JP3301342B2 - Thermal storage type air conditioner - Google Patents
Thermal storage type air conditionerInfo
- Publication number
- JP3301342B2 JP3301342B2 JP07305997A JP7305997A JP3301342B2 JP 3301342 B2 JP3301342 B2 JP 3301342B2 JP 07305997 A JP07305997 A JP 07305997A JP 7305997 A JP7305997 A JP 7305997A JP 3301342 B2 JP3301342 B2 JP 3301342B2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- flow control
- heat transfer
- control valve
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003507 refrigerant Substances 0.000 claims description 67
- 238000005338 heat storage Methods 0.000 claims description 47
- 230000001172 regenerating effect Effects 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- 238000005057 refrigeration Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006837 decompression Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は蓄熱運転と蓄熱利用
空調運転を実施することで昼間の空気調和による電力消
費量の低減を実現する蓄熱式空気調和機に関し、特に蓄
熱式空気調和機の冷凍サイクルおよびその制御に好適で
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative air conditioner that realizes a reduction in power consumption by daytime air conditioning by performing a heat storage operation and a heat storage air conditioning operation, and more particularly, to a refrigeration system for a heat storage air conditioner. Suitable for cycle and its control.
【0002】[0002]
【従来の技術】圧縮機、凝縮器、流量調整弁、蒸発器を
冷媒配管で接続し、冷媒配管の途中に蓄熱槽を設け、蓄
熱槽内に伝熱管を水平方向に配置したものが、例えば特
開平6−101875号公報に記載のように知られてい
る。2. Description of the Related Art For example, a compressor, a condenser, a flow control valve, and an evaporator are connected by a refrigerant pipe, a heat storage tank is provided in the middle of the refrigerant pipe, and a heat transfer tube is horizontally arranged in the heat storage tank. It is known as described in JP-A-6-101875.
【0003】[0003]
【発明が解決しようとする課題】上記従来技術による蓄
熱式空気調和機は、蓄熱槽の容量を大型化する場合に伝
熱管の増加にあわせ水平方向の寸法を大きくする変更が
必要である。したがって大型化した蓄熱槽の設置にあた
ってその据え付け面積は大きくしなければならないとい
う問題がある。In the heat storage type air conditioner according to the prior art, when the capacity of the heat storage tank is increased, it is necessary to change the size in the horizontal direction in accordance with the increase of the heat transfer tubes. Therefore, there is a problem that the installation area must be increased when installing a large-sized heat storage tank.
【0004】また、据え付け面積を小さくするため伝熱
管を垂直に積層した場合は、蓄熱槽の水面近傍と水底近
傍に配置される伝熱管で冷媒の流量分配の不均一が生
じ、蓄熱槽内の氷の偏在が発生する問題がある。When the heat transfer tubes are vertically stacked to reduce the installation area, the flow distribution of the refrigerant in the heat transfer tubes arranged near the water surface and the water bottom of the heat storage tank becomes uneven, and the heat storage tube inside the heat storage tank becomes uneven. There is a problem of uneven distribution of ice.
【0005】本発明の目的は、上記従来技術の問題点を
解決し、容量を大きくしても蓄熱槽の据え付け面積を小
さくし、蓄熱層内の冷媒の流量分配を均一にして運転時
の消費電力の低減を図った蓄熱式空気調和機を提供する
ことにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, to reduce the installation area of the heat storage tank even if the capacity is increased, to make the flow rate distribution of the refrigerant in the heat storage layer uniform, and to reduce the consumption during operation. An object of the present invention is to provide a regenerative air conditioner that reduces power consumption.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するた
め、本発明は、圧縮機、四方切換弁、第1の熱交換器、
第1の流量調整弁、第1の開閉弁、第2の流量調整弁、
第2の熱交換器、とが順次冷媒配管で接続され、伝熱管
が内包された蓄熱槽は前記第1の流量調整弁と前記第1
の開閉弁との間から第2の開閉弁を介して前記圧縮機あ
るいは第3の開閉弁を介して第2の流量調整弁へ接続さ
れる蓄熱式空気調和機において、蓄熱槽内に水平方向に
配置されて垂直方向に複数積層された前記伝熱管と、前
記伝熱管の一端に接続された第1の絞り装置と、複数の
前記第1の絞り装置に接続された複数の分岐管と、前記
分岐管から前記第1の流量調整弁と前記第1の開閉弁と
の間に接続された第3の流量調整弁と、前記伝熱管の他
端に接続され前記第2の開閉弁と前記第3の開閉弁との
間に接続された集合管と、を備え、上方に設置された前
記伝熱管に接続される前記第1の絞り装置は、下方のも
のに比べその長さの差により発生する圧力損失に相当す
る絞り量になるように設定され、前記第3の流量調整弁
の開度はそれぞれの前記分岐管を流れる冷媒量が同じと
なるように制御されるものである。 In order to solve the above-mentioned problems, the present invention provides a compressor, a four-way switching valve, a first heat exchanger,
A first flow control valve, a first on-off valve, a second flow control valve,
The second heat exchanger is sequentially connected with a refrigerant pipe, and the heat transfer pipe is connected to the second heat exchanger.
Is contained in the heat storage tank, the first flow control valve and the first flow control valve.
From the compressor through a second on-off valve from between the
Or connected to a second flow control valve via a third on-off valve.
Heat storage type air conditioners,
A plurality of the heat transfer tubes arranged and vertically stacked,
A first expansion device connected to one end of the heat transfer tube;
A plurality of branch pipes connected to the first throttle device;
From the branch pipe to the first flow control valve and the first on-off valve;
And a third flow control valve connected between the
Of the second on-off valve and the third on-off valve
A collecting pipe connected therebetween, and the
The first expansion device connected to the heat transfer tube is connected to the lower heat transfer tube.
Pressure loss due to the difference in length.
The third flow rate control valve is set so that
Is the same as the amount of refrigerant flowing through each of the branch pipes.
It is controlled so that
【0007】これにより、蓄熱槽内に積層された伝熱管
を流れる冷媒の流量を各伝熱管毎に同じとなるように制
御できるので、蓄熱層内の冷媒の流量分配を均一にでき
る。よって、蓄熱層内で氷の偏在を防止でき、かつ昼間
に蓄熱槽を利用して空気調和機を運転する時、消費電力
を低減することができる。[0007] Thus, the flow rate of the refrigerant flowing through the heat transfer tubes stacked in the heat storage tank can be controlled so as to be the same for each heat transfer tube, so that the flow rate distribution of the refrigerant in the heat storage layer can be made uniform. Therefore, uneven distribution of ice in the heat storage layer can be prevented, and power consumption can be reduced when the air conditioner is operated in the daytime using the heat storage tank.
【0008】また、上記のものにおいて、集合管から第
2の開閉弁と第3の開閉弁との間の冷媒配管に温度セン
サを配設し、温度センサからの信号により、第3の流量
調整弁の開度を決定することことが望ましい。 [0008] In the above-mentioned apparatus , the collecting pipe is
A temperature sensor is connected to the refrigerant pipe between the second on-off valve and the third on-off valve.
A third flow rate according to the signal from the temperature sensor.
It is desirable to determine the opening of the regulating valve.
【0009】これにより、蓄熱槽内に積層された伝熱管
を流れる冷媒の流量を各伝熱管毎に同じとなるようにで
きるので、蓄熱層内の冷媒の流量分配を均一にでき、蓄
熱層内で氷の偏在を防止できる。Thus, the flow rate of the refrigerant flowing through the heat transfer tubes stacked in the heat storage tank can be made the same for each heat transfer tube, so that the flow rate distribution of the refrigerant in the heat storage layer can be made uniform, Can prevent the uneven distribution of ice.
【0010】[0010]
【0011】[0011]
【発明の実施の形態】以下、本発明の実施例を図1、2
を参照して詳細に説明する。図1は一実施例による蓄熱
式空気調和機のブロック図、図2は、他の実施例による
ブロック図を示している。1は圧縮機で、四方切換弁
2、第1の熱交換器3、第1の流量調整弁4、第2の流
量調整弁5a、5b、第2の熱交換器6a、6b、が順
次冷媒配管で接続される。第1の流量調整弁4と第2の
流量調整弁5a、5bの集合部の間に第1の開閉弁7が
配設される。BRIEF DESCRIPTION OF THE DRAWINGS FIG.
This will be described in detail with reference to FIG. FIG. 1 is a block diagram of a regenerative air conditioner according to one embodiment, and FIG. 2 is a block diagram according to another embodiment. Reference numeral 1 denotes a compressor, in which a four-way switching valve 2, a first heat exchanger 3, a first flow control valve 4, a second flow control valve 5a, 5b, and a second heat exchanger 6a, 6b are sequentially connected to a refrigerant. Connected by piping. A first opening / closing valve 7 is disposed between the first flow rate regulating valve 4 and the gathering portion of the second flow rate regulating valves 5a and 5b.
【0012】8は蓄熱槽で、複数の伝熱管10a、10
b、10c、10dは蓄熱槽8に内の垂直方向に積層さ
れ蓄熱熱交換器9を構成する。各伝熱管10a、10b
及び10c、10dの一方は第1の絞り装置17a、1
7b及び17c、17dに接続され、さらに分岐管18
a及び18bに接続された後、第3の流量調整弁11a
及び11bに接続される。Reference numeral 8 denotes a heat storage tank, which includes a plurality of heat transfer tubes 10a and 10a.
b, 10c, and 10d are stacked vertically in the heat storage tank 8 to form the heat storage heat exchanger 9. Each heat transfer tube 10a, 10b
And one of 10c and 10d is the first diaphragm device 17a, 1
7b and 17c, 17d, and a branch pipe 18
a and 18b, the third flow control valve 11a
And 11b.
【0013】上方に設置された伝熱管10aに接続され
る第1の絞り装置17aは、伝熱管10bに接続される
第1の絞り装置17bに比べ伝熱管長さの差(10b−
10a)により発生する圧力損失に相当する絞り量にな
るように設定されている。The first expansion device 17a connected to the heat exchanger tube 10a installed above has a difference in length of the heat exchanger tube (10b−10) compared to the first expansion device 17b connected to the heat exchanger tube 10b.
The throttle amount is set so as to correspond to the pressure loss generated according to 10a).
【0014】第3の流量調整弁11a、11bの他端は
第1の流量調整弁4と第1の開閉弁7の間に接続され、
上方に設置された伝熱管10cに接続される第1の絞り
装置17cは、伝熱管10dに接続される第1の絞り装
置17dに比べ伝熱管長さの差(10d−10c)によ
り発生する圧力損失に相当する絞り量になるように設定
されている。The other ends of the third flow control valves 11a and 11b are connected between the first flow control valve 4 and the first on-off valve 7,
The first throttle device 17c connected to the heat transfer tube 10c installed above has a pressure generated by a difference in the length of the heat transfer tube (10d-10c) compared to the first throttle device 17d connected to the heat transfer tube 10d. The aperture is set so as to be equivalent to the loss.
【0015】伝熱管10c、10dの他の一方は集合管
19bに接続されたあと第2の開閉弁12を介して、第
2の熱交換器6a、6bの集合部と四方切換弁2の間に
接続される。それぞれの集合管19a、19bと、第2
の開閉弁12、第3の開閉弁13の接続部分の間の冷媒
配管には温度センサ14a、14bが配設されており、
信号の連絡配線で温度センサ14a、14bと演算装置
15、複数台の駆動装置16a、16b、第3の流量調
整弁11a、11bが接続されている。図では示してい
ないが蓄熱槽8内の蓄熱媒体としては水が一般的であ
り、以下、水の場合として説明する。もちろん蓄熱媒体
は水に限られるものではない。The other one of the heat transfer tubes 10c and 10d is connected to the collecting pipe 19b and then connected via the second on-off valve 12 between the collecting portions of the second heat exchangers 6a and 6b and the four-way switching valve 2. Connected to. The respective collecting pipes 19a and 19b and the second
Temperature sensors 14a and 14b are arranged in the refrigerant pipe between the connection part of the on-off valve 12 and the third on-off valve 13,
The temperature sensors 14a and 14b, the arithmetic unit 15, the plurality of drive units 16a and 16b, and the third flow control valves 11a and 11b are connected by signal communication wires. Although not shown in the drawing, water is generally used as the heat storage medium in the heat storage tank 8, and the case of water will be described below. Of course, the heat storage medium is not limited to water.
【0016】以下、図1に示した運転時における冷凍サ
イクルの冷媒の流れを説明する。蓄熱運転時は、圧縮機
1で吐出された高温高圧の冷媒が四方切換弁2を経由し
て第1の熱交換器3で凝縮し、液化した冷媒は開度を減
じて流量を絞り減圧機構として作用する第3の流量制御
弁11a、11bで減圧される。第3の流量調整弁11
a、11bの開度は温度センサ14a、14bからの信
号が演算装置15に入力され、それぞれの分岐管18
a、18bを流れる冷媒量が同じになるように、第3の
流量調整弁11a、11bの開度が決定される。決定さ
れた開度は第3の流量調整弁11a、11bの数に対応
した複数台の駆動装置16a、16bに送信され、実際
に第3の流量調整弁11a、11bが動作する。Hereinafter, the flow of the refrigerant in the refrigeration cycle during the operation shown in FIG. 1 will be described. During the heat storage operation, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is condensed in the first heat exchanger 3 via the four-way switching valve 2, and the liquefied refrigerant is reduced in the opening degree to reduce the flow rate and reduce the flow rate. The pressure is reduced by the third flow rate control valves 11a and 11b acting as the pressure control valves. Third flow control valve 11
Signals from the temperature sensors 14a and 14b are input to the arithmetic unit 15 to determine the opening degrees of the branch pipes 18a and 11b.
The opening degrees of the third flow control valves 11a and 11b are determined so that the amounts of the refrigerant flowing through the third flow control valves 11a and 11b are the same. The determined opening degree is transmitted to a plurality of driving devices 16a and 16b corresponding to the number of the third flow control valves 11a and 11b, and the third flow control valves 11a and 11b actually operate.
【0017】蓄熱槽8に内包される蓄熱熱交換器9の伝
熱管10a、10b、10c、10dで蒸発する冷媒は
周囲の水を冷却し製氷する。この時冷媒流量は伝熱管1
0a、10bおよび10c、10dのそれぞれの長さに
応じて圧力損失が同じになるよう設定された第1の絞り
装置17a、17b、17c、17dにより流量調整さ
れている。The refrigerant evaporating in the heat transfer tubes 10a, 10b, 10c and 10d of the heat storage heat exchanger 9 contained in the heat storage tank 8 cools the surrounding water and makes ice. At this time, the refrigerant flow rate is
The flow rate is adjusted by the first expansion devices 17a, 17b, 17c, 17d set so that the pressure loss is the same according to the respective lengths of 0a, 10b and 10c, 10d.
【0018】蒸発した冷媒は開弁した第2の開閉弁1
2、四方切換弁2を介して圧縮機1に戻る。この時第1
の開閉弁7、第3の開閉弁13、第2の流量制御弁5
a、5bは閉弁しており第2の熱交換器6a、6bには冷
媒が流れない。ここで駆動装置16a、16bは第3の
流量調整弁11a、11bの台数に応じて配設されてい
るが送信データを時分割制御することにより駆動装置1
6a、16bを1台とすることも可能である。The evaporated refrigerant is supplied to the opened second on-off valve 1
2. Return to the compressor 1 via the four-way switching valve 2. At this time the first
On-off valve 7, third on-off valve 13, second flow control valve 5
The valves a and 5b are closed, and the refrigerant does not flow through the second heat exchangers 6a and 6b. Here, the driving devices 16a and 16b are arranged in accordance with the number of the third flow control valves 11a and 11b, but the driving device 1 is controlled by time division control of transmission data.
It is also possible to use one 6a, 16b.
【0019】また図1においてそれぞれの分岐管18
a、18bに接続される伝熱管10a、10bおよび伝
熱管10c、10dはさらに多くの本数として接続して
もよい。この場合分岐管18a、18bに接続される伝
熱管同士の間で冷媒流量の不均一が生じる場合があるの
でそれぞれの伝熱管長さの差に応じた絞り装置を第1の
絞り装置17a、17b、17c、17dと同様に配設
することが望ましい。In FIG. 1, each branch pipe 18
The heat transfer tubes 10a and 10b and the heat transfer tubes 10c and 10d connected to the a and 18b may be connected in a larger number. In this case, since the flow rate of the refrigerant may be uneven between the heat transfer tubes connected to the branch pipes 18a and 18b, the expansion devices corresponding to the differences in the lengths of the heat transfer tubes may be changed to the first expansion devices 17a and 17b. , 17c, 17d.
【0020】蓄熱利用冷房運転時は、圧縮機1で吐出さ
れた高温高圧の冷媒が四方切換弁2、第1の熱交換器3
で凝縮し、さらに最大開度に開弁した第1の流量制御弁
4から第3の流量調整弁11a、11bに流入する。第
3の流量制御弁11の開度は、温度センサ14からの信
号が演算装置15に入力され、それぞれの分岐管18
a、18bを流れる冷媒量が同じになるように決定され
る。決定された開度は第3の流量調整弁11a、11b
に対応した駆動装置16a、16bに送信され、実際に
第3の流量調整弁11a、11bが動作する。冷媒は第
3の流量調整弁11a、11bを流れて分岐管18a、
18bを介してそれぞれの伝熱管10a、10b、10
c、10dに流入し熱交換しながら周囲の氷を融解す
る。この時冷媒流量は伝熱管10a、10bおよび10
c、10dのそれぞれの長さに応じて圧力損失が同じに
なるよう設定された第1の絞り装置17a、17b、1
7c、17dによっても調整される。During the cooling operation using heat storage, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is supplied to the four-way switching valve 2 and the first heat exchanger 3.
And flows into the third flow control valves 11a and 11b from the first flow control valve 4 that has been opened to the maximum opening. The degree of opening of the third flow control valve 11 is determined by inputting a signal from the temperature sensor 14 to the arithmetic unit 15,
a and 18b are determined so that the amounts of refrigerant flowing therethrough are the same. The determined opening degree is the third flow control valve 11a, 11b
Are transmitted to the driving devices 16a and 16b corresponding to the above, and the third flow control valves 11a and 11b actually operate. The refrigerant flows through the third flow control valves 11a, 11b, and flows through the branch pipes 18a,
The respective heat transfer tubes 10a, 10b, 10
c, flow into 10d and melt the surrounding ice while exchanging heat. At this time, the flow rate of the refrigerant is controlled by the heat transfer tubes 10a, 10b and 10
The first throttle devices 17a, 17b, 1 are set so that the pressure loss is the same according to the respective lengths of c, 10d.
It is also adjusted by 7c and 17d.
【0021】熱交換により過冷却された冷媒は開弁した
第3の開閉弁13を介して減圧機構として作用する第2
の流量制御弁5a、5bで減圧され、第2の熱交換器6
a、6bで蒸発されることにより室内の空気が冷却され
る。蒸発された冷媒は四方切換弁2を経由して圧縮機1
に戻る。このとき第1の開閉弁7、第2の開閉弁12は
閉弁しており伝熱管10a、10b、10c、10dか
ら四方切換弁2を経由して圧縮機1には冷媒が流れな
い。The refrigerant supercooled by heat exchange acts as a pressure reducing mechanism via the third opening / closing valve 13 which is opened.
The pressure is reduced by the flow control valves 5a and 5b of the second heat exchanger 6
The air in the room is cooled by being evaporated at a and 6b. The evaporated refrigerant passes through the four-way switching valve 2 and is supplied to the compressor 1
Return to At this time, the first on-off valve 7 and the second on-off valve 12 are closed, and no refrigerant flows from the heat transfer tubes 10a, 10b, 10c, and 10d to the compressor 1 via the four-way switching valve 2.
【0022】第3の流量調整弁11a、11bは最大開
度に開弁すべく駆動装置16により制御されるが、弁口
径など構造上の問題があり圧力損失が大きくなる場合が
ある。その場合、第3の流量調整弁11a、11bの上
流側と下流側をバイパスさせるように冷媒配管を配設し
途中に開閉弁を追加することが良い。The third flow control valves 11a and 11b are controlled by the drive unit 16 to open to the maximum opening degree. However, there is a structural problem such as a valve diameter, and the pressure loss may increase. In this case, it is preferable to arrange a refrigerant pipe so as to bypass the upstream and downstream sides of the third flow control valves 11a and 11b, and add an on-off valve in the middle.
【0023】第3の流量調整弁11a、11bの開度は
温度センサ14からの信号が演算装置15に入力され、
それぞれの分岐管18a、18bを流れる冷媒量が同じ
になるように決定される。決定された開度は第3の流量
調整弁11a、11bの数に対応した駆動装置16a、
16bに送信され第3の流量調整弁11が動作する。こ
こでは駆動装置16a、16bは第3の流量調整弁11
a、11bの台数に応じて配設されているが送信データ
を時分割制御することにより1台としても良い。The opening degree of the third flow control valves 11a and 11b is determined by inputting a signal from the temperature sensor 14 to the arithmetic unit 15,
The amounts of the refrigerant flowing through the respective branch pipes 18a and 18b are determined so as to be the same. The determined opening degree corresponds to the number of the driving devices 16a corresponding to the number of the third flow control valves 11a and 11b,
The signal is transmitted to 16b, and the third flow control valve 11 operates. Here, the driving devices 16a and 16b are connected to the third flow control valve 11
Although they are arranged in accordance with the number of devices a and 11b, one device may be provided by time-divisionally controlling transmission data.
【0024】次に蓄熱を利用しない通常冷房時は、圧縮
機1で吐出された高温高圧の冷媒が四方切換弁2、第1
の熱交換器3で凝縮し、さらに最大開度に開弁した第1
の流量調整弁4、開弁する第1の開閉弁7を介して減圧
機構として作用する第2の流量調整弁5a、5bで減圧
され、第2の熱交換器6a、6bで蒸発することにより
室内の空気を冷却する。蒸発した冷媒は四方切換弁2を
経由して圧縮機1に戻る。このとき第3の流量調整弁1
1a、11b、第3の開閉弁13は閉弁しており伝熱管
10a、10b、10c、10dには冷媒が流れない。Next, during normal cooling without using heat storage, high-temperature and high-pressure refrigerant discharged from the compressor 1 is supplied to the four-way switching valve 2 and the first
Condensed in the heat exchanger 3 of FIG.
The pressure is reduced by the second flow control valves 5a and 5b acting as a pressure reducing mechanism via the flow control valve 4 and the first opening / closing valve 7 which opens, and evaporated by the second heat exchangers 6a and 6b. Cool indoor air. The evaporated refrigerant returns to the compressor 1 via the four-way switching valve 2. At this time, the third flow control valve 1
1a, 11b and the third on-off valve 13 are closed, and no refrigerant flows through the heat transfer tubes 10a, 10b, 10c, 10d.
【0025】さらに暖房運転時は、圧縮機1で吐出され
た高温高圧の冷媒が流路方向の切り替わった四方切換弁
2を経由して、第2の熱交換器6a、6bで凝縮するこ
とにより室内の空気が加熱される。最大開度に開弁した
第2の流量調整弁5a、5b、開弁する第1の開閉弁7
を介して減圧機構として作用する第1の流量制御弁4で
減圧され、第1の熱交換器3で蒸発した冷媒は四方切換
弁2を経由して圧縮機1に戻る。このとき第3の流量調
整弁11a、11b、第2の開閉弁12、第3の開閉弁
13は閉弁しており伝熱管10a、10b、10c、1
0dには冷媒が流れない。Further, during the heating operation, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is condensed in the second heat exchangers 6a and 6b via the four-way switching valve 2 switched in the flow direction. The room air is heated. Second flow control valves 5a, 5b opened to maximum opening, first open / close valve 7 opened
The refrigerant that has been depressurized by the first flow control valve 4 acting as a decompression mechanism via the first heat exchanger 3 and evaporated by the first heat exchanger 3 returns to the compressor 1 via the four-way switching valve 2. At this time, the third flow control valves 11a, 11b, the second on-off valve 12, and the third on-off valve 13 are closed and the heat transfer tubes 10a, 10b, 10c, 1
No refrigerant flows in 0d.
【0026】以上のように第3の流量調整弁11a、1
1bの開度を温度センサ14a、14b、演算装置1
5、駆動装置16a、16bにより個別に制御すること
により、伝熱管10a、10b、10c、10dを流れ
る冷媒流量を調整することができる。As described above, the third flow control valves 11a, 1
The temperature sensor 14a, 14b, the arithmetic unit 1
5. The flow rate of the refrigerant flowing through the heat transfer tubes 10a, 10b, 10c, and 10d can be adjusted by individually controlling the driving devices 16a and 16b.
【0027】つぎに、図2を参照して本発明の蓄熱式空
気調和機の他の実施例を説明する。1は圧縮機であり、
四方切換弁2、第1の熱交換器3、第1の流量調整弁
4、第2の流量調整弁5a、5b、第2の熱交換器6
a、6b、四方切換弁2、圧縮機1を順次冷媒配管で接
続される。第1の流量調整弁4と第2の流量調整弁5
a、5bの間に第1の開閉弁7を配設する。複数の伝熱
管10a、10bの一方を第1の絞り装置17a、17
bに接続しさらに分岐管18aに接続したあと第3の流
量調整弁11aに接続する。同様に伝熱管10c、10
dの一方を第1の絞り装置17c、17dに接続しさら
に分岐管18bに接続したあと、第3の流量調整弁11
bに接続する。第3の流量調整弁11a、11bの他端
は第1の流量調整弁4と第1の開閉弁7の間に接続され
る。Next, another embodiment of the regenerative air conditioner of the present invention will be described with reference to FIG. 1 is a compressor,
Four-way switching valve 2, first heat exchanger 3, first flow control valve 4, second flow control valve 5a, 5b, second heat exchanger 6
a, 6b, the four-way switching valve 2, and the compressor 1 are sequentially connected by a refrigerant pipe. First flow control valve 4 and second flow control valve 5
The first on-off valve 7 is arranged between a and 5b. One of the plurality of heat transfer tubes 10a, 10b is connected to the first expansion devices 17a, 17
b, and then to the branch pipe 18a, and then to the third flow control valve 11a. Similarly, heat transfer tubes 10c, 10
d is connected to the first expansion devices 17c and 17d, and further connected to the branch pipe 18b.
b. The other ends of the third flow control valves 11a and 11b are connected between the first flow control valve 4 and the first on-off valve 7.
【0028】蓄熱槽8に内包された蓄熱熱交換器9内の
上方に設置された伝熱管10aに接続される第1の絞り
装置17aは、伝熱管10bに接続される第1の絞り装
置17bに比べ伝熱管長さの差(10b−10a)によ
り発生する圧力損失に相当する絞り量になるように設定
されている。同様に伝熱管10c、10dの一方を第1
の絞り装置17c、17dに接続しさらに分岐管18b
に接続したあと、第3の流量調整弁11bに接続する。
第3の流量調整弁11a、11bの他端を第1の流量調
整弁4と第1の開閉弁7の間に接続する。同様に上方に
設置された伝熱管10cに接続される第1の絞り装置1
7cは、伝熱管10dに接続される第1の絞り装置17
dに比べ伝熱管長さの差(10d−10c)により発生
する圧力損失に相当する絞り量になるように設定されて
いる。The first expansion device 17a connected to the heat transfer tube 10a installed above the heat storage heat exchanger 9 included in the heat storage tank 8 is the first expansion device 17b connected to the heat transfer tube 10b. Is set such that the throttle amount corresponds to the pressure loss generated by the difference in the length of the heat transfer tubes (10b-10a). Similarly, one of the heat transfer tubes 10c and 10d is
Connected to the squeezing devices 17c and 17d and a branch pipe 18b
After that, it is connected to the third flow control valve 11b.
The other ends of the third flow control valves 11a and 11b are connected between the first flow control valve 4 and the first on-off valve 7. Similarly, a first expansion device 1 connected to a heat transfer tube 10c installed above.
7c is a first expansion device 17 connected to the heat transfer tube 10d.
The throttle amount is set so as to be equal to the pressure loss generated due to the difference (10d-10c) in the length of the heat transfer tubes compared to d.
【0029】第1の流量調整弁4と第3の流量調整弁1
1aとの間から分岐した配管を第4の開閉弁20aの一
方に接続する。第4の開閉弁20aの他端は第2の絞り
装置21aに接続し、第3の流量調整弁11aと分岐管
18aの間に接続する。同様に第1の流量調整弁4と第
3の流量調整弁11bとの間から分岐した配管を第4の
開閉弁20bの一方に接続する。第4の開閉弁20bの
他端は第2の絞り装置21bに接続し、第3の流量調整
弁11bと分岐管18bの間に接続する。該第2の絞り
装置21a、21bは伝熱管10a、10bの設置高さ
と伝熱管10c、10dの設置高さの差によって発生す
る伝熱管長さの差に相当する圧力損失になるように絞り
量に設定されている。First flow control valve 4 and third flow control valve 1
1a is connected to one of the fourth on-off valves 20a. The other end of the fourth on-off valve 20a is connected to the second throttle device 21a, and is connected between the third flow control valve 11a and the branch pipe 18a. Similarly, a pipe branched from between the first flow control valve 4 and the third flow control valve 11b is connected to one of the fourth on-off valves 20b. The other end of the fourth on-off valve 20b is connected to the second throttle device 21b, and is connected between the third flow control valve 11b and the branch pipe 18b. The second expansion devices 21a and 21b are used to reduce the amount of pressure so as to have a pressure loss corresponding to the difference in the length of the heat transfer tubes caused by the difference between the installation height of the heat transfer tubes 10a and 10b and the installation height of the heat transfer tubes 10c and 10d. Is set to
【0030】伝熱管10a、10bの他の一方は集合管
19に接続したあと第2の開閉弁12を介して、第2の
熱交換器6a、6bの集合部と四方切換弁2の間に接続
する。同様に該伝熱管10c、10dの他の一方も集合
管19に接続する。集合管19と第2の開閉弁12の間
と、第1の開閉弁7と第2の流量調整弁5a、5bの集
合部の間とを第3の開閉弁13を介して接続され冷凍サ
イクルが構成されている。 それぞれの集合管19と、
第2の開閉弁12と第3の開閉弁13の接続部分の間の
冷媒配管には温度センサ14が配設されており、信号の
連絡配線で温度センサ14と演算装置15、駆動装置1
6、第3の流量調整弁11a、11bが接続されてい
る。The other one of the heat transfer tubes 10a and 10b is connected to the collecting pipe 19, and then, through the second on-off valve 12, between the collecting part of the second heat exchangers 6a and 6b and the four-way switching valve 2. Connecting. Similarly, the other one of the heat transfer tubes 10 c and 10 d is connected to the collecting tube 19. The refrigeration cycle is connected between the collecting pipe 19 and the second on-off valve 12 and between the first on-off valve 7 and the collecting part of the second flow control valves 5a and 5b via the third on-off valve 13. Is configured. Each collecting pipe 19,
A temperature sensor 14 is disposed in the refrigerant pipe between the connection portion of the second on-off valve 12 and the third on-off valve 13, and the temperature sensor 14, the arithmetic unit 15, and the drive unit 1 are connected by signal communication wiring.
6. The third flow control valves 11a and 11b are connected.
【0031】つぎに、図2に示した冷凍サイクルの冷媒
の流れを説明する。蓄熱運転時は、圧縮機1で吐出され
た高温高圧の冷媒が四方切換弁2を経由して第1の熱交
換器3で凝縮し、液化した冷媒は開度を減じて流量を絞
り減圧機構として作用する第3の流量制御弁11a、1
1bで減圧する。第3の流量調整弁11a、11bの開
度は温度センサ14からの信号が演算装置15に入力さ
れ、冷媒量の総量が所定の流量となるように第3の流量
調整弁11a、11bの開度が決定される。決定された
開度は駆動装置16に送信され、第3の流量調整弁11
a、11bが動作する。伝熱管10a、10b、10
c、10dで蒸発する冷媒は周囲の水を冷却し製氷す
る。この時冷媒流量は第1の絞り装置17a、17b、
17c、17dにより流量調整される。蒸発した冷媒は
開弁した第2の開閉弁12、四方切換弁2を介して圧縮
機1に戻る。この時第1の開閉弁7、第3の開閉弁1
3、第2の流量制御弁5a、5bは閉弁しており第2の
熱交換器6a、6bには冷媒が流れない。Next, the flow of the refrigerant in the refrigeration cycle shown in FIG. 2 will be described. During the heat storage operation, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is condensed in the first heat exchanger 3 via the four-way switching valve 2, and the liquefied refrigerant is reduced in the opening degree to reduce the flow rate and reduce the flow rate. Third flow control valves 11a, 1
Reduce the pressure in 1b. A signal from the temperature sensor 14 is input to the arithmetic unit 15 and the opening of the third flow control valves 11a and 11b is adjusted so that the total amount of refrigerant becomes a predetermined flow rate. The degree is determined. The determined opening degree is transmitted to the driving device 16 and the third flow control valve 11
a and 11b operate. Heat transfer tubes 10a, 10b, 10
The refrigerant evaporating at c and 10d cools the surrounding water to make ice. At this time, the flow rate of the refrigerant is the first expansion device 17a, 17b,
The flow rate is adjusted by 17c and 17d. The evaporated refrigerant returns to the compressor 1 via the opened second on-off valve 12 and the four-way switching valve 2. At this time, the first on-off valve 7 and the third on-off valve 1
3. The second flow control valves 5a and 5b are closed, and no refrigerant flows through the second heat exchangers 6a and 6b.
【0032】蓄熱利用冷房運転時は、圧縮機1で吐出さ
れた高温高圧の冷媒が四方切換弁2、第1の熱交換器3
で凝縮し、開弁した第4の開閉弁20a、20bから第
2の絞り装置21a、21bを通って分岐管18a、1
8b、第1の絞り装置17a、17b、17c、17d
から伝熱管10a、10b、10c、10dに流入し熱
交換しながら氷を融解する。なお第3の流量調整弁11
a、11bは全閉になっており冷媒は流れない。熱交換
により過冷却された冷媒は開弁した第3の開閉弁13を
介して減圧機構として作用する第2の流量制御弁5a、
5bで減圧され、第2の熱交換器6a、6bで蒸発する
ことにより室内の空気が冷却される。蒸発した冷媒は四
方切換弁2を経由して圧縮機1に戻る。第1の開閉弁
7、第2の開閉弁12は閉弁しており伝熱管10a、1
0b、10c、10dから四方切換弁2を経由して圧縮
機1には冷媒が流れない。During the cooling operation using the heat storage, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is supplied to the four-way switching valve 2 and the first heat exchanger 3.
From the fourth on-off valves 20a, 20b that have been condensed and opened through the second throttle devices 21a, 21b to the branch pipes 18a, 1b.
8b, first aperture devices 17a, 17b, 17c, 17d
Flows into the heat transfer tubes 10a, 10b, 10c, and 10d to melt ice while exchanging heat. The third flow control valve 11
Since a and 11b are fully closed, the refrigerant does not flow. The refrigerant supercooled by the heat exchange passes through the opened third opening / closing valve 13 to act as a pressure reducing mechanism in the second flow control valve 5a,
The pressure is reduced in 5b, and the indoor air is cooled by evaporating in the second heat exchangers 6a and 6b. The evaporated refrigerant returns to the compressor 1 via the four-way switching valve 2. The first on-off valve 7 and the second on-off valve 12 are closed, and the heat transfer tubes 10a, 1
No refrigerant flows from 0b, 10c, and 10d to the compressor 1 via the four-way switching valve 2.
【0033】次に蓄熱を利用しない通常冷房時は、圧縮
機1で吐出された高温高圧の冷媒が四方切換弁2、第1
の熱交換器3で凝縮し、さらに最大開度に開弁した第1
の流量制御弁4、開弁する第1の開閉弁7を介して減圧
機構として作用する第2の流量制御弁5a、5bで減圧
され、第2の熱交換器6a、6bで蒸発することにより
室内の空気が冷却される。蒸発した冷媒は四方切換弁2
を経由して圧縮機1に戻る。第3の流量調整弁11a、
11b、第3の開閉弁13、第4の開閉弁20a、20
bは閉弁しており伝熱管10a、10b、10c、10
dには冷媒が流れない。Next, during normal cooling without using heat storage, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is supplied to the four-way switching valve 2 and the first
Condensed in the heat exchanger 3 of FIG.
The pressure is reduced by the second flow control valves 5a and 5b acting as a pressure reducing mechanism via the flow control valve 4 and the first opening / closing valve 7 which opens, and is evaporated by the second heat exchangers 6a and 6b. The indoor air is cooled. The evaporated refrigerant is a four-way switching valve 2
And returns to the compressor 1 via. A third flow control valve 11a,
11b, third on-off valve 13, fourth on-off valve 20a, 20
b is closed and the heat transfer tubes 10a, 10b, 10c, 10
No refrigerant flows in d.
【0034】暖房運転時は、圧縮機1で吐出された高温
高圧の冷媒が流路方向の切り替わった四方切換弁2を経
由して、第2の熱交換器6a、6bで凝縮することによ
り室内の空気が加熱される。最大開度に開弁した第2の
流量制御弁5a、5b、開弁する第1の開閉弁7を介し
て減圧機構として作用する第1の流量制御弁4で減圧さ
れ、第1の熱交換器3で蒸発した冷媒は四方切換弁2を
経由して圧縮機1に戻る。第3の流量調整弁11a、1
1b、第2の開閉弁12、第3の開閉弁13、第4の開
閉弁20a、20bは閉弁しており伝熱管10a、10
b、10c、10dには冷媒が流れない。During the heating operation, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is condensed in the second heat exchangers 6a and 6b via the four-way switching valve 2 whose flow direction is switched, thereby indoors. The air is heated. The pressure is reduced by the first flow control valve 4 acting as a pressure reducing mechanism via the second flow control valves 5a and 5b opened to the maximum opening and the first opening / closing valve 7 which opens, and the first heat exchange is performed. The refrigerant evaporated in the compressor 3 returns to the compressor 1 via the four-way switching valve 2. Third flow control valve 11a, 1
1b, the second on-off valve 12, the third on-off valve 13, and the fourth on-off valves 20a and 20b are closed and the heat transfer tubes 10a and 10b are closed.
No refrigerant flows through b, 10c, and 10d.
【0035】以上のように温度センサ14、演算装置1
5、駆動装置16により第3の流量調整弁11a、11
bの開度を同時に制御し、第1の絞り装置17a、17
bにより流量分配を均一化できる。また蓄熱利用冷房運
転時に第4の開閉弁20a、20bの開閉を同時に行う
ことで、第2の絞り装置18a、18bによる流量を制
御できるので冷媒流量を均一化できる。さらに、第2の
絞り装置21a、21bを備えた構成としているので、
流量調整弁11a、11bによる開弁が不足する場合で
も、冷媒の流量不均一を防止できる。As described above, the temperature sensor 14 and the arithmetic unit 1
5. The third flow control valves 11a, 11
b at the same time, the first throttle devices 17a, 17
The flow distribution can be made uniform by b. By simultaneously opening and closing the fourth on-off valves 20a and 20b during the cooling operation using heat storage, the flow rate of the second expansion devices 18a and 18b can be controlled, so that the flow rate of the refrigerant can be made uniform. Further, since the configuration includes the second aperture devices 21a and 21b,
Even when the flow control valves 11a and 11b are insufficiently opened, it is possible to prevent the refrigerant flow from becoming uneven.
【0036】[0036]
【発明の効果】以上説明したように、本発明によれば、
垂直方向に複数の伝熱管を積層し、伝熱管に接続された
第3の流量調整弁と、流量調整弁の開度を制御するの
で、蓄熱槽内に積層された伝熱管を流れる冷媒の流量を
各伝熱管毎に同じとなるように制御できるので、蓄熱層
内の冷媒の流量分配を均一にできる。よって、蓄熱槽の
据え付け面積を小さくし、運転時の消費電力の低減を図
った蓄熱式空気調和機を得ることができる。As described above, according to the present invention,
A plurality of heat transfer tubes are vertically stacked, and the third flow control valve connected to the heat transfer tubes and the opening of the flow control valve are controlled, so that the flow rate of the refrigerant flowing through the heat transfer tubes stacked in the heat storage tank Can be controlled to be the same for each heat transfer tube, so that the flow rate distribution of the refrigerant in the heat storage layer can be made uniform. Therefore, it is possible to obtain a heat storage type air conditioner in which the installation area of the heat storage tank is reduced and power consumption during operation is reduced.
【図1】 本発明の一実施例による冷凍サイクルのブロ
ック図。FIG. 1 is a block diagram of a refrigeration cycle according to one embodiment of the present invention.
【図2】 本発明の他の実施例による冷凍サイクルブロ
ック図。FIG. 2 is a block diagram of a refrigeration cycle according to another embodiment of the present invention.
1…圧縮機、2…四方切換弁、3…第1の熱交換器、4
…第1の流量調整弁、5a、5b…第2の流量調整弁、
6a、6b…第2の熱交換器、7…第1の開閉弁、8…
蓄熱槽、9…蓄熱熱交換器、10a、10b、10c、
10d…伝熱管、11a、11b…第3の流量調整弁、
12…第2の開閉弁、13…第3の開閉弁、14、14
a、14b…温度センサ、15…演算装置(開度制御手
段)、16、16a、16b…駆動装置、17a、17
b、17c、17d…第1の絞り装置、18a、18b
…分岐管、19、19a、19b…集合管、20a、2
0b…第4の開閉弁、21a、21b…第2の絞り装
置。DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... 4-way switching valve, 3 ... First heat exchanger, 4
... first flow control valves, 5a, 5b ... second flow control valves,
6a, 6b: second heat exchanger, 7: first on-off valve, 8 ...
Heat storage tank, 9 ... heat storage heat exchangers, 10a, 10b, 10c,
10d: heat transfer tube, 11a, 11b: third flow control valve,
12: second on-off valve, 13: third on-off valve, 14, 14
a, 14b: temperature sensor, 15: arithmetic device (opening control means), 16, 16a, 16b: drive device, 17a, 17
b, 17c, 17d: first diaphragm device, 18a, 18b
... branch pipes, 19, 19a, 19b ... collecting pipes, 20a, 2
0b: Fourth on-off valve, 21a, 21b: Second throttle device.
フロントページの続き (72)発明者 杉山 文彦 静岡県清水市村松390番地 日立清水エ ンジニアリング株式会社内 (56)参考文献 特開 平5−346249(JP,A) 特開 平4−320795(JP,A) (58)調査した分野(Int.Cl.7,DB名) F28D 20/00 F24F 5/00 102 F25B 13/00 351 F25B 1/00 321 Continuation of the front page (72) Inventor Fumihiko Sugiyama 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Within Hitachi Shimizu Engineering Co., Ltd. (56) References JP-A-5-346249 (JP, A) JP-A-4-320795 (JP) , A) (58) Fields investigated (Int. Cl. 7 , DB name) F28D 20/00 F24F 5/00 102 F25B 13/00 351 F25B 1/00 321
Claims (2)
1の流量調整弁、第1の開閉弁、第2の流量調整弁、第
2の熱交換器、とが順次冷媒配管で接続され、伝熱管が
内包された蓄熱槽は前記第1の流量調整弁と前記第1の
開閉弁との間から第2の開閉弁を介して前記圧縮機ある
いは第3の開閉弁を介して第2の流量調整弁へ接続され
る蓄熱式空気調和機において、 蓄熱槽内に水平方向に配置されて垂直方向に複数積層さ
れた前記伝熱管と、 前記伝熱管の一端に接続された第1の絞り装置と、 複数の前記第1の絞り装置に接続された複数の分岐管
と、 前記分岐管から前記第1の流量調整弁と前記第1の開閉
弁との間に接続された第3の流量調整弁と、 前記伝熱管の他端に接続され前記第2の開閉弁と前記第
3の開閉弁との間に接続された集合管と、 を備え、上方に設置された前記伝熱管に接続される前記
第1の絞り装置は、下方のものに比べその長さの差によ
り発生する圧力損失に相当する絞り量になるように設定
され、前記第3の流量調整弁の開度はそれぞれの前記分
岐管を流れる冷媒量が同じとなるように制御されること
を特徴とした蓄熱式空気調和機。1. A refrigerant, a four-way switching valve, a first heat exchanger, a first flow control valve, a first opening / closing valve, a second flow control valve, and a second heat exchanger are sequentially connected to a refrigerant. A heat storage tank connected by piping and containing a heat transfer tube is configured to connect the compressor or the third on-off valve via a second on-off valve from between the first flow control valve and the first on-off valve. A heat storage type air conditioner connected to a second flow control valve via the heat transfer tube, wherein the heat transfer tubes are arranged in a heat storage tank in a horizontal direction and stacked in a plurality of vertical directions, and are connected to one end of the heat transfer tubes. A first throttle device, a plurality of branch pipes connected to the plurality of first throttle devices, and a plurality of branch pipes connected from the branch pipe to the first flow control valve and the first on-off valve. A third flow control valve, connected to the other end of the heat transfer tube, connected between the second on-off valve and the third on-off valve Wherein the first throttle device connected to the heat transfer tube installed above has a throttle amount corresponding to a pressure loss generated due to a difference in length between the first throttle device and the lower heat transfer tube. And the opening of the third flow control valve is controlled such that the amount of refrigerant flowing through each of the branch pipes is the same.
管から前記第2の開閉弁と前記第3の開閉弁との間の冷
媒配管に温度センサを配設し、前記温度センサからの信
号により、前記第3の流量調整弁の開度を決定すること
を特徴とした蓄熱式空気調和機。2. A temperature sensor according to claim 1, wherein a temperature sensor is provided from the collecting pipe to a refrigerant pipe between the second on-off valve and the third on-off valve. A regenerative air conditioner characterized in that an opening of the third flow control valve is determined by a signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07305997A JP3301342B2 (en) | 1997-03-26 | 1997-03-26 | Thermal storage type air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07305997A JP3301342B2 (en) | 1997-03-26 | 1997-03-26 | Thermal storage type air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10267575A JPH10267575A (en) | 1998-10-09 |
JP3301342B2 true JP3301342B2 (en) | 2002-07-15 |
Family
ID=13507416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07305997A Expired - Fee Related JP3301342B2 (en) | 1997-03-26 | 1997-03-26 | Thermal storage type air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3301342B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5883685B2 (en) * | 2012-03-06 | 2016-03-15 | 清水建設株式会社 | HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD |
-
1997
- 1997-03-26 JP JP07305997A patent/JP3301342B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10267575A (en) | 1998-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6591902B1 (en) | Apparatus for applying controllable, multipurpose heat pipes to heating, ventilation, and air conditioning systems | |
EP0421459B1 (en) | Air conditioning apparatus | |
CN204593992U (en) | Air-conditioning equipment and defrost control system thereof | |
US20100251742A1 (en) | Hvac&r system valving | |
JP2002372320A (en) | Refrigerating device | |
JP3260894B2 (en) | Cold water production system | |
JP2017194201A (en) | Air conditioner | |
JP3301342B2 (en) | Thermal storage type air conditioner | |
CN107560213A (en) | Air-conditioning system and air-conditioning | |
JP3511161B2 (en) | Air conditioner | |
JPH09229507A (en) | Air conditioner | |
CN212252996U (en) | Air conditioner auxiliary heat exchange unit, air conditioning system and environment simulation equipment | |
CN100541053C (en) | cooling/heating system and control method thereof | |
JP3304866B2 (en) | Thermal storage type air conditioner | |
CN206131220U (en) | Air conditioning unit | |
JP4201488B2 (en) | Refrigeration equipment | |
JP2727754B2 (en) | Ice making equipment | |
JP2522371B2 (en) | Air conditioner | |
CN220119600U (en) | Plate pipe evaporative cooling type quadruple supply unit device and quadruple supply equipment | |
JPH086940B2 (en) | Building air conditioning system | |
JPH06213478A (en) | Air-conditioning machine | |
KR200178070Y1 (en) | Heat exchanger for both cooling and heating | |
WO2025041197A1 (en) | Air conditioner | |
JPH0620053Y2 (en) | Heat pump air conditioner | |
CN105737283A (en) | Air regulating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080426 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080426 Year of fee payment: 6 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080426 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080426 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080426 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090426 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090426 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100426 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110426 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |