[go: up one dir, main page]

JP3297250B2 - Electrolytic ozone generator - Google Patents

Electrolytic ozone generator

Info

Publication number
JP3297250B2
JP3297250B2 JP14900695A JP14900695A JP3297250B2 JP 3297250 B2 JP3297250 B2 JP 3297250B2 JP 14900695 A JP14900695 A JP 14900695A JP 14900695 A JP14900695 A JP 14900695A JP 3297250 B2 JP3297250 B2 JP 3297250B2
Authority
JP
Japan
Prior art keywords
electrolytic cell
anode
electrolytic
ozone
ozone generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14900695A
Other languages
Japanese (ja)
Other versions
JPH093679A (en
Inventor
正則 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14900695A priority Critical patent/JP3297250B2/en
Publication of JPH093679A publication Critical patent/JPH093679A/en
Application granted granted Critical
Publication of JP3297250B2 publication Critical patent/JP3297250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電解式オゾン発生装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic ozone generator.

【0002】[0002]

【従来の技術】従来、固体高分子電解質膜を使用した電
解式オゾン発生装置において、原料水はポンプ(S.S
tucki 等;J.Electrochem.Soc.,132 ,(2) ,19
85)やエジェクタ(特開平3−158487) によって
強制的に電解セルに供給されていた。また、その循環原
料水を熱交換器によって冷却したり(S.Stucki
等)、電解層全体を水没させることにより電解による発
熱を抑制していた。
2. Description of the Related Art Conventionally, in an electrolytic ozone generator using a solid polymer electrolyte membrane, a raw material water is supplied by a pump (SS).
tucki et al .; Electrochem. Soc. , 132, (2), 19
85) and an ejector (JP-A-3-158487) forcibly supplying the electrolytic cell. Further, the circulating raw water is cooled by a heat exchanger (S. Stucki).
Etc.), the heat generated by electrolysis was suppressed by submerging the entire electrolytic layer.

【0003】[0003]

【発明が解決しようとする課題】オゾンは強酸化性であ
るので、そのオゾンに対して耐久性を有するポンプ、熱
交換機およびエジェクタ等の周辺機器は、接液部がステ
ンレスかフッ素系樹脂のものに限られる。更に、電解式
オゾン発生装置の長所である高濃度オゾンを長期間得よ
うとすると、電解セルの劣化や、オゾンの自己分解の促
進につながる原料水への不純物混入の危険性が少ないフ
ッ素系樹脂に限定される。これらの接液部がフッ素系樹
脂である機器は高価であり、また熱交換機においては熱
伝導率が低いため大型なものが必要となる。
Since ozone is strongly oxidizing, peripheral devices such as pumps, heat exchangers, and ejectors that are durable to the ozone have a wetted part made of stainless steel or fluorine resin. Limited to Furthermore, when trying to obtain high-concentration ozone, which is an advantage of an electrolytic ozone generator, for a long period of time, a fluorine-based resin with a low risk of impurities in the raw material water, which leads to deterioration of the electrolytic cell and promotion of self-decomposition of ozone, Is limited to Equipment in which the liquid contact portion is made of a fluorine-based resin is expensive, and a heat exchanger requires a large heat exchanger because of its low thermal conductivity.

【0004】また、オゾン発生量の増大にともない原料
水循環量が増大するため、ポンプ、熱交換機等の周辺機
器はさらに大型化するという問題点がある。本発明はこ
うした事情を考慮してなされたもので、原料水系および
冷却水系を独立させることにより簡便で信頼性が高く、
電解セルの大面積化に対応できる電解式オゾン発生装置
を提供することを目的とする。
[0004] Further, since the amount of circulating raw water increases with an increase in the amount of ozone generated, there is a problem that peripheral equipment such as a pump and a heat exchanger is further enlarged. The present invention has been made in view of such circumstances, the simple and highly reliable by making the raw water system and the cooling water system independent,
An object of the present invention is to provide an electrolytic ozone generator capable of coping with an increase in the area of an electrolytic cell.

【0005】[0005]

【課題を解決するための手段】本発明は、電解セルをオ
ゾン発生極が上面になるよう水平に配置し、その上部に
貯水機構を設けることにより、ポンプやエジェクタによ
る強制的な原料水供給を行う必要がない簡便かつ信頼性
の高い電解槽の構造を採用し、かつ複数の電解セルを
一平面上に配することにより、オゾン発生量の増大に対
応するための電解セルの大型化を実現するものである。
各々電解セルは電気的に直列に接続することにより電源
部の小型化が可能である。
According to the present invention, an electrolytic cell is horizontally disposed such that an ozone generating electrode is located on the upper surface, and a water storage mechanism is provided above the electrolytic cell, so that forced supply of raw water using a pump or an ejector is performed. need not simple and employs a structure of high reliability electrolyzer, and a plurality of electrolytic cells the performing
By arranging them on one plane, it is possible to increase the size of the electrolytic cell to cope with an increase in the amount of ozone generated.
Each of the electrolytic cells is electrically connected in series, so that the size of the power supply unit can be reduced.

【0006】貯水機構の原料水は、液面センサに連動し
た電磁弁の開閉によりイオン交換樹脂を介して水道水圧
によって給水するような機構が利用できる
[0006] raw water of the water storage mechanism, by opening and closing the solenoid valve in conjunction with the liquid level sensor can be utilized mechanism such that the water supply by water supply pressure through the ion exchange resin.

【0007】更に、本発明は、短時間のオゾン処理向け
オゾン発生装置に関して、発熱が蓄積しない時間内で処
理を完了させるように、セルの電流密度を設定した上
で、所定の時間でタイマー回路により自動的に電解電圧
を低下させる機能を備えたことを特徴とするものであ
る。また、連続運転向けの装置に関しては、陽極および
陰極電解槽に原料水とは独立した冷却水を循環させる水
通路を設けることにより、冷却系にオゾンが混入しない
ため、安価な循環ポンプを使用することを可能とし、上
記の問題点を解決した。
Further, the present invention relates to an ozone generator for short-time ozone treatment, wherein the current density of the cell is set so that the treatment is completed within a period in which heat generation does not accumulate, and a timer circuit is set for a predetermined time. And a function for automatically lowering the electrolytic voltage. In addition, for a device for continuous operation, an inexpensive circulation pump is used because ozone is not mixed into the cooling system by providing a water passage for circulating cooling water independent of raw water in the anode and cathode electrolyzers. The above problems have been solved.

【0008】[0008]

【作用】本発明に係る電解式オゾン発生装置は、次のよ
うな利点を有する。 1)従来のポンプやエジェクタを使用した複雑かつ高価で
あった原料水系機構を貯水機構だけの簡便で信頼性の高
いものとなる。
The electrolytic ozone generator according to the present invention has the following advantages. 1) The complicated and expensive raw material water system using conventional pumps and ejectors becomes simple and reliable with only the water storage mechanism.

【0009】2)原料水の供給がオゾン発生極に均等であ
り、電流密度のばらつきが少ないため局所的な発熱によ
る固体高分子電解質膜の劣化や損傷が少ない。 3)原料水を循環させないため、周辺機器からのイオン成
分の混入が少ない。
2) The supply of the raw water is uniform to the ozone generating electrode, and there is little variation in current density. Therefore, deterioration and damage of the solid polymer electrolyte membrane due to local heat generation are small. 3) Since the raw water is not circulated, the mixing of ionic components from peripheral equipment is small.

【0010】4)基本サイズの電解セルを同一平面上に配
することで、セルや電解槽の剛性不足による接触不良等
の問題がなくセルの大面積化が可能となった。 5)原料水系と冷却水系を独立させることにより、水ポン
プ等の材質的制約がなくなり安価で、入手性がよい機種
の選定が可能となった。また、熱交換器は不要となっ
た。 6)タイマー回路により電解電圧を制御することにより、
装置の仕様によっては冷却機構が不要となった。
4) By arranging electrolytic cells of the basic size on the same plane, it is possible to increase the area of the cell without problems such as poor contact due to insufficient rigidity of the cell and the electrolytic cell. 5) By making the raw water system and cooling water system independent, the material constraints of the water pump and the like were eliminated, and it became possible to select a cheap and easily available model. Also, a heat exchanger became unnecessary. 6) By controlling the electrolysis voltage by the timer circuit,
A cooling mechanism became unnecessary depending on the specifications of the device.

【0011】[0011]

【実施例】以下、この発明の各実施例を比較例とともに
図面を参照して説明する。 (比較例) 図1を参照する。図中の符号1は電解セルである。この
電解セル1は、固体高分子電解質膜2と、この電解質膜
2の上面に密着して配置されたオゾン発生極3と、前記
電解質膜2の下面に密着して配置された空気極(または
水素発生極)4と、前記空気極4に接続された陰極端子
5とを有している。前記電解セル1は、原料水給水及び
オゾン排気穴6aを有した陽極電解槽6と陰極電解槽7
間にガスケット8a,8b及び陰極給電板9を介して配
置されている。ここで、前記陽極電解槽5は陽極給電板
と一体構造となっている。前記陽極電解槽6の外周側に
は、外筒10が配置されている。この外筒10の内側に位置
する前記陽極電解槽6の外周部には、陽極端子11が設け
られている。前記外筒10と陰極電解槽7間にはOリング
12が設けられている。前記陽極電解槽6及び外筒10上に
は、Oリング13を介して前記オゾン発生極3の上面が常
に純水又は脱イオン水に浸る貯水槽14が設けられてい
る。なお、図中の符号15は電源接続コネクタを示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described together with comparative examples with reference to the drawings. Comparative Example Reference is made to FIG. Reference numeral 1 in the figure is an electrolytic cell. The electrolytic cell 1 includes a solid polymer electrolyte membrane 2, an ozone generating electrode 3 arranged in close contact with the upper surface of the electrolyte membrane 2, and an air electrode (or in contact with the lower surface of the electrolyte membrane 2). And a cathode terminal 5 connected to the air electrode 4. The electrolytic cell 1 includes an anode electrolytic cell 6 and a cathodic electrolytic cell 7 having a raw water supply and ozone exhaust hole 6a.
Gaskets 8 a and 8 b and a cathode power supply plate 9 are interposed therebetween. Here, the anode electrolytic cell 5 has an integral structure with the anode power supply plate. An outer cylinder 10 is arranged on the outer peripheral side of the anode electrolytic cell 6. An anode terminal 11 is provided on the outer peripheral portion of the anode electrolytic cell 6 located inside the outer cylinder 10. O-ring between the outer cylinder 10 and the cathode cell 7
There are twelve. A water reservoir 14 is provided on the anode electrolytic bath 6 and the outer cylinder 10 via an O-ring 13 so that the upper surface of the ozone generating electrode 3 is always immersed in pure water or deionized water. Reference numeral 15 in the drawing indicates a power supply connector.

【0012】こうした構成の分解式オゾン発生装置を用
いて前記オゾン発生極3及び空気極4間に1.0A/c
2 の直流電流を通電し、0.04g/h・cm2 のオ
ゾン発生を確認した。
Using the decomposition type ozone generator having such a configuration, 1.0 A / c is applied between the ozone generation electrode 3 and the air electrode 4.
A DC current of m 2 was applied, and generation of ozone at 0.04 g / h · cm 2 was confirmed.

【0013】(実施例1) 図2、図3及び図4を参照する。実施例1に係る分解式
オゾン発生装置は、比較例と同じサイズの電解セルを基
本ユニットとして、図3のように同一平面上に7個電気
的に並列に並べて組み立てた構成となっている。なお、
図2において、符号21は陽極給電板、符号22は陰極給電
板、符号23は陽極,陰極間を短絡させないような塩化ビ
ニル製ボルトを示す。また、図3中の符号31は基本電解
セル、符号32は7個スタック電解セル陽極給電板、符号
33は7個スタック電解セル陰極給電板、符号34は陽極,
陰極間を短絡させないような絶縁ボルトを示す。また、
図3では、ワッシャーに塩化ビニル製ワッシャを使用
し、ボルト首下は塩化ビニル管に通して陽極,陰極が
触しない構造になっている。
( Embodiment 1 ) Reference is made to FIGS. 2, 3 and 4. FIG. The decomposition type ozone generator according to Example 1 has a configuration in which seven electrolysis cells having the same size as the comparative example are electrically arranged in parallel on the same plane as a basic unit as shown in FIG. In addition,
In FIG. 2, reference numeral 21 denotes an anode power supply plate, reference numeral 22 denotes a cathode power supply plate, and reference numeral 23 denotes a vinyl chloride bolt which does not cause a short circuit between the anode and the cathode. In addition, reference numeral 31 in FIG. 3 denotes a basic electrolytic cell, reference numeral 32 denotes a seven-stacked electrolytic cell anode feed plate,
Reference numeral 33 denotes a seven-stack electrolytic cell cathode power supply plate, reference numeral 34 denotes an anode,
This shows an insulating bolt that does not cause a short circuit between the cathodes. Also,
In FIG. 3, a washer made of vinyl chloride is used for the washer, and the structure is such that the anode and the cathode do not come into contact with each other under the bolt neck through a vinyl chloride tube.

【0014】前記電解セル31は、図2に示すような構
成になっている。なお、図2において、符号21は陽極
給電板、符号22は陰極給電板、符号23は陽極,陰極
間を短絡させないような塩化ビニル製ボルトを示す。ま
た、図4は7個スタックを組み込んだ複極式の分解式オ
ゾン発生装置である。図中の符号32,33各々前記
7個スタックセル陽極給電板、7個スタック電解セル陰
極給電板を示す。前記陽極給電板32には陽極端子44
が設けられ、前記陰極給電板33には陰極端子45が設
けられている。前記陽極給電板32及び陰極給電板33
の外側にはスペーサ46が配置され、陰極給電板33
下部には、電解セル押え板47が配置されている。前記
陽極給電板32びスペーサ46上には、ボルト48によ
り貯水槽49が固定して配置されている。前記陽極給電
32と貯水槽49間にはOリング50が設けられてい
る。
The electrolytic cell 31 has a structure as shown in FIG . In FIG. 2, reference numeral 21 denotes an anode.
Power supply plate, reference numeral 22 indicates a cathode power supply plate, reference numeral 23 indicates an anode and a cathode.
This shows a bolt made of vinyl chloride that does not short circuit between them. Ma
FIG. 4 shows a bipolar bipolar disassembly system incorporating seven stacks.
It is a zon generator. Code 32, 33 in the figure indicates each said seven stacked cell anode feeder plate, seven stack electrolytic cell cathode feeder plate. The anode power supply plate 32 has an anode terminal 44.
The cathode power supply plate 33 is provided with a cathode terminal 45. The anode power supply plate 32 and the cathode power supply plate 33
A spacer 46 is disposed outside the cell, and an electrolytic cell pressing plate 47 is disposed below the cathode power supply plate 33 . On the anode power supply plate 32 and the spacer 46, a water storage tank 49 is fixedly disposed by a bolt 48. An O-ring 50 is provided between the anode power supply plate 32 and the water storage tank 49.

【0015】こうした構成の分解式オゾン発生装置を用
いて1.0A/cm2 の直流電流を通電し、電解セル1
個に流した電流の7倍の電流を流した時、の実施例1と
同じ濃度のオゾン発生を確認した。
By using a decomposition type ozone generator having such a configuration, a direct current of 1.0 A / cm 2 is supplied to the electrolysis cell 1.
It was confirmed that the same concentration of ozone was generated as in Example 1 when a current 7 times the current passed through the individual was passed.

【0016】(実施例2) この実施例2は、図示しないが、比較例のオゾン発生器
にタイマー回路を使用した構成となっている。このよう
にタイマー回路を使用して30秒間0.6A/cm2
直流電流を通電し、原料水の溶存オゾン濃度を測定した
ところ0.2ppmであった。
Embodiment 2 Although not shown, Embodiment 2 has a configuration in which a timer circuit is used in an ozone generator of a comparative example . Thus, a direct current of 0.6 A / cm 2 was supplied for 30 seconds using the timer circuit, and the dissolved ozone concentration of the raw water was measured.

【0017】(実施例3比較例 と同じ方法で作成した電極寸法の電解セルを図
5,図6及び図7に示す冷却水通路を配した電解槽に組
み込みんだ。ここで、図5は前記電解槽の全体図、図6
は図5の電解槽の一部を構成する陽極電解槽の説明図、
図7は図5の電解槽の一部を構成する陰極電解槽の説明
図である。
( Example 3 ) An electrolytic cell having electrode dimensions prepared in the same manner as in the comparative example was incorporated into an electrolytic cell provided with cooling water passages shown in FIGS. 5, 6 and 7. Here, FIG. 5 is an overall view of the electrolytic cell, and FIG.
Is an explanatory diagram of an anode electrolyzer constituting a part of the electrolyzer of FIG. 5,
FIG. 7 is an explanatory diagram of a cathodic electrolyzer constituting a part of the electrolyzer of FIG.

【0018】図5において、符号51は陽極電解槽、符
号52は陰極電解槽である。前記陽極電解槽51には、
複数の陽極冷却水通路53,これらの通路53に連通す
る陽極冷却水マニホールド54が設けられている。ま
た、前記陰極電解槽52には、複数の陰極冷却水通路5
5,これら通路55に連通する陰極冷却水マニホールド
56が設けられている。また、前記陽極電解槽51、陰
極電解槽52には電解セル57が設けられている。な
お、符号58は原料水給水及びオゾン排気穴である。図
7において、符号71は水素排気穴である。上記電解セ
ルをこうした構成の電解槽に組み込み、1.0A/cm
で電解したところ、0.04g/h・cmのオゾン
が発生した。
In FIG. 5, reference numeral 51 denotes an anode electrolytic cell, and reference numeral 52 denotes a cathodic electrolytic cell. In the anode electrolytic cell 51,
A plurality of anode cooling water passages 53 and an anode cooling water manifold 54 communicating with these passages 53 are provided. The cathode electrolytic cell 52 has a plurality of cathode cooling water passages 5.
5, a cathode cooling water manifold 56 communicating with these passages 55 is provided. An electrolytic cell 57 is provided in the anode electrolytic cell 51 and the cathode electrolytic cell 52. Reference numeral 58 denotes a raw water supply water and an ozone exhaust hole. In FIG. 7, reference numeral 71 denotes a hydrogen exhaust hole. The above-mentioned electrolytic cell is incorporated into an electrolytic cell having such a configuration, and is set to 1.0 A / cm.
When electrolysis was performed at 0.02, 0.04 g / h · cm 2 of ozone was generated.

【0019】[0019]

【発明の効果】以上詳述したように本発明によれば、原
料水系および冷却水系を独立させることにより簡便で信
頼性が高く、電解セルの大面積化に対応できる電解式オ
ゾン発生装置を提供できる。
As described above in detail, according to the present invention, there is provided an electrolytic ozone generator which is simple, has high reliability and can cope with an increase in the area of an electrolytic cell by making the raw water system and the cooling water system independent. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の比較例に係る分解式オゾン発生装置の
説明図。
FIG. 1 is an explanatory view of a decomposition type ozone generator according to a comparative example of the present invention.

【図2】本発明の実施例1に係る分解式オゾン発生装置
に係る基本分解セルの説明図。
FIG. 2 is an explanatory diagram of a basic decomposition cell according to the decomposition type ozone generator according to the first embodiment of the present invention.

【図3】本発明の実施例1に係る分解式オゾン発生装置
の説明図。
FIG. 3 is an explanatory view of a decomposition type ozone generator according to Embodiment 1 of the present invention.

【図4】本発明の実施例1に係る7個スタックを組み込
んだ複極式の分解式オゾン発生装置の説明図。
FIG. 4 incorporates a seven-stack according to the first embodiment of the present invention .
FIG. 1 is an explanatory view of a split bipolar ozone generator .

【図5】本発明の実施例3に係る電解槽の概念図。FIG. 5 is a conceptual diagram of an electrolytic cell according to Embodiment 3 of the present invention.

【図6】図5の電解槽の一構成である陽極電解槽の説明
図で、図6(A)は平面図、図6(B)は図6(A)の
側面図、図6(C)は図6(A)のX−X線に沿う断面
図。
6 (A) is a plan view, FIG. 6 (B) is a side view of FIG. 6 (A), and FIG. 6 (C). 7) is a sectional view taken along line XX of FIG.

【図7】図5の電解槽の一構成である陰極電解槽の説明
図で、図7(A)は平面図、図7(B)は図7(A)の
側面図、図7(C)は図7(A)のX−X線に沿う断面
図。
7 (A) is a plan view, FIG. 7 (B) is a side view of FIG. 7 (A), and FIG. 7 (C). 7) is a cross-sectional view taken along line XX of FIG.

【符号の説明】[Explanation of symbols]

1,31…電解セル、 2…固体高分子電解質膜、3…オ
ゾン発生極、4…空気極、 5…陰極端子、 6…陽
極電解槽、7,52…陰極電解槽、8a,8b…ガスケット、
9,22,33…陰極給電板、10…外筒、11…陽極端子、
12,13…Oリング、 14…貯水槽、21,32
陽極給電板、23,34,48…ボルト、 44…陽極端
子、45…陰極端子、 51…陽極電解槽、
53…陽極冷却水通路、54…陽極冷却水マニホールド、
55…陰極冷却水通路、56…陰極冷
却水マニホールド、 57…電解セ
ル。
1, 31 electrolytic cell, 2 solid polymer electrolyte membrane, 3 ozone generating electrode, 4 air electrode, 5 cathode terminal, 6 anodic electrolytic cell, 7, 52 cathodic electrolytic cell, 8a, 8b gasket ,
9, 22, 33 ... cathode power supply plate, 10 ... outer cylinder, 11 ... anode terminal,
12, 13… O-ring, 14… Reservoir, 21,32
... Anode power supply plate, 23,34,48 ... Volt, 44 ... Anode terminal, 45 ... Cathode terminal, 51 ... Anode electrolytic cell,
53… Anode cooling water passage, 54… Anode cooling water manifold,
55 ... Cathode cooling water passage, 56 ... Cathode cooling water manifold, 57 ... Electrolysis cell.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体電解質膜の一方の主面に陽極として
のオゾン発生極を設けると共に、固体電解質膜の他方の
主面に陰極としての水素発生極または空気極を設けた電
解セルを前記オゾン発生極が上面となるように水平に配
置し、かつ前記電解セルのオゾン発生極の上面が常に電
解の原料である純水または脱イオン水に浸るように電解
セルの上部に貯水機構を有する電解式オゾン発生装置に
おいて、複数の電解セルを同一平面上に配することを特
徴とする電解式オゾン発生装置。
An ozone generating electrode as an anode is provided on one main surface of a solid electrolyte membrane and a hydrogen generating electrode or an air electrode as a cathode is provided on the other main surface of the solid electrolyte membrane. Electrolysis having a water storage mechanism at the upper part of the electrolytic cell so that the generating electrode is horizontally arranged such that the generating electrode is on the upper surface, and the upper surface of the ozone generating electrode of the electrolytic cell is always immersed in pure water or deionized water which is a raw material for electrolysis. An electrolytic ozone generator, wherein a plurality of electrolytic cells are arranged on the same plane .
【請求項2】 一定時間の電解後、タイマー回路により
自動的に電解電圧を低下させる機能を有することを特徴
とする請求項1記載の電解式オゾン発生装置。
2. After a certain period of electrolysis, a timer circuit is used.
Features that automatically lowers the electrolysis voltage
The electrolytic ozone generator according to claim 1, wherein
【請求項3】 陽極電解槽及び陰極電解槽と、この陽極
電解槽及び陰極電解槽に原料水とは独立した冷却水を循
環させる通路を設けたことを特徴とする請求項1記載の
電解式オゾン発生装置。
3. An anode electrolytic cell and a cathode electrolytic cell, and the anode
Circulate cooling water independent of the feed water in the electrolytic cell and the cathodic electrolytic cell.
The electrolytic ozone generator according to claim 1, wherein a passage for circulating is provided .
JP14900695A 1995-06-15 1995-06-15 Electrolytic ozone generator Expired - Fee Related JP3297250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14900695A JP3297250B2 (en) 1995-06-15 1995-06-15 Electrolytic ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14900695A JP3297250B2 (en) 1995-06-15 1995-06-15 Electrolytic ozone generator

Publications (2)

Publication Number Publication Date
JPH093679A JPH093679A (en) 1997-01-07
JP3297250B2 true JP3297250B2 (en) 2002-07-02

Family

ID=15465613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14900695A Expired - Fee Related JP3297250B2 (en) 1995-06-15 1995-06-15 Electrolytic ozone generator

Country Status (1)

Country Link
JP (1) JP3297250B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011160446A1 (en) * 2010-06-22 2011-12-29 Liu Xun Water electrolytic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130781B2 (en) * 2007-05-08 2013-01-30 三菱電機株式会社 Hydrogen peroxide production apparatus and air conditioner, air purifier and humidifier using the same
KR200459135Y1 (en) 2010-05-03 2012-03-19 김일봉 Portable device for producing hydrogen enriched water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011160446A1 (en) * 2010-06-22 2011-12-29 Liu Xun Water electrolytic device

Also Published As

Publication number Publication date
JPH093679A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
US5635039A (en) Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
US6149810A (en) Membrane with supported internal passages
US6984304B2 (en) Generation and delivery device for ozone gas and ozone dissolved in water
US5460705A (en) Method and apparatus for electrochemical production of ozone
CN1128759C (en) Electrolytic ozone generator
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
EP1777323A2 (en) An integrated ozone generator system
KR950027988A (en) Electrolytic water generation method and apparatus
CN112534085A (en) Electrolysis unit and method for operating an electrolysis unit
CN210796654U (en) Water supply-cooling-temperature control integrated system for pure water SPE water electrolyzer
CN1966777B (en) Proton exchange membrane electrolysis water device
JP3991146B2 (en) Solid polymer water electrolyzer
US5296110A (en) Apparatus and method for separating oxygen from air
JP5415168B2 (en) Water electrolysis system
US20080060936A1 (en) Ozone producing system
JP3297250B2 (en) Electrolytic ozone generator
JP2012153965A (en) Method for operating high pressure water electrolysis apparatus
CN101545114B (en) An electrolysis-electrodialysis device
US4357224A (en) Energy efficient electrolyzer for the production of hydrogen
CN218989415U (en) PEM water electrolytic tank
KR101919570B1 (en) Membrane electrode assembly and hydrogen enriched water producing apparatus using same
JP3240981B2 (en) Electrolytic ozone generator
CN115558943A (en) Hydrogen peroxide generating device
JPS63100190A (en) Electrolytic device for generating gas
JP2003342769A (en) Hydrogen supply device using solid polymer type water electrolysis tank

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees