JP3302594B2 - Multilayer electronic component and method of manufacturing the same - Google Patents
Multilayer electronic component and method of manufacturing the sameInfo
- Publication number
- JP3302594B2 JP3302594B2 JP04159897A JP4159897A JP3302594B2 JP 3302594 B2 JP3302594 B2 JP 3302594B2 JP 04159897 A JP04159897 A JP 04159897A JP 4159897 A JP4159897 A JP 4159897A JP 3302594 B2 JP3302594 B2 JP 3302594B2
- Authority
- JP
- Japan
- Prior art keywords
- porcelain
- electronic component
- sio
- forming
- mzs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 229910052573 porcelain Inorganic materials 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 15
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 12
- 239000000919 ceramic Substances 0.000 claims description 11
- 238000001354 calcination Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 5
- 229910002367 SrTiO Inorganic materials 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 claims description 4
- 239000011164 primary particle Substances 0.000 claims description 4
- 238000010030 laminating Methods 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 1
- 229910052749 magnesium Inorganic materials 0.000 claims 1
- 239000011777 magnesium Substances 0.000 claims 1
- 238000005245 sintering Methods 0.000 claims 1
- 239000011701 zinc Substances 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 239000000463 material Substances 0.000 description 13
- 239000003985 ceramic capacitor Substances 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 239000002002 slurry Substances 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 238000010304 firing Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 229910002026 crystalline silica Inorganic materials 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910021489 α-quartz Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
- H01B3/12—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/20—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は、数100MHz
〜数GHz程度の高周波領域での使用に適した積層電子
部品及びそれらの製造方法に関するものである。BACKGROUND OF THE INVENTION The present invention relates to
The present invention relates to a multilayer electronic component suitable for use in a high frequency range of about to several GHz and a method for manufacturing the same.
【0002】[0002]
【従来の技術】高周波領域での使用に適した低容量型の
積層磁器コンデンサの誘電体磁器層の材料としては、例
えば、低誘電率ガラス系材料、MZS−Al2 O3 −S
rTiO3 系材料等、SiO2 を主成分の一部として含
有する誘電体磁器組成物が多く提案されている。2. Description of the Related Art As a material of a dielectric ceramic layer of a low-capacity laminated ceramic capacitor suitable for use in a high frequency region, for example, a low dielectric constant glass-based material, MZS-Al 2 O 3 -S
Many dielectric ceramic compositions containing SiO 2 as a main component, such as rTiO 3 materials, have been proposed.
【0003】ここで、低誘電率ガラス系材料は粗大な粒
子を多く含み、この粒子は粒度分布に非常に幅が有り、
しかも形状が異方形状(角張った形状)になっている。
また、これらの低誘電率ガラス系材料は、一般的に非常
に硬く、粉砕により微粒子化を実現しようとすると、破
壊靱性値が小さいので、異方形状になり易い。Here, the low dielectric constant glass-based material contains many coarse particles, and these particles have a very wide particle size distribution,
Moreover, the shape is anisotropic (square shape).
In addition, these low dielectric constant glass-based materials are generally very hard and tend to have an anisotropic shape because they have a low fracture toughness value when attempting to achieve fine particles by pulverization.
【0004】また、MZSの原料の一部に使用されてい
るシリカ原料は一般に結晶質シリカ系材料が使用されて
いる。結晶質シリカ系材料の主成分であるSiO2 は非
常に硬い材料であり、しかも市販されているシリカ原料
は結晶質(α−quartz)で、非常に粒子径が大き
く(平均粒子径で3μm以上、最大径は8μm以上)、
粒度分布にも幅が有り過ぎる。また、この粒子は、ガラ
ス系材料の場合と同様の理由から、異方形状をしてい
る。Further, as a silica raw material used as a part of the raw material of MZS, a crystalline silica material is generally used. SiO 2 , the main component of the crystalline silica material, is a very hard material, and the commercially available silica raw material is crystalline (α-quartz) and has a very large particle diameter (average particle diameter of 3 μm or more). , The maximum diameter is 8 μm or more),
The particle size distribution is too wide. The particles have an anisotropic shape for the same reason as in the case of the glass-based material.
【0005】微細なシリカ原料の粉末を得るために、粉
砕したシリカ粉末の懸濁液の上澄みを分級する方法があ
るが、そういった方法で得られる微細なシリカ原料の粉
末でも、その粒度は高々1.5μm程度であり、しかも
その粒子の形状は角張った異方形状をしている。[0005] In order to obtain a fine silica raw material powder, there is a method of classifying the supernatant of a crushed silica powder suspension, and even a fine silica raw material powder obtained by such a method has a particle size of at most 1. The particle size is about 0.5 μm, and the shape of the particles is angular and anisotropic.
【0006】このため、このような大きな粒子径で異方
形状のシリカ原料の粉末を用いて作製したMZSの粉体
も、シリカ原料の粉末の粒子形状が残っており、粗く、
異方形状である。For this reason, the MZS powder produced using such an anisotropically shaped silica raw material powder having a large particle diameter still has the particle shape of the silica raw material powder, and is coarse.
It has an anisotropic shape.
【0007】[0007]
【発明が解決しようとする課題】このような異方形状の
MZSを用いてグリーンシートを作成すると、グリーン
シートの表面が粗くなり、誘電体磁器層の厚みの均一性
が悪くなり、積層磁器コンデンサの容量分布が悪くな
る。また、グリーンシートの表面が粗くなることによっ
て内部電極の表面も荒れ、内部電極の表面抵抗が上昇
し、Q値の周波数特性、特に高周波領域におけるQ値の
周波数特性が悪くなる。When a green sheet is formed using such an anisotropic MZS, the surface of the green sheet becomes rough, the uniformity of the thickness of the dielectric ceramic layer becomes poor, and the laminated ceramic capacitor is formed. The capacity distribution becomes worse. In addition, the surface of the internal electrode becomes rough due to the rough surface of the green sheet, the surface resistance of the internal electrode increases, and the frequency characteristic of the Q value, particularly the frequency characteristic of the Q value in a high frequency region, deteriorates.
【0008】また、このようなMZSを用いて作成した
グリーンシートはバインダー量の適正範囲の幅が狭く、
バインダー量が過剰になったり、足りなくなり易い。バ
インダー量が過剰になると、チップのカット時にバリが
多く発生し、バレルを施してもバリは完全には消滅しな
い。バインダー量が足りなくなると、シートの密着強度
が低下して、積層ずれ、エアの巻き込みが起こり、信頼
性の低下を引き起こす。Further, the green sheet prepared by using such MZS has a narrow range of an appropriate range of the binder amount,
The amount of the binder tends to be excessive or insufficient. When the amount of the binder is excessive, burrs are frequently generated at the time of cutting the chips, and the burrs do not completely disappear even when the barrel is applied. When the amount of the binder is insufficient, the adhesive strength of the sheet is reduced, the lamination is displaced, and air is entangled, and the reliability is reduced.
【0009】また、このようなMZSを用いて作成した
グリーンシートは収縮開始温度が高いので、焼成時に積
層磁器コンデンサにデラミネーションを生じさせ易い。Further, since the green sheet produced by using such MZS has a high shrinkage onset temperature, the laminated ceramic capacitor is liable to cause delamination during firing.
【0010】更に、ガラス系材料を用いた場合は、高周
波領域で、結晶質の材料と比較して、損失が大きくなる
と言われている。[0010] Further, it is said that when a glass-based material is used, the loss is higher in a high frequency region than in a crystalline material.
【0011】本発明は、Q値の周波数特性、特に高周波
領域におけるQ値の周波数特性が良好で、焼成温度の低
い積層電子部品を提供することと、所望の特性を備えた
この種の積層電子部品を容易に得ることができる積層電
子部品の製造方法を提供することを目的とする。It is an object of the present invention to provide a multilayer electronic component having good Q-value frequency characteristics, particularly good Q-value frequency characteristics in a high-frequency region, and a low firing temperature, and to provide this kind of multilayer electronic device having desired characteristics. It is an object of the present invention to provide a method of manufacturing a laminated electronic component that can easily obtain a component.
【0012】[0012]
【課題を解決するための手段】本発明に係る積層電子部
品は、1又は2以上の磁器層と2以上の内部電極とを交
互に積層してなり、該磁器層と該内部電極との界面の粗
さが0μmを超え、0.2μm以下である。According to the present invention, there is provided a laminated electronic component in which one or more ceramic layers and two or more internal electrodes are alternately laminated, and an interface between the ceramic layer and the internal electrodes is provided. Has a roughness of more than 0 μm and 0.2 μm or less .
【0013】ここで、磁器層は誘電体磁器組成物からな
り、該誘電体磁器組成物は、MgO、ZnO及びSiO
2を仮焼してなるMZSとAl2O3とSrTiO3と
を主成分とする混合物の焼結体からなり、該磁器層は前
記内部電極に挟持され、該磁器層と該内部電極によって
磁器コンデンサが形成されている。Here, the porcelain layer is composed of a dielectric porcelain composition, and the dielectric porcelain composition is composed of MgO, ZnO and SiO.
2 is made of a sintered body of a mixture containing MZS, Al 2 O 3 and SrTiO 3 as main components obtained by calcining the ceramic layer, and the porcelain layer is sandwiched between the internal electrodes. A capacitor is formed.
【0014】また、本発明に係る積層電子部品の製造方
法は、SiO2 を含有する混合物を仮焼する工程と、該
仮焼によって得られたものを含む磁器原料を調製する工
程と、該磁器原料からなる未焼成磁器層と内部電極パタ
ーンとを交互に積層した積層体を形成する工程と、該積
層体を焼成する工程と、該積層体に外部電極を形成する
工程とを備え、前記SiO2 として、平均一次粒子径が
80nm〜0.5μmで、粒子形状が略球状のものを使
用するものである。Further, the method of manufacturing a laminated electronic component according to the present invention comprises a step of calcining a mixture containing SiO 2 , a step of preparing a porcelain raw material including the one obtained by the calcining, A step of forming a laminate in which an unsintered ceramic layer made of a raw material and an internal electrode pattern are alternately laminated; a step of firing the laminate; and a step of forming an external electrode on the laminate. As No. 2, those having an average primary particle diameter of 80 nm to 0.5 μm and a substantially spherical particle shape are used.
【0015】ここで、前記混合物としてMgO、ZnO
及びSiO2 を含有するものを使用し、前記積層物を形
成する工程を、前記仮焼によって得られたMZSを主成
分の一部とする未焼結磁器シートを形成する工程と、該
未焼結磁器シートに内部電極パターンを形成する工程
と、該内部電極パターンを形成した該未焼結磁器シート
を積層する工程とで構成して、積層磁器コンデンサを製
造するようにしてもよい。Here, as the mixture, MgO, ZnO
And a step of forming a laminate by using a material containing SiO 2 and a step of forming an unsintered porcelain sheet mainly containing MZS obtained by the calcining. A laminated ceramic capacitor may be manufactured by forming a step of forming an internal electrode pattern on a porcelain sheet and a step of laminating the unsintered porcelain sheet having the internal electrode pattern formed thereon.
【0016】また、前記SiO2 としては、結晶質、非
晶質、いずれのものも使用することができるが、上記の
ような微細粒子を製造する観点から考えると非晶質のも
のが好ましい。また、未焼結磁器シートとしては、例え
ばMZS,Al2 O3 及びSrTiO3 を主成分とする
ものを使用することができるが、MZSが含まれるもの
であれば、これ以外のものを使用してもよい。As the SiO 2 , any of crystalline and amorphous materials can be used, but from the viewpoint of producing fine particles as described above, amorphous materials are preferable. As the unsintered porcelain sheet, for example, a sheet mainly composed of MZS, Al 2 O 3 and SrTiO 3 can be used, but if the sheet contains MZS, another sheet is used. You may.
【0017】なお、本発明は、積層磁器コンデンサ以外
に、磁器組成物を使用している積層インダクタ、積層L
C部品等、磁器組成物の原料としてSiO2 を使用する
積層電子部品にも適用可能である。The present invention relates to a multilayer inductor using a ceramic composition and a multilayer L other than a multilayer ceramic capacitor.
The present invention is also applicable to a laminated electronic component using SiO 2 as a raw material of a porcelain composition, such as a C component.
【0018】[0018]
【発明の実施の形態】まず、出発原料として、MgO,
ZnO及びSiO2 を表1に示すような比率で秤量し、
これらをボールミルに入れ、湿式で15時間粉砕混合
し、これらの混合物からな泥漿を得た。ここで、SiO
2 は、平均1次粒子径が0.1μmで、粒子形状がほゞ
球形の非晶質シリカ(実施例1)と、平均1次粒子径が
3μmで、粒子形状が角状の結晶質シリカ(比較例1)
を使用した。DESCRIPTION OF THE PREFERRED EMBODIMENTS First, MgO,
ZnO and SiO 2 were weighed at the ratios shown in Table 1,
These were put into a ball mill and pulverized and mixed in a wet system for 15 hours to obtain a slurry from these mixtures. Where SiO
2 is amorphous silica having an average primary particle diameter of 0.1 μm and a particle shape of approximately spherical (Example 1), and crystalline silica having an average primary particle diameter of 3 μm and a square particle shape. (Comparative Example 1)
It was used.
【0019】[0019]
【表1】 [Table 1]
【0020】次に、この泥漿をボールミルから取り出し
て濾過し、ケーキの部分を乾燥器に入れ、150℃で充
分に乾燥させ、混合物の粉末を得た。そして、この混合
物の粉末を加熱炉に入れ、大気中において850〜12
00℃で仮焼し、混合物を構成している化合物を相互に
反応させ、MZSを得た。ここで、MZSの成分と焼成
温度との関係を調べたところ、表2に示す通りであっ
た。Next, the slurry was taken out of the ball mill and filtered, and the cake was placed in a drier and dried sufficiently at 150 ° C. to obtain a powdery mixture. Then, the powder of this mixture is put into a heating furnace, and 850 to 12
Calcination was performed at 00 ° C., and the compounds constituting the mixture were reacted with each other to obtain MZS. Here, when the relationship between the components of MZS and the firing temperature was examined, the results were as shown in Table 2.
【0021】[0021]
【表2】 [Table 2]
【0022】次に、この仮焼で得られたMZSをボール
ミルに入れ、湿式で充分に粉砕してMZSの泥漿を形成
し、この泥漿を取り出して濾過し、ケーキの部分を乾燥
器に入れ、150℃で充分に乾燥させ、MZSの粉末を
得た。そして、MZS,Al2 O3 及びSrTiO3 を
表3に示すような配合比率で秤量し、これらをボールミ
ルに入れ、湿式で充分に混合し、これらの混合物からな
る泥漿を得た。Next, the MZS obtained by this calcining is put into a ball mill and sufficiently pulverized by a wet method to form MZS slurry. The slurry is taken out and filtered, and the cake portion is put into a dryer. After sufficiently drying at 150 ° C., powder of MZS was obtained. Then, MZS, Al 2 O 3 and SrTiO 3 were weighed at the compounding ratio shown in Table 3, and they were put into a ball mill and mixed well by a wet method to obtain a slurry composed of these mixtures.
【0023】[0023]
【表3】 [Table 3]
【0024】次に、この泥漿を取り出して濾過し、ケー
キの部分を乾燥器に入れ、150℃で充分に乾燥させ、
混合物の粉末を得た。そして、この混合物の粉末に溶剤
系バインダーを加えて充分に混合してスラリーを作成
し、このスラリーをドクターブレード法で塗工して、グ
リーンシートを作成した。ここで、グリーンシートの表
面粗さRA を調べたところ、表4に示す通りであった。Next, the slurry is taken out and filtered, and the cake portion is put in a drier and dried sufficiently at 150 ° C.
A powder of the mixture was obtained. Then, a solvent-based binder was added to the powder of the mixture and mixed well to prepare a slurry, and the slurry was applied by a doctor blade method to prepare a green sheet. Here, when the surface roughness RA of the green sheet was examined, it was as shown in Table 4.
【0025】[0025]
【表4】 [Table 4]
【0026】次に、このグリーンシートにAgペースト
からなる内部電極パターンを印刷し、このグリーンシー
トを複数枚積層した。ここで、内部電極パターンは隣り
合うグリーンシート間で長手方向に半分程ずれるように
した。そして、この積層したグリーンシートに厚さ方向
から圧力を加え、グリーンシート相互を圧着させ、この
圧着させた積層物を格子状に裁断し、積層体チップを得
た。Next, an internal electrode pattern made of Ag paste was printed on the green sheet, and a plurality of the green sheets were laminated. Here, the internal electrode pattern was shifted by about half in the longitudinal direction between adjacent green sheets. Then, pressure was applied to the laminated green sheets from the thickness direction to press the green sheets together, and the pressed laminate was cut into a lattice to obtain a laminated chip.
【0027】次に、この積層体チップを大気中で加熱
し、まず、グリーンシート中に含まれている有機バイン
ダーを燃焼除去させ、その後、1000℃で2時間焼成
し、積層体チップを焼結させた。ここで、この焼成によ
って得られた積層体チップを切断し、その切断面を研磨
し、顕微鏡で観察したところ、図1,2の顕微鏡写真に
示すようになっていた。ここで、図1は実施例1に係る
積層磁器コンデンサの断面の顕微鏡写真、図2は比較例
1に係る積層磁器コンデンサの断面の顕微鏡写真であ
る。Next, the laminated chip is heated in the air to burn off the organic binder contained in the green sheet, and then fired at 1000 ° C. for 2 hours to sinter the laminated chip. I let it. Here, the laminated body chip obtained by this firing was cut, the cut surface was polished, and observed with a microscope, the result was as shown in the micrographs of FIGS. Here, FIG. 1 is a micrograph of a cross section of the multilayer ceramic capacitor according to Example 1, and FIG. 2 is a micrograph of a cross section of the multilayer ceramic capacitor according to Comparative Example 1.
【0028】次に、積層体チップの両端部にAgペース
トを塗布し、700℃で15分間焼き付けて、静電容量
が1pFの積層チップコンデンサを得た。そして、この
積層チップコンデンサの高周波特性(Q値)を測定した
ところ、表5に示す通りであった。Next, an Ag paste was applied to both ends of the multilayer chip and baked at 700 ° C. for 15 minutes to obtain a multilayer chip capacitor having a capacitance of 1 pF. The high frequency characteristics (Q value) of the multilayer chip capacitor were measured, and the results were as shown in Table 5.
【0029】[0029]
【表5】 [Table 5]
【0030】表5の結果から、実施例1と比較例1の高
周波特性(Q値)を比較してみると、グリーンシートの
平均シート表面粗さRA が滑らか(表4参照)で、誘電
体磁器層と内部電極との界面が滑らか(図1,2参照)
な実施例1の方が高周波特性(Q値)において優位性が
見られることがわかる。Comparing the high frequency characteristics (Q value) of Example 1 and Comparative Example 1 from the results in Table 5, the average sheet surface roughness RA of the green sheet is smooth (see Table 4), The interface between the ceramic porcelain layer and the internal electrode is smooth (see Figs. 1 and 2)
It can be seen that Example 1 has superiority in high-frequency characteristics (Q value).
【0031】なお、上記では積層磁器コンデンサを例に
挙げて説明しているが、積層インダクタ、積層LC部品
についても同様の実験をしたところ、同様の優位性が認
められた。In the above description, the laminated ceramic capacitor is taken as an example. However, the same experiment was conducted with respect to the laminated inductor and the laminated LC component, and the same superiority was recognized.
【0032】[0032]
【発明の効果】請求項1に記載の発明によれば、磁器層
の表面が非常に平滑になり、内部電極の表面抵抗が小さ
くなり、積層電子部品のQ値の周波数特性、特に高周波
領域におけるQ値の周波数特性が良好になるという効果
がある。According to the first aspect of the present invention, the surface of the porcelain layer becomes very smooth, the surface resistance of the internal electrodes becomes small, and the frequency characteristic of the Q value of the laminated electronic component, especially in the high frequency region, This has the effect of improving the frequency characteristics of the Q value.
【0033】請求項2〜5に記載の発明によれば、バイ
ンダー量、可塑剤量の適正値の範囲が広くなり、積層体
チップの裁断時のバリの発生が少なくなり、シートの密
着強度が向上し、積層ずれやエアーの巻き込みが防止さ
れ、信頼性の高い積層電子部品が得られるという効果が
ある。According to the second to fifth aspects of the present invention, the appropriate range of the amount of the binder and the amount of the plasticizer is widened, the occurrence of burrs when cutting the laminated chip is reduced, and the adhesive strength of the sheet is reduced. This has the effect of improving lamination displacement and air entrainment, and providing a highly reliable laminated electronic component.
【0034】請求項2〜5に記載の発明によれば、積層
体チップの焼成温度、すなわち積層体チップの収縮開始
温度を約50℃低温化できるので、積層体チップにデラ
ミネーションが発生し難くなるという効果がある。According to the second to fifth aspects of the present invention, since the firing temperature of the laminated chip, that is, the shrinkage start temperature of the laminated chip can be lowered by about 50 ° C., delamination hardly occurs in the laminated chip. It has the effect of becoming.
【図1】実施例1に係る積層磁器コンデンサの断面の顕
微鏡写真である。FIG. 1 is a photomicrograph of a cross section of a multilayer ceramic capacitor according to Example 1.
【図2】比較例1に係る積層磁器コンデンサの断面の顕
微鏡写真である。FIG. 2 is a micrograph of a cross section of the multilayer ceramic capacitor according to Comparative Example 1.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 茶園 広一 東京都台東区上野6丁目16番20号 太陽 誘電株式会社内 (56)参考文献 特開 平4−333207(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 4/00 - 4/42 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Koichi Chaen 6-16-20 Ueno, Taito-ku, Tokyo Taiyo Yuden Co., Ltd. (56) References JP-A-4-333207 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) H01G 4/00-4/42
Claims (5)
極とを交互に積層してなり、該磁器層は誘電体磁器組成
物からなり、該誘電体磁器組成物は、MgO、ZnO及
びSiO 2 を仮焼してなる珪酸マグネシウム・亜鉛(以
下、「MZS」という。)とAl 2 O 3 とSrTiO 3
とを主成分とする混合物の焼結体からなり、該磁器層は
前記内部電極に挟持され、該磁器層と該内部電極によっ
て磁器コンデンサが形成され、該磁器層と該内部電極と
の界面の粗さは0μmを超え、0.2μm以下であるこ
とを特徴とする積層電子部品。1. One or more porcelain layers and two or more internal electrodes are alternately laminated, said porcelain layers being composed of a dielectric ceramic composition.
The dielectric porcelain composition comprises MgO, ZnO and
Fine the SiO 2 formed by calcining magnesium silicate-zinc (hereinafter
Below, it is called “MZS”. ), Al 2 O 3 and SrTiO 3
And a sintered body of a mixture mainly composed of
Sandwiched between the internal electrodes, and sandwiched between the porcelain layer and the internal electrodes.
To form a porcelain capacitor, and the porcelain layer and the internal electrode
The multilayer electronic component according to any one of claims 1 to 3, wherein the interface has a roughness of more than 0 µm and not more than 0.2 µm .
程と、該仮焼によって得られたものを含む磁器原料を調
製する工程と、該磁器原料からなる未焼成磁器層と内部
電極パターンとを交互に積層した積層物を形成する工程
と、該積層物を焼成する工程と、該積層物に外部電極を
形成する工程とを備え、前記SiO2として、平均一次
粒子径が80nm〜0.5μmで、粒子形状が略球状の
ものを使用することを特徴とする積層電子部品の製造方
法。2. A step of calcining a mixture containing SiO 2 , a step of preparing a porcelain raw material including the one obtained by the calcination, and a step of sintering an unfired porcelain layer comprising the porcelain raw material and an internal electrode pattern. , A step of baking the laminate, and a step of forming an external electrode on the laminate, wherein the SiO 2 has an average primary particle diameter of 80 nm to 0.1 nm. A method for producing a laminated electronic component, wherein a particle having a particle diameter of 5 μm and a substantially spherical shape is used.
2を含有し、前記積層物を形成する工程が、前記仮焼に
よって得られたMZSを主成分の一部とする未焼結磁器
シートを形成する工程と、該未焼結磁器シートに内部電
極パターンを形成する工程と、該内部電極パターンを形
成した該未焼結磁器シートを積層する工程とからなるこ
とを特徴とする請求項2に記載の積層電子部品の製造方
法。3. The method according to claim 1, wherein the mixture is MgO, ZnO and SiO.
And forming the laminate by forming an unsintered porcelain sheet containing MZS obtained by the calcination as a main component, and forming an internal electrode on the unsintered porcelain sheet. The method for manufacturing a laminated electronic component according to claim 2, comprising a step of forming a pattern and a step of laminating the unsintered porcelain sheet on which the internal electrode pattern is formed.
とする請求項2又は3に記載の積層電子部品の製造方
法。4. The method according to claim 2, wherein the SiO 2 is amorphous.
O3及びSrTiO3を主成分とすることを特徴とする
請求項2〜4のいずれかに記載の積層電子部品の製造方
法。5. The method according to claim 1, wherein the green ceramic sheet is MZS, Al 2
The method for producing a multilayer electronic component according to claim 2, wherein O 3 and SrTiO 3 are used as main components.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04159897A JP3302594B2 (en) | 1997-02-10 | 1997-02-10 | Multilayer electronic component and method of manufacturing the same |
US09/018,912 US6137672A (en) | 1997-02-10 | 1998-02-05 | Laminated electronic part, method for the production thereof, and dielectric ceramic composition |
US09/656,221 US6346161B1 (en) | 1997-02-10 | 2000-09-06 | Laminated electronic part, method for the production thereof, and dielectric ceramic composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04159897A JP3302594B2 (en) | 1997-02-10 | 1997-02-10 | Multilayer electronic component and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10223469A JPH10223469A (en) | 1998-08-21 |
JP3302594B2 true JP3302594B2 (en) | 2002-07-15 |
Family
ID=12612842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04159897A Expired - Fee Related JP3302594B2 (en) | 1997-02-10 | 1997-02-10 | Multilayer electronic component and method of manufacturing the same |
Country Status (2)
Country | Link |
---|---|
US (2) | US6137672A (en) |
JP (1) | JP3302594B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3302594B2 (en) * | 1997-02-10 | 2002-07-15 | 太陽誘電株式会社 | Multilayer electronic component and method of manufacturing the same |
US6692598B1 (en) * | 1999-10-18 | 2004-02-17 | Murata Manufacturing Co. Ltd | Method of producing ceramic green sheet and method of manufacturing multilayer ceramic electronic part |
JP2001131673A (en) * | 1999-11-05 | 2001-05-15 | Sony Corp | Electronic thin film material, dielectric capacitor and nonvolatile memory |
US6514895B1 (en) * | 2000-06-15 | 2003-02-04 | Paratek Microwave, Inc. | Electronically tunable ceramic materials including tunable dielectric and metal silicate phases |
JP3581114B2 (en) * | 2001-06-27 | 2004-10-27 | シャープ株式会社 | Diffusion prevention film, method of manufacturing the same, semiconductor memory element and method of manufacturing the same |
WO2005058774A1 (en) * | 2003-12-18 | 2005-06-30 | Murata Manufacturing Co., Ltd. | Dielectric ceramic composition and multilayer electronic component |
US9591893B2 (en) | 2014-12-17 | 2017-03-14 | Westlife Distribution USA, LLC | Fastener with concealed tool bits |
JP2022151231A (en) * | 2021-03-26 | 2022-10-07 | 太陽誘電株式会社 | Ceramic electronic component and manufacturing method thereof |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4266265A (en) * | 1979-09-28 | 1981-05-05 | Sprague Electric Company | Ceramic capacitor and method for making the same |
JPS6287456A (en) * | 1985-10-11 | 1987-04-21 | 日本碍子株式会社 | Ceramic composition for dielectric porcelain |
US4874716A (en) * | 1986-04-01 | 1989-10-17 | Texas Instrument Incorporated | Process for fabricating integrated circuit structure with extremely smooth polysilicone dielectric interface |
DE68926099T2 (en) * | 1988-11-07 | 1996-10-10 | Matsushita Electric Ind Co Ltd | Dielectric ceramic composition |
US5010443A (en) * | 1990-01-11 | 1991-04-23 | Mra Laboratories, Inc. | Capacitor with fine grained BaTiO3 body and method for making |
US5101319A (en) * | 1990-04-03 | 1992-03-31 | Vistatech Corporation | Pre-engineered electrode/dielectric composite film and related manufacturing process for multilayer ceramic chip capacitors |
US5534290A (en) * | 1990-04-03 | 1996-07-09 | Visatech Corporation | Surround print process for the manufacture of electrode embedded dielectric green sheets |
JP2757587B2 (en) * | 1990-06-26 | 1998-05-25 | 松下電器産業株式会社 | Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same |
US5254360A (en) * | 1991-07-29 | 1993-10-19 | Bmc Technology Corporation | Process for producing ceramic capacitors with thinner electrodes |
JP2858073B2 (en) * | 1992-12-28 | 1999-02-17 | ティーディーケイ株式会社 | Multilayer ceramic parts |
JPH07211132A (en) * | 1994-01-10 | 1995-08-11 | Murata Mfg Co Ltd | Conductive paste, and manufacture of laminated ceramic capacitor using same |
US5629252A (en) * | 1995-06-15 | 1997-05-13 | Matsushita Electric Industrial Co., Ltd. | Method for manufacturing a dielectric ceramic composition dielectric ceramic and multilayer high frequency device |
JP3080587B2 (en) * | 1996-06-28 | 2000-08-28 | 太陽誘電株式会社 | Dielectric porcelain composition and porcelain capacitor |
JP3302594B2 (en) * | 1997-02-10 | 2002-07-15 | 太陽誘電株式会社 | Multilayer electronic component and method of manufacturing the same |
WO1998044523A1 (en) * | 1997-03-31 | 1998-10-08 | Tdk Corporation | Non-reducing dielectric ceramic material |
-
1997
- 1997-02-10 JP JP04159897A patent/JP3302594B2/en not_active Expired - Fee Related
-
1998
- 1998-02-05 US US09/018,912 patent/US6137672A/en not_active Expired - Lifetime
-
2000
- 2000-09-06 US US09/656,221 patent/US6346161B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US6346161B1 (en) | 2002-02-12 |
US6137672A (en) | 2000-10-24 |
JPH10223469A (en) | 1998-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3767362B2 (en) | Manufacturing method of multilayer ceramic electronic component | |
JPS6036369A (en) | Ceramic manufacture | |
JP2014072203A (en) | Multilayer ceramic capacitor and method for manufacturing the same | |
JP2001114569A (en) | Ceramic slurry composition, ceramic green sheet and production of multilayer ceramic electronic part | |
JP3302594B2 (en) | Multilayer electronic component and method of manufacturing the same | |
JP2001167971A (en) | Laminated type ceramic electronic component and manufacturing method therefor | |
JP4622518B2 (en) | Manufacturing method of multilayer ceramic capacitor | |
JP4208448B2 (en) | Porcelain capacitor and manufacturing method thereof | |
JP4587924B2 (en) | Multilayer ceramic capacitor | |
JP4385726B2 (en) | Conductive paste and method for producing multilayer ceramic capacitor using the same | |
JP4627876B2 (en) | Dielectric porcelain and multilayer electronic components | |
JP2004179349A (en) | Laminated electronic component and method of manufacturing the same | |
JP2003133164A (en) | Laminated ceramic capacitor and its manufacturing method | |
KR100379205B1 (en) | Electroconductive paste, laminated ceramic capacitor, and method for manufacturing the same | |
KR100951317B1 (en) | Method for manufacturing dielectric material and multilayer ceramic capacitor comprising dielectric material manufactured using same | |
JP4782457B2 (en) | Multilayer ceramic capacitor | |
JP3759386B2 (en) | Multilayer ceramic capacitor and internal electrode paste used therefor | |
JP2007123198A (en) | Conductive paste and method for manufacturing multilayer electronic component | |
JP4529358B2 (en) | Ceramic green sheet | |
JPH07335474A (en) | Manufacture of ceramic capacitor | |
JP2004111951A (en) | Multilayer ceramic capacitor and method of manufacturing the same | |
JP4601438B2 (en) | Green sheet manufacturing method | |
JP3319704B2 (en) | Dielectric porcelain composition and porcelain capacitor | |
JP2007039755A (en) | Composite metal powder and manufacturing method thereof, conductor paste, manufacturing method of electronic component, and electronic component | |
JPH06172017A (en) | Ceramic substrate and green sheet thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20011016 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020409 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080426 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090426 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100426 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100426 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110426 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120426 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130426 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140426 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |