JP3296807B2 - Electron beam drawing equipment - Google Patents
Electron beam drawing equipmentInfo
- Publication number
- JP3296807B2 JP3296807B2 JP35273899A JP35273899A JP3296807B2 JP 3296807 B2 JP3296807 B2 JP 3296807B2 JP 35273899 A JP35273899 A JP 35273899A JP 35273899 A JP35273899 A JP 35273899A JP 3296807 B2 JP3296807 B2 JP 3296807B2
- Authority
- JP
- Japan
- Prior art keywords
- deflector
- electron beam
- deflection
- data
- control means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electron Beam Exposure (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は偏向領域、偏向感度
の異なる複数段の偏向器を有して高速に描画を行う電子
線描画装置において、高速に描画を行う高速描画モード
と高精度に描画を行う高精度描画モードを併せ持つこと
を可能とし、かつ高精度に合せマークの位置検出を可能
とする電子線描画装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam lithography system having a plurality of deflectors having different deflection areas and deflection sensitivities for performing high-speed drawing. The present invention relates to an electron beam lithography apparatus capable of simultaneously having a high-precision drawing mode for performing an alignment mark and detecting a position of a registration mark with high accuracy.
【0002】[0002]
【従来の技術】半導体デバイスの微細化が進み、微細パ
ターンを形成する為の半導体製造装置、特にリソグラフ
ィ装置はi線ステッパーからエキシマレーザステッパー
あるいはこれらのスキャニングステッパー等へと移行し
つつある。これらのリソグラフィ装置は装置スループ
ットが高い、プロセス技術が従来の延長上にあるなど
の優位性がある反面、原理的な解像限界に達しつつあ
る、プロセスやマスク製造などの周辺技術が複雑にな
り、歩留まりや総合スループットが低下するという問題
を抱えている。2. Description of the Related Art As semiconductor devices are miniaturized, semiconductor manufacturing apparatuses for forming fine patterns, particularly lithography apparatuses, are shifting from i-line steppers to excimer laser steppers or scanning steppers thereof. These lithography systems have advantages such as high device throughput and process technology that is an extension of the conventional technology.However, peripheral technologies such as process and mask manufacturing, which are approaching the fundamental resolution limit, are becoming complicated. However, there is a problem that the yield and the overall throughput are reduced.
【0003】そこでマスクを必要とせず、解像力の高い
電子線でウェハ上に直接パターンを形成するいわゆる直
描用の電子線描画装置が注目されている。Therefore, a so-called direct-drawing electron beam lithography apparatus that directly forms a pattern on a wafer with an electron beam having a high resolution without using a mask has attracted attention.
【0004】しかしステッパーに比べ装置スループット
が低いことから、近年ステッパーと電子線描画装置の混
用、いわゆるミックス・アンド・マッチによるデバイス製
造が主流になりつつある。このような中で電子線描画装
置には、スループット、解像性、合せ精度に関してより
一層の精度向上が要求されてきている。従来からこれら
の要求に対応すべく様々な対応策が考案されてきてい
る。例えば電子線を偏向する為の偏向器を複数段有し広
範囲の領域を高速にビーム偏向する多段偏向電子線描画
装置や繰返し露光されるパターンを抽出し、このパター
ン形状に形成されたビームにて一括露光する一括転写露
光方法等を用いてスループットを向上し、更には電子源
を発生する電子銃の高加速電圧化、高電流密度化等によ
り解像性の向上を図る等、様々な工夫を凝らして対応し
ている。[0004] However, since the apparatus throughput is lower than that of the stepper, in recent years, the use of the stepper and the electron beam lithography apparatus, that is, device manufacturing by so-called mix-and-match has become mainstream. Under such circumstances, the electron beam lithography apparatus is required to further improve the throughput, resolution, and alignment accuracy. Conventionally, various countermeasures have been devised to meet these requirements. For example, a multi-stage deflection electron beam lithography system that has multiple stages of deflectors for deflecting an electron beam and deflects a beam over a wide area at high speed, or a pattern that is repeatedly exposed, is extracted, and a beam formed in this pattern shape is used. Various measures such as improving the throughput by using the batch transfer exposure method for batch exposure, etc., and improving the resolution by increasing the acceleration voltage and current density of the electron gun that generates the electron source, etc. We are responding elaborately.
【0005】しかしながら半導体デバイスの微細化が進
み、最小線幅0.2マイクロメータ以下の精度を要求さ
れる今日に至っては、新たにノイズによるビームの揺ら
ぎの影響が非常に大きな問題となってきている。ビーム
の揺らぎを引起こす要因は、メカニカルな振動、外部か
らの外乱(磁場等)による影響、偏向器自身に重畳する
電気的ノイズに大別される。除振架台や筐体強度の補強
等によりメカニカルな振動を抑え、磁場シールドや装置
をシールドチャンバ内に実装するなどして外部からの外
乱の影響を排除、更にはビームの揺らぎを偏向データに
フィードバックして打ち消すなどの方策が立てられてき
ているが、偏向器自身に重畳するノイズの影響を排除す
る手立てが無いのが実状である。また合せ精度を向上さ
せる為に合せマーク検出の検出精度を高めるべく、種々
のフィルタ機能、検出アルゴリズムが考案されている
が、これらの手法ではビームの揺らぎによる検出精度の
劣化を免れることは出来ない。現在、複数段の偏向器を
有する多段偏向の電子線描画装置が主流となっている
が、各偏向器とそれをドライブするアナログ素子毎にノ
イズ成分、量が異なり、その中でも最も大きいものが装
置の最終性能を決めている。[0005] However, as the miniaturization of semiconductor devices progresses and the accuracy of a minimum line width of 0.2 micrometers or less is required today, the influence of beam fluctuation due to noise has become a very serious problem. I have. Factors causing the beam fluctuation are roughly classified into mechanical vibration, influence of external disturbance (magnetic field or the like), and electric noise superimposed on the deflector itself. Mechanical vibration is suppressed by vibration isolation stand and reinforcement of housing strength, etc., and the influence of external disturbance is eliminated by mounting a magnetic field shield and equipment in a shield chamber.Furthermore, beam fluctuation is fed back to deflection data. Although some measures have been taken such as canceling out, there is no way to eliminate the influence of noise superimposed on the deflector itself. In addition, various filter functions and detection algorithms have been devised in order to increase the detection accuracy of the alignment mark detection in order to improve the alignment accuracy. However, these methods cannot avoid deterioration of the detection accuracy due to beam fluctuation. . Currently, multi-stage deflection electron beam lithography systems with multiple stages of deflectors are the mainstream, but the noise components and amounts differ for each deflector and the analog element that drives it, and the largest one is the device. Final performance.
【0006】[0006]
【発明が解決しようとする課題】以上説明してきたよう
に、偏向領域、偏向感度の異なる複数段の偏向器を持ち
替えながら広範囲の領域を高速に描画する電子線描画装
置において、偏向器とそれをドライブするアンプ及び制
御回路毎にノイズ成分、量が異なり、その中でも最も大
きいものが装置の最終性能を決めている。また広範囲の
領域を偏向する必要の無いマーク検出においても、同一
の複数段の偏向器を用いてビーム偏向を行う為、ビーム
の揺らぎによる検出精度の劣化を免れない。As described above, in an electron beam lithography system which draws a wide area at high speed while changing a deflection area and a plurality of deflectors having different deflection sensitivities, a deflector and the same are used. The noise components and amounts differ for each driving amplifier and control circuit, and the largest one among them determines the final performance of the device. Also, in mark detection that does not need to deflect a wide area, beam deflection is performed using the same plurality of deflectors, so that detection accuracy is inevitably degraded due to beam fluctuation.
【0007】本発明の目的は、複数段の偏向器を有する
電子線描画装置において、高速に描画を行う高速描画モ
ードと高精度な描画を行う高精度描画モードを併せ持
ち、更には該偏向器に重畳する有害なノイズを排除して
高精度なマーク検出を実現するに適した電子線描画装置
を提供することにある。An object of the present invention is to provide an electron beam lithography apparatus having a plurality of stages of deflectors, having both a high-speed drawing mode for performing high-speed drawing and a high-precision drawing mode for performing high-precision drawing. An object of the present invention is to provide an electron beam lithography apparatus suitable for realizing high-accuracy mark detection by eliminating harmful noise to be superimposed.
【0008】[0008]
【課題を解決するための手段】前記目的を達成する為に
は、前記複数段の夫々の偏向器に重畳するノイズによる
ビームの揺らぎを測定評価し、有害なノイズの重畳する
任意の偏向器の偏向データを強制的に無効として切り離
し、ノイズによるビームの揺らぎを低減して描画および
マーク検出を行えば良い。In order to achieve the above object, the fluctuation of a beam caused by noise superimposed on each of the plurality of stages of deflectors is measured and evaluated, and an arbitrary deflector on which harmful noise is superimposed is measured. The deflection data may be forcibly invalidated and separated, and writing and mark detection may be performed while reducing the beam fluctuation due to noise.
【0009】偏向範囲、偏向感度の異なる複数段の偏向
器を有する電子線描画装置において、該複数段の夫々の
偏向器に重畳するノイズによるビームの揺らぎを測定評
価しておき、比較的精度の要求されないレイヤーの描画
には全偏向器を用いて高速に広範囲な領域を電子線偏向
して高速に描画を行い、精度の要求されるクリティカル
なレイヤーの描画には、有害なノイズの重畳した偏向器
の偏向データを強制的に無効として切り離し、ノイズに
よるビームの揺らぎを低減して描画を行えば、高速描画
および高精度描画を一つの装置で実現することができ
る。更には広範囲な領域をビーム偏向する必要の無いマ
ーク検出において、偏向する必要の無い偏向器の偏向デ
ータを強制的に無効として切り離しマーク検出を行え
ば、ビームの偏向ノイズによる精度劣化を排除した高精
度なマーク検出が実現できる。In an electron beam lithography system having a plurality of deflectors having different deflection ranges and deflection sensitivities, beam fluctuation due to noise superimposed on each of the plurality of deflectors is measured and evaluated, and a relatively high accuracy is obtained. For the drawing of layers that are not required, all deflectors are used to perform high-speed drawing by deflecting a wide area at high speed with an electron beam.For the drawing of critical layers that require precision, deflection with harmful noise is used. High-speed writing and high-accuracy writing can be realized by a single apparatus by forcibly separating the deflection data of the image forming apparatus, invalidating the data, and reducing the fluctuation of the beam caused by noise. Furthermore, in mark detection that does not need to deflect a beam over a wide area, if the decoupling mark detection is performed by forcibly invalidating the deflection data of the deflector that does not need to be deflected, the accuracy degradation due to beam deflection noise is eliminated. Accurate mark detection can be realized.
【0010】[0010]
【発明の実施の形態】本発明の実施例を図を用いて説明
する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings.
【0011】図1に本発明を実現するに最適な電子線描
画装置の一例を概略図で示す。FIG. 1 is a schematic view showing an example of an electron beam lithography apparatus most suitable for realizing the present invention.
【0012】電子線源101から発せられた電子線10
2は、第1成形アパーチャ103を透過し、成形レンズ
104によって下段の第2成形アパーチャ106に結像
され、第2成形アパーチャへのビーム照射位置は成形偏
向器105により制御される。2段の成形アパーチャに
より成形された成形ビームは、縮小レンズ107で縮小
され、対物レンズ109で試料面上に結像される。また
露光ショットの回転は回転補正レンズ108で補正さ
れ、試料面上のビーム照射位置は約5mmの偏向範囲を
有する電磁偏向器110、約500μmの偏向範囲を有
する大角静電偏向器111および約80μmの偏向範囲
を有する高速静電偏向器112の3段のビーム照射位置
決め偏向器により偏向される。これらの偏向器を含めた
電子光学手段は描画制御手段117により制御され、制
御計算機121はデータバス122を介してこの描画制
御手段117とウェハ上あるいは試料台上のマーク上を
電子線走査し、この時発生する反射電子を反射電子検出
器113により検出し、この検出信号よりマーク位置を
検出する信号処理手段116および試料台114をビー
ム照射位置に移動させるステージ制御手段115を一括
制御する。An electron beam 10 emitted from an electron beam source 101
2 is transmitted through the first shaping aperture 103, is imaged by the shaping lens 104 on the second shaping aperture 106 at the lower stage, and the beam irradiation position on the second shaping aperture is controlled by the shaping deflector 105. The shaping beam formed by the two-stage shaping aperture is reduced by the reduction lens 107 and is imaged on the sample surface by the objective lens 109. The rotation of the exposure shot is corrected by a rotation correction lens 108, and the beam irradiation position on the sample surface is adjusted by an electromagnetic deflector 110 having a deflection range of about 5 mm, a large-angle electrostatic deflector 111 having a deflection range of about 500 μm, and an about 80 μm Are deflected by the three-stage beam irradiation positioning deflector of the high-speed electrostatic deflector 112 having the deflection range of Electron optical means including these deflectors are controlled by a drawing control means 117, and a control computer 121 scans the drawing control means 117 and a mark on a wafer or a sample table via a data bus 122 with an electron beam. The reflected electrons generated at this time are detected by the reflected electron detector 113, and the signal processing means 116 for detecting the mark position based on the detection signal and the stage control means 115 for moving the sample stage 114 to the beam irradiation position are collectively controlled.
【0013】描画制御手段117は、合せ補正部11
8、偏向制御部119、絶対校正部120を含み、ステ
ージ114上の標準マークおよびウェハ上の合せマーク
の位置を信号処理手段116により検出し、その結果を
制御計算機121がデータバス122を介して読み込
み、各偏向器の偏向歪み、ビーム形状やウェハ上に露光
された前層のパターンの歪みを算出し、補正係数を計算
して合せ補正部118、絶対校正部120に渡される。
合せ補正部118でショット図形単位にウェハ形状への
合せ補正を受け、偏向制御部119で偏向量に変換し、
最後に絶対校正部120で偏向量を校正した後、アナロ
グ変換して電子線鏡体を制御しウェハ上に所望のパター
ンを露光する。The drawing control means 117 includes an alignment correction unit 11
8, including a deflection control unit 119 and an absolute calibration unit 120, the position of the standard mark on the stage 114 and the position of the alignment mark on the wafer are detected by the signal processing means 116, and the result is transmitted from the control computer 121 to the data bus 122 via the data bus 122. The reading, the deflection distortion of each deflector, the beam shape and the distortion of the pattern of the previous layer exposed on the wafer are calculated, and the correction coefficient is calculated and passed to the alignment correction unit 118 and the absolute calibration unit 120.
The alignment correction unit 118 receives alignment correction to the wafer shape in shot figure units, and the deflection control unit 119 converts it into a deflection amount.
Finally, after the deflection amount is calibrated by the absolute calibrating unit 120, analog conversion is performed to control the electron beam mirror to expose a desired pattern on the wafer.
【0014】ここで本発明の特徴である偏向器選択回路
123は、任意の偏向器の偏向データを強制的に無効と
し、電子線から該偏向器を切り離す為の手段であり、偏
向データの出力をスイッチ等により該偏向器と電子線鏡
体外部にある疑似負荷とで切替え、偏向器をドライブす
るアンプ及び制御回路によるノイズによる影響を該偏向
器から電気的に完全に切り離すことが可能である。Here, the deflector selection circuit 123 which is a feature of the present invention is a means for forcibly invalidating the deflection data of an arbitrary deflector and disconnecting the deflector from the electron beam. Can be switched between the deflector and a dummy load outside the electron beam mirror by a switch or the like, so that the influence of noise due to the amplifier and the control circuit for driving the deflector can be completely completely separated from the deflector. .
【0015】図2に該偏向器選択回路123の簡単な回
路例を概略図で示す。本図では前述の電子線描画装置の
3段位置決め偏向器における電磁偏向器110を例に挙
げ、偏向器選択制御の処理の流れを説明する。各偏向器
の偏向データは、露光する図形パターンデータより偏向
制御部119にて各偏向器に与えるべき偏向量に変換さ
れ、絶対校正部120にて絶対校正された後に夫々の偏
向器に与えられる。通常の描画では電磁偏向データ20
1はD/Aコンバータ206に渡され、偏向量に対応し
たアナログデータに変換された後に電磁偏向アンプ20
5を介して電磁偏向器110に入力され電子線102を
偏向制御する。この電磁偏向器の偏向データを強制的に
無効とする場合、電磁偏向器は前述の3段偏向の中で最
も広範囲な領域を偏向する偏向器である為、偏向制御部
119にて各偏向器の偏向量を算出する際に、電磁偏向
器の偏向領域を0μmとして計算し、電磁偏向データ2
01は0μmとしてD/Aコンバータ206に渡され
る。FIG. 2 is a schematic diagram showing a simple circuit example of the deflector selection circuit 123. In this figure, the flow of the deflector selection control process will be described by taking the electromagnetic deflector 110 in the above-described three-stage positioning deflector of the electron beam drawing apparatus as an example. The deflection data of each deflector is converted from the figure pattern data to be exposed into a deflection amount to be given to each deflector by the deflection control unit 119 and is absolutely calibrated by the absolute calibrating unit 120 before being given to each deflector. . In normal drawing, the electromagnetic deflection data 20
1 is passed to a D / A converter 206 and is converted into analog data corresponding to the deflection amount, and then converted to analog data.
The electron beam 102 is input to the electromagnetic deflector 110 via the control unit 5 to control the deflection of the electron beam 102. When the deflection data of the electromagnetic deflector is forcibly invalidated, since the electromagnetic deflector is a deflector that deflects the widest area in the three-stage deflection described above, the deflection control unit 119 controls each deflector. When the deflection amount of the electromagnetic deflector is calculated, the deflection area of the electromagnetic deflector is set to 0 μm.
01 is passed to the D / A converter 206 as 0 μm.
【0016】しかし、偏向データは0μmであってもこ
の電磁偏向の偏向データを制御する制御回路、電磁偏向
アンプ205に重畳するノイズにより、電子線102は
微小に偏向され、精度劣化を引起こしてしまう。However, even if the deflection data is 0 .mu.m, the electron beam 102 is minutely deflected by noise superimposed on the control circuit for controlling the deflection data of the electromagnetic deflection and the electromagnetic deflection amplifier 205, causing deterioration in accuracy. I will.
【0017】そこで偏向器選択スイッチ202により、
電磁偏向アンプ205の出力を電磁偏向器110より電
気的に完全に切り離すことによってこのノイズによるビ
ームの揺らぎを排除する。この時、電磁偏向アンプ20
5の出力は疑似負荷203に接続され、偏向アンプ20
5を保護する役割を果たす。大角静電偏向器111、高
速静電偏向器112も同様な手段により偏向器をそれを
ドライブするアンプおよび制御回路から電気的に切り離
し、各偏向器に重畳するノイズによるビームの揺らぎを
排除して精度の向上を図ることが可能となる。また本発
明の別の側面から見れば、偏向データを強制的に無効と
する偏向器に与えるべき偏向データを、偏向制御部11
9にて各偏向器の偏向量を算出する際に、該偏向器の偏
向領域を0μmとして計算するのではなく、例えば大角
静電偏向器111のみを切り離す場合に、通常の描画と
同様に偏向制御部119にて大角静電偏向データ208
を算出し、D/Aコンバータ209に入力される偏向デ
ータは偏向データ選択スイッチにて無偏向のデータが渡
される。D/Aコンバータ以降は、前述の電磁偏向器1
10と同様に偏向器選択スイッチにて偏向器とそれをド
ライブする偏向アンプが電気的に完全に切り離される。
この時、大角静電偏向器111に与えられるべくして偏
向量に変換された大角静電偏向データ208は、偏向デ
ータ加算スイッチ208を介して、加算器210にて電
磁偏向データ201に加算され、強制的に偏向データを
無効とした大角静電偏向器111の偏向量を電磁偏向器
110にて偏向する。このように強制的に偏向データを
無効とした偏向器の偏向データをより広範囲な偏向領域
を有する偏向器の偏向データに自動的に加算し、描画を
行う手段も提供される。Therefore, the deflector selection switch 202
By completely electrically disconnecting the output of the electromagnetic deflection amplifier 205 from the electromagnetic deflector 110, the beam fluctuation due to this noise is eliminated. At this time, the electromagnetic deflection amplifier 20
5 is connected to the dummy load 203, and the deflection amplifier 20
5 protects. The large-angle electrostatic deflector 111 and the high-speed electrostatic deflector 112 are also electrically separated from the amplifier and the control circuit for driving the deflector by the same means to eliminate the beam fluctuation caused by noise superimposed on each deflector. Accuracy can be improved. According to another aspect of the present invention, deflection data to be given to a deflector that forcibly invalidates deflection data is supplied to a deflection controller 11.
When the deflection amount of each deflector is calculated in step 9, instead of calculating the deflection area of the deflector as 0 μm, for example, when only the large-angle electrostatic deflector 111 is separated, the deflection is performed in the same manner as in normal drawing. Large angle electrostatic deflection data 208 by the control unit 119
Is calculated, and the deflection data input to the D / A converter 209 is passed as non-deflection data by the deflection data selection switch. After the D / A converter, the above-described electromagnetic deflector 1
As in the case of 10, the deflector and the deflection amplifier for driving the deflector are completely electrically disconnected by the deflector selection switch.
At this time, the large-angle electrostatic deflection data 208 converted into a deflection amount to be given to the large-angle electrostatic deflector 111 is added to the electromagnetic deflection data 201 by an adder 210 via a deflection data addition switch 208. Then, the deflection amount of the large-angle electrostatic deflector 111 in which the deflection data is forcibly invalidated is deflected by the electromagnetic deflector 110. There is also provided means for automatically adding the deflection data of the deflector for which the deflection data has been forcibly invalidated to the deflection data of the deflector having a wider deflection area to perform drawing.
【0018】以上説明してきたように、本発明の特徴で
ある任意の偏向器の偏向データを強制的に無効とし、偏
向器とそれをドライブするアンプおよび制御回路とを電
気的に切り離す手段を具備した電子線描画装置における
本発明の処理の流れを以下に説明する。As described above, there is provided a means for forcibly invalidating the deflection data of an arbitrary deflector, which is a feature of the present invention, and for electrically disconnecting the deflector from the amplifier and the control circuit for driving the deflector. The processing flow of the present invention in the electron beam lithography apparatus described above will be described below.
【0019】複数段の偏向器を有する電子線描画装置に
おいて、偏向器をドライブするアンプ及び制御回路に重
畳するノイズによるビームの揺らぎを、各偏向器毎に自
動的に測定、評価する手段は従来では持っておらず、全
偏向器の総合的なノイズを測定、評価するに留まってい
る。本発明のある側面からすれば、多段偏向電子線描画
装置における各偏向器毎のビームノイズ量を自動的に測
定、評価する手段を提供することにある。In an electron beam lithography system having a plurality of deflectors, means for automatically measuring and evaluating beam fluctuation due to noise superimposed on an amplifier for driving the deflectors and a control circuit for each deflector is conventionally used. However, it does not have to measure and evaluate the overall noise of all deflectors. According to an aspect of the present invention, there is provided a means for automatically measuring and evaluating a beam noise amount for each deflector in a multi-stage deflection electron beam writing apparatus.
【0020】図3に本発明の該電子線描画装置における
重ね合せ描画時の処理の流れをフローチャートにて示
す。本発明では複数段の偏向器を有する多段偏向電子線
描画装置において、高速に描画を行う高速描画モードと
より高精度に描画を行う高精度描画モードを1つの電子
線描画装置にて併せ持つことを特徴とし、ステップ30
1にて高精度な描画を行うか否かが選択される。FIG. 3 is a flowchart showing the flow of processing at the time of superposition drawing in the electron beam drawing apparatus of the present invention. According to the present invention, in a multi-stage deflection electron beam lithography system having a plurality of deflectors, one electron beam lithography system has both a high-speed lithography mode for performing high-speed lithography and a high-precision lithography mode for performing higher-precision lithography. Step 30
In step 1, whether or not to perform high-precision drawing is selected.
【0021】以下、高精度描画モードが選択された場合
の処理について説明する。The processing when the high-precision drawing mode is selected will be described below.
【0022】高精度な描画を行うには、まず第1に各偏
向器に重畳するノイズによるビームの揺らぎを測定評価
する必要がある。そこでステップ302にてステージ上
に用意された基準マークを検出し、マークのエッジ部の
位置を算出する。次にステップ303にて複数段の偏向
器の内の任意の1つの偏向器のみを選択し、その他の偏
向器は該偏向器選択回路123にて切り離された後、ス
テップ304でステップ302にて計測された基準マー
クのエッジ位置にステージを移動し、マークエッジ部に
ビームを照射する。この時に発せられる反射電子信号か
らステップ305にて、ステップ303で選択された偏
向器によるビームの揺らぎを計測する。このビームの揺
らぎはステップ302にて基準マークを検出した際のビ
ームサイズ、ビームがマークから完全に外れた位置とビ
ームがマーク上に完全に照射される位置での反射電子の
信号強度を算出しておけば、ステップ304でマークエ
ッジ部にビーム照射された時の反射電子の信号強度変化
から容易に算出することが可能である。同様にしてステ
ップ306にて全偏向器の測定が終了するまでステップ
303からステップ305の処理が繰返される。このよ
うにして複数段の偏向器の夫々のビームの揺らぎを測定
し、ステップ307にてその結果をCRT画面上に表示
する。In order to perform high-precision writing, first, it is necessary to measure and evaluate beam fluctuation caused by noise superimposed on each deflector. In step 302, the reference mark prepared on the stage is detected, and the position of the edge of the mark is calculated. Next, in step 303, any one of the plurality of deflectors is selected, and the other deflectors are separated by the deflector selection circuit 123. Then, in step 304, in step 302 The stage is moved to the measured edge position of the reference mark, and the mark edge is irradiated with a beam. At step 305, the fluctuation of the beam by the deflector selected at step 303 is measured from the reflected electron signal generated at this time. The fluctuation of the beam is calculated by calculating the beam size when the reference mark is detected in step 302, and the signal intensity of the reflected electrons at the position where the beam completely deviates from the mark and the position where the beam is completely irradiated on the mark. If this is done, it can be easily calculated from the signal intensity change of the reflected electrons when the mark edge is irradiated with the beam in step 304. Similarly, the processing of steps 303 to 305 is repeated until the measurement of all the deflectors is completed in step 306. In this way, the fluctuation of each beam of the plurality of deflectors is measured, and the result is displayed on the CRT screen in step 307.
【0023】ステップ308は前述のノイズ測定結果か
ら複数段の偏向器のうち偏向データを強制的に無効とす
る偏向器を選択するステップであるが、ノイズ測定結果
から各偏向器におけるノイズの最大、最小値を算出し、
任意に設定された閾値と比較して、閾値以上のノイズが
重畳する偏向器を自動的に切り離すステップ309とス
テップ307にてCRT画面上に表示されるノイズ測定
結果画面315の各偏向器のノイズ情報316から、C
RT画面上の偏向器選択スイッチ317にて偏向データ
を無効とする偏向器を任意に選択するステップ310の
二つの選択手段を具備している。このステップ308に
て偏向データを強制的に無効とする偏向器を選択した
後、重ね合せ描画を実行するが、重ね合せ描画は前層に
露光されたパターン形状に合せて描画を行う為に、前層
のチップ周辺に露光された重ね合せマークを検出し、前
層パターンの形状を計測する必要がある。ここで該合せ
マークの大きさは数μm程度であり、合せマーク検出は
ステージをマーク位置に移動した後にビーム走査して検
出を行うことを繰返す、いわゆるステップ・アンド・リピ
ートによる検出を行っている為、マーク検出時のビーム
偏向は約10〜30μm程度の範囲を偏向できれば良
い。そこでステップ311で狭い範囲を最も高速に偏向
可能な最下段の偏向器のみを選択し、その他の偏向器は
偏向データを強制的に無効として、不要な偏向器のノイ
ズによる影響を排除してステップ312にて該重ね合せ
マークを検出する。その後、ステップ313にてステッ
プ308で任意に選択された偏向器に切替え、ステップ
314で前層への重ね合せ描画を行えば高精度描画モー
ドでの描画が行える。Step 308 is a step of selecting a deflector that forcibly invalidates the deflection data among the plurality of stages of deflectors from the above-described noise measurement results. Calculate the minimum value,
The noise of each deflector in the noise measurement result screen 315 displayed on the CRT screen in Steps 309 and 307 in which the deflector on which noise equal to or higher than the threshold is superimposed is automatically cut off as compared with an arbitrarily set threshold. From information 316, C
There are provided two selection means in step 310 for arbitrarily selecting a deflector for which the deflection data is invalidated by the deflector selection switch 317 on the RT screen. After selecting a deflector that forcibly invalidates the deflection data in step 308, superimposition writing is performed. In order to perform superimposition writing in accordance with the pattern shape exposed on the previous layer, It is necessary to detect the overlay mark exposed around the chip of the preceding layer and measure the shape of the preceding layer pattern. Here, the size of the alignment mark is about several μm, and the alignment mark detection is performed by so-called step-and-repeat detection in which the stage is moved to the mark position and then beam scanning is repeated for detection. Therefore, the beam deflection at the time of detecting the mark is only required to be able to deflect in a range of about 10 to 30 μm. Therefore, in step 311, only the lowest deflector capable of deflecting the narrow range at the highest speed is selected, and the other deflectors forcibly invalidate the deflection data and eliminate the influence of unnecessary deflector noises. At 312, the registration mark is detected. Thereafter, in step 313, switching to the deflector arbitrarily selected in step 308 is performed, and in step 314, overlay drawing on the previous layer is performed, whereby drawing in the high-precision drawing mode can be performed.
【0024】またステップ301にて高速描画モードを
選択した場合には、各偏向器毎のノイズ測定を行わずに
ステップ311以降の処理を行えば、高精度なマーク検
出を行いつつ高速に描画することが出来る。When the high-speed drawing mode is selected in step 301, if the processing after step 311 is performed without performing noise measurement for each deflector, high-speed drawing is performed while performing highly accurate mark detection. I can do it.
【0025】以上説明してきたように、複数段の偏向器
を有する多段偏向電子線描画装置において、任意の偏向
器の偏向データを強制的に無効とし、偏向器とそれをド
ライブするアンプ及び制御回路を電気的に完全に切り離
す手段を具備し、描画とマーク検出、あるいは描画する
デバイスの要求精度ごとに、任意に適当な偏向器を選択
して描画を行えば、一つの電子線描画装置にて高速に描
画する高速描画モードと高精度に描画を行う高精度描画
モードを併せ持ち、更には偏向器に重畳するノイズによ
るビームの揺らぎの影響を排除した高精度なマーク検出
を行うことが可能となる。As described above, in a multi-stage deflection electron beam lithography system having a plurality of stages of deflectors, deflection data of an arbitrary deflector is forcibly invalidated, and a deflector and an amplifier and a control circuit for driving the deflector are driven. Is provided with means for completely electrically disconnecting each other, and if drawing is performed by selecting an appropriate deflector arbitrarily for each required accuracy of the drawing and mark detection or drawing device, one electron beam drawing apparatus can be used. It has both a high-speed drawing mode for high-speed drawing and a high-accuracy drawing mode for high-precision drawing, and can perform high-precision mark detection while eliminating the effects of beam fluctuations due to noise superimposed on the deflector. .
【0026】本発明はさらに、以下の構成を含む。The present invention further includes the following configuration.
【0027】(1)請求項1記載の電子線描画装置にお
いて、強制的に偏向データを無効とした該偏向器に与え
るべき偏向データをより偏向領域の広い他の偏向器の偏
向データに加算する機能を持つことを特徴とした電子線
描画装置。(1) In the electron beam lithography apparatus according to the first aspect, deflection data to be given to the deflector whose deflection data has been forcibly invalidated is added to deflection data of another deflector having a wider deflection area. An electron beam drawing apparatus characterized by having a function.
【0028】(2)請求項1記載の電子線描画装置にお
いて、任意の偏向器の偏向データを強制的に無効として
切り離し、偏向器をドライブするアンプ及び制御回路に
重畳するノイズ成分による電子線の揺らぎを排除して、
高精度に描画を行う高精度描画モードを有することを特
徴とした電子線描画装置。(2) In the electron beam lithography apparatus according to the first aspect, the deflection data of an arbitrary deflector is forcibly invalidated and separated, and the electron beam due to a noise component superimposed on an amplifier for driving the deflector and a control circuit is separated. Eliminate fluctuations,
An electron beam drawing apparatus having a high-precision drawing mode for performing drawing with high precision.
【0029】(3)請求項1記載の電子線描画装置にお
いて、マーク上を電子線走査してマーク位置を検出する
マーク検出を行う際に、任意の偏向器の偏向データを強
制的に無効として切り離し該偏向器をドライブするアン
プ及び制御回路に重畳するノイズ成分による電子線の揺
らぎを排除して、高精度なマーク検出を行うことを特徴
とした電子線描画装置。(3) In the electron beam lithography apparatus according to the first aspect, when performing mark detection for detecting the mark position by scanning the mark with an electron beam, the deflection data of an arbitrary deflector is forcibly invalidated. An electron beam writing apparatus characterized in that a high-precision mark detection is performed by eliminating a fluctuation of an electron beam due to a noise component superimposed on an amplifier and a control circuit for driving the deflector.
【0030】(4)請求項1記載の電子線描画装置にお
いて、マーク上を電子線走査してマーク位置を検出する
マーク検出を行う際に、狭い領域を最も高速に偏向する
最下段の偏向器以外の全偏向器の偏向データを強制的に
無効として切り離し、該偏向器をドライブするアンプ及
び制御回路に重畳するノイズ成分による電子線の揺らぎ
を排除して、高精度なマーク検出を行うことを特徴とし
た電子線描画装置。(4) In the electron beam lithography apparatus according to claim 1, the lowermost deflector deflects a narrow area at the highest speed when detecting a mark by scanning the mark with an electron beam. The deflection data of all the deflectors other than the above is forcibly invalidated and separated, and the fluctuation of the electron beam due to the noise component superimposed on the amplifier and the control circuit for driving the deflector is eliminated, thereby performing highly accurate mark detection. Characteristic electron beam lithography system.
【0031】(5)請求項1記載の電子線描画装置にお
いて、任意の一つの偏向器以外の偏向データを強制的に
無効として切り離し、該任意の偏向器に起因する電子線
の揺らぎを計測し、各々の偏向器によるビームノイズを
評価する機能を有することを特徴とした電子線描画装
置。(5) In the electron beam lithography apparatus according to the first aspect, deflection data other than any one of the deflectors is forcibly invalidated and separated, and fluctuation of the electron beam caused by the arbitrary deflector is measured. An electron beam lithography apparatus having a function of evaluating beam noise by each deflector.
【0032】(6)請求項1記載の電子線描画装置にお
いて、該複数段の偏向器各々の偏向器に起因する電子線
の揺らぎを計測し、任意に設定された閾値と該電子線揺
らぎの計測結果から、偏向データを強制的に無効として
切り離す偏向器を自動的に選択する手段を持つことを特
徴とした電子線描画装置。(6) In the electron beam lithography apparatus according to claim 1, the fluctuation of the electron beam caused by each of the plurality of deflectors is measured, and an arbitrarily set threshold value and the fluctuation of the electron beam fluctuation are measured. An electron beam lithography apparatus comprising means for automatically selecting a deflector for forcibly invalidating and separating deflection data from measurement results.
【0033】(7)請求項1記載の電子線描画装置にお
いて、該複数段の偏向器各々の偏向器に起因する電子線
の揺らぎを計測し、その測定結果をCRT画面上に表示
し、偏向データを強制的に無効として切り離す偏向器を
CRT画面上で任意に選択できる機能を有することを特
徴とした電子線描画装置。(7) In the electron beam lithography apparatus according to claim 1, the fluctuation of the electron beam caused by each of the plurality of deflectors is measured, and the measurement result is displayed on a CRT screen. An electron beam lithography apparatus having a function of arbitrarily selecting, on a CRT screen, a deflector that forcibly invalidates and separates data.
【0034】[0034]
【発明の効果】本発明によれば偏向器に重畳したノイズ
によるビームの揺らぎを排除した高精度な描画を行う高
精度描画モードと高速に描画を行う高精度描画モードを
併せ持ち、更には偏向器に重畳したノイズによるビーム
の揺らぎを排除した高精度なマーク検出を行うに適した
多段偏向の電子線描画装置が提供される。According to the present invention, a high-precision drawing mode for performing high-precision drawing and a high-precision drawing mode for performing high-speed drawing, which eliminates beam fluctuation caused by noise superimposed on the deflector, are provided. The present invention provides a multi-stage deflection electron beam writing apparatus suitable for performing high-accuracy mark detection while eliminating beam fluctuations due to noise superimposed on the electron beam.
【図1】本発明による電子線描画装置の概略構成図であ
る。FIG. 1 is a schematic configuration diagram of an electron beam drawing apparatus according to the present invention.
【図2】偏向器選択回路の概略構成図である。FIG. 2 is a schematic configuration diagram of a deflector selection circuit.
【図3】本発明の処理の説明図である。FIG. 3 is an explanatory diagram of a process of the present invention.
101…電子線源、102…電子線、103…第1成形
アパーチャ、104…成形レンズ、105…成形偏向
器、106…第2成形アパーチャ、107…縮小レン
ズ、108…回転補正レンズ、109…対物レンズ、1
10…電磁偏向器、111…大角静電偏向器、112…
高速静電偏向器、113…反射電子検出器、114…ス
テージ、115…ステージ制御手段、116…信号処理
手段、117…描画制御手段、118…合せ補正部、1
19…偏向制御部、120…絶対校正部、121…制御
計算機、122…データバス、123…偏向器選択回
路、201…電磁偏向データ、202…偏向器選択スイ
ッチ、203…疑似負荷、204…偏向データ選択スイ
ッチ、205…偏向アンプ、206…D/Aコンバー
タ、207…偏向データ加算スイッチ、208…大角静
電偏向データ、209…D/Aコンバータ、210…加
算器、315…ノイズ測定結果画面、316…偏向器ノ
イズ情報、317…偏向器選択スイッチ。101: electron beam source, 102: electron beam, 103: first shaping aperture, 104: shaping lens, 105: shaping deflector, 106: second shaping aperture, 107: reduction lens, 108: rotation correction lens, 109: objective Lens, 1
10 electromagnetic deflector, 111 large-angle electrostatic deflector, 112
High-speed electrostatic deflector, 113 ... backscattered electron detector, 114 ... stage, 115 ... stage control means, 116 ... signal processing means, 117 ... drawing control means, 118 ... alignment correction unit, 1
19: deflection control unit, 120: absolute calibration unit, 121: control computer, 122: data bus, 123: deflector selection circuit, 201: electromagnetic deflection data, 202: deflector selection switch, 203: pseudo load, 204: deflection Data selection switch, 205: deflection amplifier, 206: D / A converter, 207: deflection data addition switch, 208: large-angle electrostatic deflection data, 209: D / A converter, 210: adder, 315: noise measurement result screen, 316: deflector noise information, 317: deflector selection switch.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−237747(JP,A) 特開 昭61−95520(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 G03F 7/20 504 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-9-237747 (JP, A) JP-A-61-95520 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/027 G03F 7/20 504
Claims (1)
子線源からの電子線を試料の試料面上に投射してパター
ンを描画する電子光学手段と、前記電子線を前記試料面
上に走査させるときの偏向領域、および偏向感度の異な
る複数段の偏向器と、この偏向器を制御する電子線偏向
制御手段と、前記電子線が前記試料面上に投射されて発
生する反射電子または二次電子を検出する検出器と、こ
の検出器からの検出信号を演算処理する信号処理手段
と、前記試料を載置し前記電子光学手段に対して移動さ
せるステージを制御するステージ制御手段と、前記試料
面上に描画するパターンのパターンデータに基づいて描
画制御を行うデータ制御手段と、前記電子光学手段、偏
向制御手段、信号処理手段、ステージ制御手段、及びデ
ータ制御手段を一括制御する制御計算機とからなる電子
線描画装置において、高速に描画を行う高速描画モードと高精度な描画を行う
高精度描画モードを併せ持ち、前記複数段の夫々の偏向
器に重畳するノイズによるビームの揺らぎを測定評価
し、有害なノイズの重畳する 任意の偏向器の偏向データ
を強制的に無効にし、当該偏向器とそれを駆動するアン
プ及び制御回路から電気的に切り離す手段を持つことを
特徴とした電子線描画装置。1. An electron beam source for generating an electron beam, electron optical means for projecting an electron beam from the electron beam source onto a sample surface of a sample to draw a pattern, and applying the electron beam to the sample surface. A deflection area when scanning, and a plurality of deflectors having different deflection sensitivities, electron beam deflection control means for controlling the deflector, and reflected electrons generated when the electron beam is projected onto the sample surface or A detector for detecting secondary electrons, signal processing means for performing arithmetic processing on a detection signal from the detector, and stage control means for controlling a stage on which the sample is placed and moved with respect to the electron optical means, A data control means for performing drawing control based on pattern data of a pattern to be drawn on the sample surface; and a collective control of the electron optical means, deflection control means, signal processing means, stage control means, and data control means. High-speed drawing mode for high-speed drawing and high-precision drawing
Combined with high-precision drawing mode, each of the multiple stages
Measurement and evaluation of beam fluctuation due to noise superimposed on the detector
An electron beam lithography system having means for forcibly invalidating deflection data of an arbitrary deflector on which harmful noise is superimposed and electrically disconnecting the deflector from an amplifier and a control circuit for driving the deflector. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35273899A JP3296807B2 (en) | 1999-12-13 | 1999-12-13 | Electron beam drawing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35273899A JP3296807B2 (en) | 1999-12-13 | 1999-12-13 | Electron beam drawing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001168014A JP2001168014A (en) | 2001-06-22 |
JP3296807B2 true JP3296807B2 (en) | 2002-07-02 |
Family
ID=18426105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35273899A Expired - Fee Related JP3296807B2 (en) | 1999-12-13 | 1999-12-13 | Electron beam drawing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3296807B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2404783B (en) * | 2003-08-01 | 2005-12-14 | Leica Microsys Lithography Ltd | Dual-mode electron beam lithography machine |
JP7189729B2 (en) | 2018-10-30 | 2022-12-14 | 株式会社ニューフレアテクノロジー | Multi-charged particle beam writing apparatus and multi-charged particle beam writing method |
-
1999
- 1999-12-13 JP JP35273899A patent/JP3296807B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001168014A (en) | 2001-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6222195B1 (en) | Charged-particle-beam exposure device and charged-particle-beam exposure method | |
US6864488B2 (en) | Charged particle beam exposure method and apparatus | |
JP3288794B2 (en) | Charge beam correction method and mark detection method | |
US5422491A (en) | Mask and charged particle beam exposure method using the mask | |
JPH05206017A (en) | Lithographic exposure system and its method | |
US5393988A (en) | Mask and charged particle beam exposure method using the mask | |
JP3335011B2 (en) | Mask and charged particle beam exposure method using the same | |
JPH09320931A (en) | Method for measuring imaging characteristic and transfer device by the method | |
US8507873B2 (en) | Drift measuring method, charged particle beam writing method, and charged particle beam writing apparatus | |
JP3296807B2 (en) | Electron beam drawing equipment | |
JP3299647B2 (en) | Electron beam drawing apparatus and electron beam drawing method | |
JP3036081B2 (en) | Electron beam drawing apparatus and method, and sample surface height measuring apparatus thereof | |
JP2007188671A (en) | Beam intensity distribution measuring method for charged particle beam and beam resolution measuring method for charged particle beam | |
US6737659B2 (en) | Devices and methods for monitoring respective operating temperatures of components in a microlithography apparatus | |
JP2002170764A (en) | Charged particle beam exposure system, its adjusting method, and method of manufacturing semiconductor device | |
US8253112B2 (en) | Lithography apparatus and focusing method for charged particle beam | |
JPS6258621A (en) | Fine pattern forming method | |
US6246064B1 (en) | Electron beam drawing apparatus | |
JP4459524B2 (en) | Charged particle beam exposure apparatus and device manufacturing method | |
JP3282324B2 (en) | Charged particle beam exposure method | |
US6127683A (en) | Electron beam drawing apparatus | |
JP2786660B2 (en) | Charged beam drawing method | |
JP4699854B2 (en) | Electron beam drawing apparatus and electron beam drawing method | |
JPH07262953A (en) | Charged particle beam exposure apparatus and exposure method | |
JP2786662B2 (en) | Charged beam drawing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080412 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090412 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090412 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100412 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110412 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120412 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120412 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130412 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140412 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |