced, and compressed to 40 ° C. and 38.0 ata by the multi-stage compressor 71.
Each stage of the multi-stage compressor 71 includes pipes 52, 5 described later.
Nitrogen gas reduced to the suction pressure of each stage from 3, 54 is introduced and compressed together with the raw material nitrogen gas. At this time, when the pressure of the source nitrogen gas is about the suction pressure of the middle stage of the multi-stage compressor 71, the source nitrogen gas can be introduced from a stage corresponding to the pressure.
【0031】40℃,38.0ataの臨界圧力以上ま
で圧縮された窒素ガスは、管55から管56と管57と
に分岐し、それぞれ膨張タービン72,73に直結した
昇圧ブロワー74,75に導入され、さらに臨界圧以上
の圧力に昇圧される。一方の昇圧ブロワー74で昇圧し
た窒素ガスは、アフタークーラー76で冷却されて40
℃,61ataの超臨界圧窒素ガスとなり管58に導出
され、他方の昇圧ブロワー75で昇圧した窒素ガスは、
アフタークーラー77で冷却されて40℃,55ata
の超臨界圧窒素ガスとなり管59に導出される。The nitrogen gas compressed to a critical pressure of 40.degree. C. or higher than 38.0 ata is branched from a pipe 55 to a pipe 56 and a pipe 57, and introduced into pressurizing blowers 74 and 75 directly connected to expansion turbines 72 and 73, respectively. Then, the pressure is raised to a pressure higher than the critical pressure. The nitrogen gas pressurized by one pressurizing blower 74 is cooled by an after cooler 76 and
The supercritical nitrogen gas at 61 ° C. and 61 ata is led out to the pipe 58 and the nitrogen gas pressurized by the other pressurizing blower 75 is
Cooled by aftercooler 77, 40 ℃, 55ata
And becomes the supercritical pressure nitrogen gas.
【0032】管58の超臨界圧窒素ガスは、コールドボ
ックス80に導入され、第1の熱交換器81で冷却され
る。この超臨界圧窒素ガスは、途中で一部が管60に分
岐する以外は臨界温度(−147.1℃)以下まで冷却
され、例えば−165℃,61ataの超臨界窒素ガス
となる。The supercritical nitrogen gas in the pipe 58 is introduced into the cold box 80 and cooled by the first heat exchanger 81. This supercritical nitrogen gas is cooled to a critical temperature (-147.1 ° C.) or lower except that a part thereof branches to the pipe 60 on the way, and becomes a supercritical nitrogen gas at −165 ° C. and 61 ata, for example.
【0033】上記第1の熱交換器81から管61に導出
された超臨界窒素ガスは、減圧弁91で9.5ataま
で等エンタルピー膨張して気液混合流体となった後、気
液分離器78に導入されてフラッシュガスと液とに分離
する。気液分離器78で分離した液は、管62に導出さ
れ、その一部が管63から減圧弁92に分岐する以外
は、第2の熱交換器82に導入され、−175℃まで冷
却されて管64に導出され、その一部が管65から減圧
弁93に分岐する以外は第3の熱交換器83に導入され
て−190℃までさらに冷却される。−190℃となっ
て管66に導出した9.5ataの液化窒素は減圧弁9
4で減圧され、−190℃,2ata,20,000N
m3 /hの製品液化窒素として管67から取り出され
る。The supercritical nitrogen gas led from the first heat exchanger 81 to the pipe 61 is enthalpy-expanded to 9.5 ata by the pressure reducing valve 91 to form a gas-liquid mixed fluid. Introduced into 78 and separated into flash gas and liquid. The liquid separated by the gas-liquid separator 78 is led out to the pipe 62, and a part of the liquid is introduced into the second heat exchanger 82 except that it branches from the pipe 63 to the pressure reducing valve 92, and is cooled to −175 ° C. Except that it is introduced into the third heat exchanger 83 except that a part thereof branches off from the pipe 65 to the pressure reducing valve 93 and is further cooled to -190 ° C. The liquid nitrogen of 9.5 ata which was discharged to the pipe 66 at −190 ° C.
4 at -190 ° C, 2ata, 20,000N
It is withdrawn from the tube 67 as m 3 / h product liquefied nitrogen.
【0034】一方、前記昇圧ブロワー75で昇圧し、ア
フタークーラー77を経た40℃,55ataの超臨界
圧窒素ガスは、管59によりコールドボックス80内に
導入され、第1の熱交換器81で−100℃まで冷却さ
れた後、膨張タービン73で9.5ataまで等エント
ロピー膨張し、また、前記管58から管60に分岐した
超臨界圧窒素ガスは、膨張タービン72で9.5ata
まで等エントロピー膨張する。両膨張タービン72,7
3で9.5ataに膨張した窒素ガスは、それぞれ管6
8,69を通って、前記気液分離器78で分離したフラ
ッシュガスの戻り流路に、それぞれの温度に見合った一
で合流し、前記管52から多段圧縮機71の圧力の等し
い吸入段に戻される。On the other hand, the supercritical nitrogen gas at 40 ° C. and 55 ata, which has been pressurized by the pressurizing blower 75 and passed through the aftercooler 77, is introduced into the cold box 80 through the pipe 59, After being cooled to 100 ° C., the supercritical pressure nitrogen gas isentropically expanded to 9.5 ata by the expansion turbine 73, and the supercritical pressure nitrogen gas branched from the pipe 58 to the pipe 60 is converted to 9.5 ata by the expansion turbine 72.
Expands isentropically up to Both expansion turbines 72, 7
The nitrogen gas expanded to 9.5 at 3 in
8 and 69, into the return flow path of the flash gas separated by the gas-liquid separator 78, at a rate commensurate with each temperature, and from the pipe 52 to the suction stage where the pressure of the multi-stage compressor 71 is equal. Will be returned.
【0035】また、管62から管63に分岐した液化窒
素は、減圧弁92で6ataまで等エンタルピー膨脹し
た後、前記第2の熱交換器82,第1の熱交換器81に
冷却源となる戻り流体として順次導入され、前記管53
から多段圧縮機71の圧力の等しい吸入段に戻される。
同様に、管64から管65に分岐した液化窒素は、減圧
弁93で1.1ataまで等エンタルピー膨脹した後、
前記第3の熱交換器83,第2の熱交換器82及び第1
の熱交換器81に冷却源となる戻り流体として順次導入
され、前記管54から多段圧縮機71の圧力の等しい吸
入段に戻される。The liquefied nitrogen branched from the pipe 62 to the pipe 63 is isenthalpy-expanded to 6 ata by the pressure reducing valve 92, and then becomes a cooling source for the second heat exchanger 82 and the first heat exchanger 81. The pipe 53 is sequentially introduced as a return fluid,
Is returned to the suction stage where the pressure of the multi-stage compressor 71 is equal.
Similarly, the liquefied nitrogen branched from the pipe 64 to the pipe 65 isentropically expanded to 1.1 ata by the pressure reducing valve 93,
The third heat exchanger 83, the second heat exchanger 82, and the first
Is sequentially introduced as a return fluid serving as a cooling source to the heat exchanger 81, and is returned from the pipe 54 to a suction stage of the multistage compressor 71 having the same pressure.
【0036】本実施例を、前記図2を用いて、その状態
変化を説明すると、以下のようになる。管58から導入
される超臨界ガスは、ラインABの等圧線に沿って第1
の熱交換器81で点B(−165℃,61ata)まで
冷却され、減圧弁91でラインBEFの等エンタルピー
ラインに沿って膨張し、点F(9.5ata)に達す
る。この気液混合流体は、気液分離器78で点Xの液体
と点Oのフラッシュガスとに分離する。点Xの液は、第
2,第3の熱交換器82,83でラインXHKの等圧線
に沿って点Kまで冷却され、減圧弁94でラインKLの
等エンタルピーラインにより膨張して点L(−190
℃,2ata)で導出される。The state of this embodiment will be described with reference to FIG. 2 as follows. The supercritical gas introduced from the pipe 58 is supplied to the first line along the isobar of the line AB.
Is cooled to the point B (−165 ° C., 61 ata) by the heat exchanger 81, and expanded along the isenthalpy line of the line BEF by the pressure reducing valve 91 to reach the point F (9.5 ata). This gas-liquid mixed fluid is separated by the gas-liquid separator 78 into the liquid at the point X and the flash gas at the point O. The liquid at the point X is cooled by the second and third heat exchangers 82 and 83 to the point K along the isobar of the line XHK, expanded by the pressure reducing valve 94 through the isenthalpy line of the line KL, and expanded at the point L (−). 190
° C, 2 data).
【0037】一方、前記点Oのフラッシュガスは、第1
の熱交換器81でラインOPの等圧線に沿って昇温し、
また、管63に分岐した点Xの液は減圧弁92でライン
XNにより、管65に分岐した点Hの液は減圧弁93で
ラインHJにより、それぞれ等エンタルピー膨脹して、
点N(6ata),点J(1.1ata)に達した後、
ラインNQR,JSTの等圧線に沿って各熱交換器を戻
る。On the other hand, the flash gas at the point O
The temperature is increased along the isobar of the line OP in the heat exchanger 81 of
The liquid at the point X branched to the pipe 63 is isenthalpy expanded by the line XN at the pressure reducing valve 92, and the liquid at the point H branched to the pipe 65 is expanded by the line HJ at the pressure reducing valve 93.
After reaching point N (6 ata) and point J (1.1 ata),
Return each heat exchanger along the isobar lines NQR, JST.
【0038】このように、多段圧縮機71、膨張タービ
ン72,73、該膨張タービン72,73の昇圧ブロワ
ー74,75を組み合わせることにより、原料窒素ガス
を効率よく液化できる。As described above, by combining the multi-stage compressor 71, the expansion turbines 72, 73, and the booster blowers 74, 75 of the expansion turbines 72, 73, the raw material nitrogen gas can be efficiently liquefied.
【0039】また、上記実施例で明らかなように、気液
分離器78を1個設けることにより、熱交換器81は被
冷却流体の圧力が55ata(膨張タービン73への昇
圧窒素ガスは61ata)であるのに対し、熱交換器8
2,83では、被冷却流体の圧力は、減圧弁91により
9.5ataに減圧されている。従って、熱交換器8
2,83及び減圧弁92,93は、9.5ataに対す
る耐圧構造のもので良く、気液分離器78を1個設けた
分だけコストアップにはなるが、前記図1,図3に示し
た方法で、熱交換器,弁の全てを高圧耐圧構造にした場
合に比較すると全体としてはコストダウンになる。As is clear from the above embodiment, by providing one gas-liquid separator 78, the heat exchanger 81 has a pressure of the fluid to be cooled of 55 ata (the pressurized nitrogen gas to the expansion turbine 73 is 61 ata). Whereas the heat exchanger 8
In 2, 83, the pressure of the fluid to be cooled is reduced to 9.5 ata by the pressure reducing valve 91. Therefore, the heat exchanger 8
2 and 83 and the pressure reducing valves 92 and 93 may have a pressure-resistant structure against 9.5 ata, and the cost is increased by the provision of one gas-liquid separator 78. However, as shown in FIGS. As a whole, the cost is reduced as compared with the case where all of the heat exchanger and the valve have a high pressure pressure resistant structure.
【0040】しかしながら、前記図6に示した従来装置
のように、気液分離器を3個又はそれ以上設けると、全
体としては前述のようにコストアップになる。従って、
各膨張段における適切な膨張圧力の設定と適切な気液分
離器の個数を設定することにより、略同一の液か効率で
装置コストの低減を図ることができる。However, if three or more gas-liquid separators are provided as in the conventional apparatus shown in FIG. 6, the cost is increased as a whole as described above. Therefore,
By setting an appropriate expansion pressure and an appropriate number of gas-liquid separators in each expansion stage, it is possible to reduce the apparatus cost with substantially the same liquid efficiency.
【0041】なお、原料ガスとしては、超臨界状態を作
り出すことのできる様々な種類のガスを対象にでき、各
減圧弁における減圧度や該減圧弁への分岐量は、対象と
するガスの種類や量、多段圧縮機の各段の吸入圧力等に
より適宜設定でき、これらの条件に応じて各流路の温
度,圧力,流量も必然的に変わってくる。Various kinds of gases capable of creating a supercritical state can be used as the raw material gas. The degree of pressure reduction at each pressure reducing valve and the amount of branching to the pressure reducing valve depend on the type of the target gas. The amount, temperature, pressure, and flow rate of each flow path inevitably change according to these conditions.
【0042】[0042]
【発明の効果】以上説明したように、本発明によれば、
気液分離器のような大きな容積を有する機器を極力少な
くしながら、液化効率を損なうこと無く、経済的な超臨
界ガスの液化が実施できる。As described above, according to the present invention,
An economical supercritical gas can be liquefied without reducing the liquefaction efficiency while minimizing equipment having a large volume such as a gas-liquid separator.
【図1】 本発明の第1実施例を示す系統図である。FIG. 1 is a system diagram showing a first embodiment of the present invention.
【図2】 本発明方法を説明するためのT−S線図であ
る。FIG. 2 is a TS diagram for explaining the method of the present invention.
【図3】 本発明の第2実施例を示す系統図である。FIG. 3 is a system diagram showing a second embodiment of the present invention.
【図4】 本発明の第3実施例を示す系統図である。FIG. 4 is a system diagram showing a third embodiment of the present invention.
【図5】 本発明の第4実施例を示す系統図である。FIG. 5 is a system diagram showing a fourth embodiment of the present invention.
【図6】 従来の液化装置の一例を示す系統図である。FIG. 6 is a system diagram showing an example of a conventional liquefaction apparatus.
11,12,13,81,82,83…熱交換器 21,22,23,24,25,31,36,91,9
2,93,94…減圧弁 32,78…気液分離器 71…多段圧縮機 72,73…膨張タービン 74,75…昇圧ブロワー11, 12, 13, 81, 82, 83 ... heat exchangers 21, 22, 23, 24, 25, 31, 36, 91, 9
2, 93, 94 ... pressure reducing valve 32, 78 ... gas-liquid separator 71 ... multi-stage compressor 72, 73 ... expansion turbine 74, 75 ... step-up blower
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25J 1/00 - 5/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) F25J 1/00-5/00
Claims (4)
低い温度まで冷却した後、その一部を等エンタルピー膨
張させて前記超臨界ガスの冷却源とする予備冷却工程
と、該予備冷却工程を終えた低温の超臨界ガスをさらに
低温に冷却する主冷却工程と、該主冷却工程を終えた超
臨界ガスを減圧する減圧工程とを含む超臨界ガスの液化
方法であって、前記主冷却工程は、各冷却工程導入前又
は導出後の低温超臨界ガスの一部を分岐し、等エンタル
ピー膨張させて該冷却工程の冷却源とする2回以上の冷
却工程を有し、該冷却工程の少なくとも一つは、その冷
却工程導入前の超臨界ガスの一部を分岐して冷却源とす
る工程であり、2回以上の冷却工程における後段の冷却
工程での等エンタルピー膨張後の圧力を、前段の冷却工
程での等エンタルピー膨張後の圧力よりも低くすること
を特徴とする超臨界ガスの液化方法。1. A pre-cooling step in which a high-pressure supercritical gas is cooled to a temperature lower than its critical temperature, and a part of the pre-cooling step is isenthalpy-expanded as a cooling source for the supercritical gas. A main cooling step of further cooling the low-temperature supercritical gas after completion of the main cooling step, and a decompression step of reducing the pressure of the supercritical gas after the main cooling step, wherein the main cooling step comprises: The process includes two or more cooling steps in which a part of the low-temperature supercritical gas before or after introduction of each cooling step is branched and isenthalpy-expanded to serve as a cooling source of the cooling step. at least one is a step in which the cooling step before introduction of branches a part of the supercritical gas and cooling source, the subsequent in two or more cooling steps cooling
The pressure after the isenthalpy expansion in the process
Liquefaction method of supercritical gas, characterized in that the pressure after the expansion of isenthalpy is lower than the pressure .
おいて、前記予備冷却工程及び主冷却工程のいずれか1
か所以上に、冷却した超臨界ガスを等エンタルピー膨張
させた後にフラッシュガスと液体とに分離し、分離した
フラッシュガスを前記超臨界ガスの冷却源とし、分離し
た液体を次の冷却工程に導入する工程を挿入したことを
特徴とする超臨界ガスの液化方法。2. The method for liquefying a supercritical gas according to claim 1, wherein one of the pre-cooling step and the main cooling step is performed.
More than once, the cooled supercritical gas is isenthalpy-expanded and then separated into a flash gas and a liquid.The separated flash gas is used as a cooling source for the supercritical gas, and the separated liquid is introduced into the next cooling step. A method for liquefying a supercritical gas, comprising the step of:
低い温度まで冷却する熱交換器、及び該熱交換器を導出
した低温の超臨界ガスの一部を分岐して減圧弁で等エン
タルピー膨張させた後、前記熱交換器に冷却源として導
入する予備冷却回路と、該予備冷却回路を導出した低温
超臨界ガスをさらに低温に冷却する熱交換器、及び該熱
交換器の導入前又は導出後の低温超臨界ガスの一部を分
岐して減圧弁で等エンタルピー膨張させた後、前記低温
の超臨界ガスの冷却源として該熱交換器に導入する2回
路以上の冷却回路を有する主冷却回路と、該主冷却回路
を導出した超臨界ガスを減圧する減圧回路とを含み、前
記主冷却回路の2回路以上の冷却回路における後段の冷
却回路の減圧弁での等エンタルピー膨張後の圧力を、前
段の冷却回路の減圧弁での等エンタルピー膨張後の圧力
よりも低く設定したことを特徴とする超臨界ガスの液化
装置。3. A heat exchanger for cooling a high-pressure supercritical gas to a temperature lower than its critical temperature, a part of the low-temperature supercritical gas derived from the heat exchanger is branched, and isenthalpy is reduced by a pressure reducing valve. After expansion, a pre-cooling circuit to be introduced as a cooling source to the heat exchanger, a heat exchanger for further cooling the low-temperature supercritical gas derived from the pre-cooling circuit to a lower temperature, and before or before introduction of the heat exchanger After a part of the derived low-temperature supercritical gas is branched and isenthalpy-expanded by a pressure reducing valve, it is introduced into the heat exchanger twice as a cooling source for the low-temperature supercritical gas.
It is seen containing a main cooling circuit having a road or more cooling circuits, and a decompression circuit for decompressing the supercritical gas deriving main cooling circuit, before
Subsequent cooling in two or more cooling circuits of the main cooling circuit
The pressure after isenthalpy expansion at the pressure reducing valve
Pressure after isenthalpy expansion at pressure reducing valve in stage cooling circuit
A supercritical gas liquefaction apparatus characterized by being set lower than the above .
おいて、前記予備冷却回路及び主冷却回路のいずれか1
か所以上に、等エンタルピー膨張した超臨界ガスをフラ
ッシュガスと液体とに分離する気液分離器を設け、分離
したフラッシュガスを前記超臨界ガスの冷却源として前
段の冷却回路の熱交換器に導入する回路と、分離した液
体を次の冷却回路に導入する回路とを挿入したことを特
徴とする超臨界ガスの液化装置。4. The supercritical gas liquefaction apparatus according to claim 3, wherein one of the pre-cooling circuit and the main cooling circuit is provided.
In more than one place, a gas-liquid separator is provided to separate the supercritical gas expanded isenthalpy into a flash gas and a liquid, and the separated flash gas is used as a cooling source of the supercritical gas in a heat exchanger of a cooling circuit in a preceding stage. An apparatus for liquefying a supercritical gas, wherein a circuit for introducing a liquid and a circuit for introducing a separated liquid to a next cooling circuit are inserted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07413192A JP3303101B2 (en) | 1992-03-30 | 1992-03-30 | Supercritical gas liquefaction method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07413192A JP3303101B2 (en) | 1992-03-30 | 1992-03-30 | Supercritical gas liquefaction method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05280860A JPH05280860A (en) | 1993-10-29 |
JP3303101B2 true JP3303101B2 (en) | 2002-07-15 |
Family
ID=13538333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07413192A Expired - Lifetime JP3303101B2 (en) | 1992-03-30 | 1992-03-30 | Supercritical gas liquefaction method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3303101B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101508863B1 (en) | 2012-09-13 | 2015-04-07 | 미츠비시 쥬고 콘푸렛사 가부시키가이샤 | Compressing system, and gas compressing method |
US10570927B2 (en) | 2014-01-14 | 2020-02-25 | Mitsubishi Heavy Industries Compressor Corporation | Boosting system, and boosting method of gas |
JP6537639B2 (en) * | 2016-02-09 | 2019-07-03 | 三菱重工コンプレッサ株式会社 | Boost system |
EP4078047A1 (en) * | 2019-12-19 | 2022-10-26 | Praxair Technology, Inc. | System and method for supplying cryogenic refrigeration |
US11740014B2 (en) * | 2020-02-27 | 2023-08-29 | Praxair Technology, Inc. | System and method for natural gas and nitrogen liquefaction with independent nitrogen recycle loops |
US20210348838A1 (en) * | 2020-05-05 | 2021-11-11 | Neil M. Prosser | System and method for natural gas and nitrogen liquefaction with direct drive machines for turbines and boosters |
US12181215B2 (en) | 2021-12-06 | 2024-12-31 | Air Products And Chemicals, Inc. | Hydrogen liquefier |
-
1992
- 1992-03-30 JP JP07413192A patent/JP3303101B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05280860A (en) | 1993-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100410609C (en) | Hybrid gas liquefaction cycle with multiple expanders | |
US3677019A (en) | Gas liquefaction process and apparatus | |
US4638639A (en) | Gas refrigeration method and apparatus | |
KR100786135B1 (en) | Method for producing liquefied natural gas using double independent expander cooling cycles | |
JP6140713B2 (en) | Multiple nitrogen expansion process for LNG production | |
JP3868998B2 (en) | Liquefaction process | |
US3092976A (en) | Refrigeration of one fluid by heat exchange with another | |
JPH01222194A (en) | Manufacture of liquid freezing mixture | |
JP2000065471A (en) | Gas liquefaction process | |
EP0244205B1 (en) | Gas liquefaction method | |
US4608067A (en) | Permanent gas refrigeration method | |
US3735601A (en) | Low temperature refrigeration system | |
JP6835902B2 (en) | Improved methods and systems for cooling hydrocarbon streams using vapor phase refrigerants | |
US4638638A (en) | Refrigeration method and apparatus | |
US4740223A (en) | Gas liquefaction method and apparatus | |
US3237416A (en) | Liquefaction of gases | |
JP3303101B2 (en) | Supercritical gas liquefaction method and apparatus | |
JP3213846B2 (en) | Supercritical gas liquefaction method and apparatus | |
JPH11316059A (en) | Refrigeration process and plant using heat cycle of low boiling point fluid | |
JP3326536B2 (en) | Method and apparatus for liquefying nitrogen gas | |
JPH05180558A (en) | Method of liquefying gas and refrigerating plant | |
US4147525A (en) | Process for liquefaction of natural gas | |
US20230272971A1 (en) | Single mixed refrigerant lng production process | |
JP3326535B2 (en) | Gas liquefaction apparatus and start-up method thereof | |
TW202424409A (en) | Method and an apparatus for liquefying hydrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080510 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090510 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120510 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120510 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |