JP3296709B2 - Thin copper alloy for electronic equipment and method for producing the same - Google Patents
Thin copper alloy for electronic equipment and method for producing the sameInfo
- Publication number
- JP3296709B2 JP3296709B2 JP00276896A JP276896A JP3296709B2 JP 3296709 B2 JP3296709 B2 JP 3296709B2 JP 00276896 A JP00276896 A JP 00276896A JP 276896 A JP276896 A JP 276896A JP 3296709 B2 JP3296709 B2 JP 3296709B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- less
- copper alloy
- working
- rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Lead Frames For Integrated Circuits (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は電子電気機器用のリード
材、端子材、コネクタ材、スイッチ材等に適用する銅合
金に関し、特にIC等の半導体素子用のリード材(リー
ドフレーム材)に好適な銅合金に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy applied to a lead material, a terminal material, a connector material, a switch material and the like for electronic and electric equipment, and more particularly to a lead material (lead frame material) for a semiconductor element such as an IC. It relates to a suitable copper alloy.
【0002】[0002]
【従来の技術】従来、半導体機器のリードフレーム材、
端子材としては、鉄系材料の他、電気伝導性および熱伝
導性に優れた銅系の材料も多く用いられている。近年は
半導体機器の高集積化や小型化が進み、これらに使用さ
れる銅合金も、電気伝導性、熱伝導性に優れる銅系材料
が多く用いられるようになってきた。2. Description of the Related Art Conventionally, lead frame materials for semiconductor devices,
As the terminal material, in addition to the iron-based material, a copper-based material having excellent electrical conductivity and thermal conductivity is often used. In recent years, high integration and miniaturization of semiconductor devices have progressed, and copper alloys used in these devices have often used copper-based materials having excellent electrical conductivity and thermal conductivity.
【0003】通常、リードフレーム材として要求される
特性は、電気伝導性や熱伝導性の他、貴金属(Ag等)
めっきや半田めっき等が施されるため、優れためっき性
や半田接合性も求められる。その他、リードフレーム材
は端子材より高い表面平滑度が求められる等、通常要求
が厳しい。またリードフレームは通常、打ち抜き加工や
エッチング法により製造されるので、打ち抜き加工性、
エッチング性に優れることも重要である。このような広
範な諸特性を満足する材料が望まれるが、その他、価格
面で実用的なことも重要なことである。[0003] In general, the characteristics required for a lead frame material include a noble metal (Ag or the like) in addition to electric conductivity and heat conductivity.
Since plating and solder plating are performed, excellent plating properties and solder bonding properties are also required. In addition, lead frame materials are usually strictly required, for example, higher surface smoothness is required than terminal materials. Also, since lead frames are usually manufactured by punching or etching,
It is also important to have excellent etching properties. Materials that satisfy such a wide range of properties are desired, but it is also important that they be practical in terms of price.
【0004】このような広範な要求に応える銅系の材料
として、従来からCu−Sn系、Cu−Fe系等の材料
が広く用いられてきた。しかし上述したような広範な要
求も近年の半導体機器の高集積化や小型化、或いは高実
装密度化に対応してより厳しくなりつつのが現状であ
る。特に近年、リードフレームの多ピン化等が進み、強
度特性等の改善が強く要求される他、より優れた打ち抜
き加工性或いはエッチング性が要求される。As a copper-based material meeting such a wide range of requirements, Cu-Sn-based materials, Cu-Fe-based materials, and the like have been widely used. However, at present, the above-mentioned wide-ranging requirements are becoming more stringent in response to recent high integration, miniaturization, and high packaging density of semiconductor devices. In particular, in recent years, the number of pins in a lead frame has been increased, and improvements in strength characteristics and the like have been strongly demanded, and more excellent punching workability or etching properties have been demanded.
【0005】このような要求に対し、近年は析出硬化型
のCu−Cr系、Cu−Cr−Zr系、Cu−Cr−S
n系等の合金が用いられるようになった。本発明は特に
多ピンリードフレーム材に好適な電子機器用銅合金とそ
の製造方法を提供しようとするものである。In response to such demands, precipitation hardening type Cu-Cr-based, Cu-Cr-Zr-based, Cu-Cr-S
Alloys such as n-based have come to be used. An object of the present invention is to provide a copper alloy for electronic equipment which is particularly suitable for a multi-pin lead frame material and a method for producing the same.
【0006】[0006]
【発明が解決しようとする課題】上述した析出硬化型の
銅合金は、CrやZrの析出を利用したものであり、強
度や導電性等において優れたバランスを示すものであ
る。しかし、半導体機器の一層の小型化、高密度化が著
しく、また近年はリードフレームの多ピン化も進み、従
来のリードフレーム材では対応しきれなくなってきてい
る。The above-mentioned precipitation hardening type copper alloy utilizes precipitation of Cr and Zr, and exhibits an excellent balance in strength, conductivity and the like. However, further miniaturization and higher density of semiconductor devices have been remarkable, and in recent years lead pins have been increased in number, and conventional lead frame materials have become unable to cope.
【0007】近年、高密度化が一層進み、その結果、リ
ードフレーム間の短絡や、貴金属(Ag等)のめっき不
良による通電不良、等の問題が顕在化している。具体的
には、打ち抜き端面若しくはエッチング端面に晶出物や
析出物が露出していると、Ag等のめっき層の密着性が
一部劣化したり、或いは加工により延ばされた析出物
(針状化、板状化した析出物)の突出が短絡の原因にな
ったりすることがある。In recent years, higher densification has further progressed, and as a result, problems such as short-circuiting between lead frames and poor conduction due to poor plating of noble metal (Ag or the like) have become apparent. Specifically, if a crystallized substance or a precipitate is exposed on the punched end face or the etched end face, the adhesion of the plating layer such as Ag is partially deteriorated, or the precipitate (needle) extended by processing is removed. Protrusion of shaped or plate-shaped precipitates) may cause a short circuit.
【0008】まためっき時に、露出する析出物の部分か
らウィスカーが成長し、これも短絡の原因になる。更に
打ち抜き加工時の微小なバリもめっき性劣化や短絡の原
因になる。During plating, whiskers grow from exposed portions of the precipitate, which also causes a short circuit. Furthermore, minute burrs at the time of punching also cause deterioration of plating property and short circuit.
【0009】上述したCrやZrの析出を利用した析出
硬化型の銅合金は、その加工性が良好ではないので、打
ち抜き加工によりリードフレームを製造すると、打ち抜
き粉の発生や、バリ等が発生し、その結果、これがリー
ドフレーム間の短絡の原因になる可能性がある。また加
工性が悪いと、成形されたリードフレームの寸法精度が
劣化し、製造歩留りの大幅な低下も問題である。また金
型の寿命の低下も問題であった。特に多ピンリードフレ
ームの場合は著しい。[0009] The precipitation hardening type copper alloy utilizing the precipitation of Cr or Zr described above is not good in workability. Therefore, when a lead frame is manufactured by punching, generation of punching powder, burrs and the like occur. As a result, this may cause a short circuit between the lead frames. If the workability is poor, the dimensional accuracy of the formed lead frame is degraded, and the production yield is greatly reduced. In addition, there was a problem that the life of the mold was shortened. This is remarkable especially in the case of a multi-pin lead frame.
【0010】[0010]
【課題を解決するための手段】本発明は上記問題に鑑
み、これらの問題を改善した析出硬化型の銅合金を開発
し、優れた特性を実現したリードフレーム材等の電子機
器用薄板銅合金を提供することを目的とするものであ
る。即ち本発明は、Crが0.1〜0.4重量%、Sn
が0.05〜2重量%、Znが0.05〜2重量%、P
bまたはCaの内少なくとも1種類が総計0.005〜
0.2重量%、Pが0.01重量%未満、Sが0.00
5重量%未満、O2が0.005重量%未満含まれ、残
部Cuと不可避的不純物とからなる銅合金であって、晶
出物または析出物の大きさが3μm未満であると共に結
晶粒径が5μm未満である電子機器用銅合金である。ま
た上述の元素の他、更にZrを0.01〜0.2重量%
含ませた電子機器用薄板銅合金である。DISCLOSURE OF THE INVENTION In view of the above problems, the present invention has developed a precipitation hardening type copper alloy which has solved these problems, and has realized a thin copper alloy for electronic equipment such as a lead frame material which has realized excellent characteristics. The purpose is to provide. That is, according to the present invention, Cr is 0.1 to 0.4% by weight, Sn
Is 0.05 to 2% by weight, Zn is 0.05 to 2% by weight, P
at least one of b or Ca has a total of 0.005 to
0.2 wt%, P is less than 0.01 wt%, S is 0.00
A copper alloy containing less than 5% by weight, less than 0.005% by weight of O 2 , and a balance of Cu and unavoidable impurities, wherein the size of a crystallized substance or a precipitate is less than 3 μm and the crystal grain size is less than 3 μm. Is less than 5 μm. Further, in addition to the above-mentioned elements, 0.01 to 0.2% by weight of Zr is further added.
It is a thin copper alloy for electronic equipment included.
【0011】そして製造方法としては、上記成分組成の
合金を冷却速度5℃/秒以上の冷却速度で鋳造し、85
0〜1000℃で熱間加工した後、10℃/秒以上の速
度で冷却し、しかる後、加工率80%以上の冷間加工、
400〜500℃で10分〜24時間の熱処理、加工率
50%以下の冷間加工、300〜600℃で10秒〜1
2時間の最終熱処理を順次施して、晶出物または析出物
の大きさが3μm未満、結晶粒径を5μm未満にする、
製造方法を提供する。As a manufacturing method, an alloy having the above-mentioned composition is cast at a cooling rate of 5 ° C./sec or more,
After hot working at 0 to 1000 ° C., cooling at a rate of 10 ° C./sec or more, and then cold working at a working rate of 80% or more;
Heat treatment at 400 to 500 ° C for 10 minutes to 24 hours, cold working at a working rate of 50% or less, 300 to 600 ° C for 10 seconds to 1
A final heat treatment of 2 hours is sequentially applied to reduce the size of a crystal or a precipitate to less than 3 μm and the crystal grain size to less than 5 μm.
A manufacturing method is provided.
【0012】本発明の電子機器用銅合金は特にリードフ
レーム材に好適な合金であるが、その他、端子材やコネ
クター材等の電子機器用の銅合金にも適用可能である。Although the copper alloy for electronic devices of the present invention is particularly suitable for lead frame materials, it is also applicable to copper alloys for electronic devices such as terminal materials and connector materials.
【0013】[0013]
【発明の実施の形態】本発明の合金は、CrやZrの析
出硬化により、適当な強度および導電率を得るものであ
る。本発明者らは、これらCr、Zrの含有量おとびそ
の他の成分の含有量を規定し、更に晶出物または析出物
の大きさを規定することで実用的に優れたリードフレー
ム材を実現させることができることを見いだし、その結
果本発明を得たものである。以下に本発明の合金の成分
の限定理由を説明する。BEST MODE FOR CARRYING OUT THE INVENTION The alloy of the present invention obtains appropriate strength and electrical conductivity by precipitation hardening of Cr and Zr. The present inventors have specified the contents of these Cr and Zr and the contents of other components, and have further specified the size of a crystallized substance or a precipitate to realize a practically excellent lead frame material. Have been found, and as a result, the present invention has been obtained. The reasons for limiting the components of the alloy of the present invention will be described below.
【0014】Crは銅中に析出することで、銅の導電率
をあまり低下させないで強度を向上させる元素である
が、その含有量が0.4重量%を超えると、強度向上へ
の寄与が飽和する上、晶出物或いは析出物のサイズが大
型化しやすくなり、これらの析出物がリードフレームの
端面から突出し、隣接するリードフレームとの短絡を引
き起こす等の短絡の原因になることがある。一方、0.
1重量%未満では、強度や耐熱性が不十分になり、リー
ドフレーム用途に適当でなくなる。Cr is an element that precipitates in copper to improve the strength without significantly lowering the conductivity of copper, but if its content exceeds 0.4% by weight, it contributes to the improvement in strength. In addition to saturating, the size of crystallized substances or precipitates tends to increase, and these precipitates may protrude from the end face of the lead frame and cause a short circuit such as a short circuit with an adjacent lead frame. On the other hand, 0.
If it is less than 1% by weight, the strength and heat resistance become insufficient, and it is not suitable for use in lead frames.
【0015】Zrを含有する本発明合金の場合、Zrは
Cr同様、銅中に析出することで、銅の導電率をあまり
低下させないで強度を向上させる。その含有量は0.0
1〜0.2重量%がよい。これが0.2重量%を超える
と、強度向上への寄与が飽和する上、晶出物或いは析出
物が粗大化しやすくなり、リードフレームの短絡現象等
の原因になりかねない。一方0.01重量%未満では、
強度や耐熱性が不十分になり、リードフレーム用途に不
適当になる。In the case of the alloy of the present invention containing Zr, like Zr, Zr is precipitated in copper to improve the strength without significantly lowering the conductivity of copper. Its content is 0.0
1 to 0.2% by weight is preferred. If the content exceeds 0.2% by weight, the contribution to the improvement in strength is saturated, and the crystallization or the precipitate tends to become coarse, which may cause a short circuit phenomenon of the lead frame. On the other hand, if it is less than 0.01% by weight,
Insufficient strength and heat resistance make it unsuitable for lead frame applications.
【0016】Snは、これを銅中に添加することで強度
を向上させるが、その含有量は0.05〜2重量%が望
ましい。2重量%を超えると、銅中のCrやZrの固溶
量を低下させ、CrやZrを含む晶出物或いは析出物の
サイズが大きくなってしまう。このため上述したと同
様、リードフレームの短絡現象の原因になるからであ
る。また導電率の低下も招く。一方0.05重量%では
強度向上が不十分である。Sn enhances its strength by being added to copper, but its content is desirably 0.05 to 2% by weight. If it exceeds 2% by weight, the solid solution amount of Cr or Zr in copper is reduced, and the size of a crystal or a precipitate containing Cr or Zr is increased. For this reason, as described above, this causes a short circuit phenomenon of the lead frame. In addition, the conductivity is also lowered. On the other hand, when the content is 0.05% by weight, the strength is insufficiently improved.
【0017】Znは、リードフレーム材の半田めっき性
を向上させ、半田接合した際、その半田接合面の経時劣
化に伴う剥離の防止に寄与する。その含有量は0.05
〜2重量%がよい。あまり過剰にZnを含有させると逆
に半田付け性が低下するので、上限は2重量%が適当で
ある。一方、下限は0.05重量%が適当で、これ未満
では半田めっき性の改善が不十分で、半田接合面の剥離
防止性が不十分になる。[0017] Zn improves the solder plating property of the lead frame material and contributes to the prevention of peeling due to the deterioration with time of the solder joint surface when soldered. Its content is 0.05
~ 2% by weight is good. If too much Zn is contained, the solderability deteriorates, so the upper limit is suitably 2% by weight. On the other hand, the lower limit is suitably 0.05% by weight, and if less than 0.05%, the improvement of the solder plating property is insufficient, and the peeling prevention of the solder joint surface becomes insufficient.
【0018】またPbやCaは、これを添加することで
リードフレームのプレス成形性が向上する。特に近年は
ピン間が狭くなる傾向にあり、また非常にピン数が大き
い多ピン型リードフレームの需要も増えている。このた
めプレス端面の精密さの向上も望まれている。Pbまた
はCaは少なくとも何れか一種を総計0.001〜0.
2重量%の含有量で添加すると、プレス端面が精密にな
り、またバリの発生が抑制される等、プレス成形性に寄
与する。またプレス後の寸法形状の安定したものが得ら
れ、プレス金型の寿命が延びることも期待できる。その
含有量が0.001重量%未満ではプレス成形性向上へ
の寄与が乏しく、一方過剰な含有は割れ等の欠陥が発生
しやすくなる等、加工性を劣化させるので、上限は0.
2重量%が適当である。Further, by adding Pb or Ca, press formability of the lead frame is improved. In particular, in recent years, the distance between pins has been narrowing, and the demand for a multi-pin type lead frame having a very large number of pins has been increasing. For this reason, improvement of the precision of the press end face is also desired. Pb or Ca is at least one of a total of 0.001 to 0.
When added at a content of 2% by weight, the end face of the press becomes precise and the formation of burrs is suppressed, contributing to press formability. In addition, it is possible to obtain a product having stable dimensions and shape after pressing, and it is expected that the life of the pressing die is prolonged. When the content is less than 0.001% by weight, the contribution to the improvement of press formability is poor, while the excessive content deteriorates the workability such as the occurrence of defects such as cracks.
2% by weight is suitable.
【0019】その他、通常、工業的な銅材料にはP、
S、O2 等が微量含まれるが、本発明はこれらの含有量
も好適に制限することで、上述した合金成分と後述する
晶出物または析出物の規定と相まって、優れた特性の実
現を図るものである。In addition, usually, P,
Although a small amount of S, O 2 and the like are contained, the present invention, by suitably restricting the contents thereof, realizes excellent properties in combination with the above-mentioned alloy components and the later-described crystallization or precipitate specification. It is intended.
【0020】Pについてはその含有量を0.01重量%
未満と規定することで、本発明の合金におけるCr−P
等の晶出物の粗大化を抑制し優れた特性を実現させるも
のである。特に望ましくはPの含有量を0.005重量
%未満にすることが望ましく、リードフレームの短絡防
止等、その性能が一層向上する。The content of P is 0.01% by weight.
By specifying that the content of Cr-P in the alloy of the present invention is less than
And the like to suppress the coarsening of the crystallized material and realize excellent characteristics. It is particularly desirable that the content of P be less than 0.005% by weight, and the performance thereof such as prevention of short circuit of the lead frame is further improved.
【0021】Sについてはその含有量を0.005重量
%未満と規定することで、Cr−S、Zr−S等の晶出
物の粗大化を抑制し、リードフレームとして短絡の発生
を抑制する。またSを0.005重量%未満とすること
で熱間加工性を向上させる。特に望ましくはSの含有量
を0.002重量%未満にすることが望ましく、リード
フレームの短絡防止等、その性能が一層向上する。By defining the content of S to be less than 0.005% by weight, coarsening of crystallized substances such as Cr-S and Zr-S is suppressed, and the occurrence of short circuit as a lead frame is suppressed. . Further, by making S less than 0.005% by weight, hot workability is improved. It is particularly desirable that the content of S be less than 0.002% by weight, and the performance such as prevention of short circuit of the lead frame is further improved.
【0022】O2 は、その含有量が0.005重量%以
上であるとCrやZrが酸化されてその析出硬化作用が
不充分になってしまう上に、半田付け性が低下する。特
に望ましくはO2 の含有量を0.002重量%未満にす
ることが望ましい。If the content of O 2 is 0.005% by weight or more, Cr and Zr are oxidized, so that the precipitation hardening action becomes insufficient and the solderability decreases. It is particularly desirable that the O 2 content be less than 0.002% by weight.
【0023】以上説明したP、S、O2 は、通常、銅系
材料中に微量に含有される場合が多いが、Cr、Zrを
含む本発明合金においては特に重要であり、本発明者ら
は、その好適な含有量を規定することで、リードフレー
ムに好適な銅合金が実現することを見いだしたのであ
る。Although P, S, and O 2 described above are usually contained in trace amounts in copper-based materials, they are particularly important in the alloy of the present invention containing Cr and Zr. Have found that by defining the preferred content, a copper alloy suitable for a lead frame is realized.
【0024】次に晶出物または析出物の大きさについて
説明する。これらの大きさは3μm未満が望ましい。こ
れより大きいと、これらの晶出物、析出物が圧延加工工
程において針状化或いは板状化され、これらの晶出物、
析出物がリードフレームの端面から突出し、隣接するリ
ードフレームとの短絡を引き起こしやすくなるからであ
る。Next, the size of a crystal or a precipitate will be described. These sizes are desirably less than 3 μm. If it is larger than these, these crystallized substances and precipitates are formed into needles or plates in the rolling process, and these crystallized substances,
This is because the precipitates protrude from the end surface of the lead frame and easily cause a short circuit with the adjacent lead frame.
【0025】上述した本発明の構成において、その特性
を好適に実現するためには、結晶粒径を5μm未満にす
ることが必要である。特に、PbやCaの添加は上述し
たようにプレス成形性を向上させる効果を有するが、結
晶粒径が5μm以上であるとこの効果が不十分になる。
また結晶粒径が5μm未満であるとエッチング加工を採
用した場合、エッチング加工後の端面が平滑になり、め
っき性の向上に寄与する。In the structure of the present invention described above, it is necessary to reduce the crystal grain size to less than 5 μm in order to suitably realize the characteristics. In particular, the addition of Pb or Ca has the effect of improving press formability as described above, but this effect becomes insufficient when the crystal grain size is 5 μm or more.
If the crystal grain size is less than 5 μm, when etching is employed, the end face after the etching becomes smooth, which contributes to improvement in plating property.
【0026】本発明の合金を製造する好適な方法につい
て以下に記す。先ず、上述した本発明の銅合金を冷却速
度5℃/秒以上の冷却速度で鋳造する。これは5℃/秒
未満の速度では、サイズが3μmを越える大きな晶出物
もしくは析出物(Cr、Cr−P、Cu−Zr、Zr−
S等)が生成されてしまうからである。次に850〜1
000℃で熱間加工を施す。これは、熱間加工の温度が
850℃未満ではCrやZrの化合物が大きくなって、
最終的に本発明の条件を満たしにくくなる。1000℃
を超える温度で行うことは、工業的には酸化被膜の成長
の問題があり、またエネルギーコストの増大をもたらす
ので、1000℃以下で行うことが実用的である。A preferred method for producing the alloy of the present invention is described below. First, the above-mentioned copper alloy of the present invention is cast at a cooling rate of 5 ° C./sec or more. This means that at a rate of less than 5 ° C./sec, large crystals or precipitates (Cr, Cr-P, Cu-Zr, Zr-
S) is generated. Then 850-1
Hot working at 000 ° C. This is because if the temperature of hot working is lower than 850 ° C., the compounds of Cr and Zr become large,
Finally, it becomes difficult to satisfy the conditions of the present invention. 1000 ° C
Is carried out at a temperature exceeding 1000 ° C., there is an industrial problem of growth of an oxide film, and the energy cost is increased.
【0027】熱間加工後、10℃/秒以上の速度で冷却
するが、これは10℃/秒以上にすることでCrやZr
の化合物の粗大化を抑制するためである。これ未満の冷
却速度では3μmを越える大きな晶出物もしくは析出物
(Cr、Cr−P、Cu−Zr、Zr−S等)が生じて
しまいやすい。After hot working, cooling is performed at a rate of 10 ° C./sec or more.
This is for suppressing the compound from becoming coarse. At a cooling rate lower than this, large crystallized substances or precipitates exceeding 3 μm (Cr, Cr—P, Cu—Zr, Zr—S, etc.) are likely to be generated.
【0028】上記冷却後、加工率80%以上で冷間加工
を施す。この冷間加工の前に熱処理工程はいれない方が
よい。冷間加工の加工率は80%以上が良く、これ未満
では次工程の熱処理で、Cr、Zrの析出硬化能が不足
して、強度や導電率の点で不十分になるからである。After the cooling, cold working is performed at a working rate of 80% or more. It is better not to include a heat treatment step before this cold working. The working ratio of the cold working is preferably 80% or more, and if it is less than 80%, the heat treatment in the next step will be insufficient in the precipitation hardening ability of Cr and Zr, resulting in insufficient strength and electrical conductivity.
【0029】上記冷間加工を経て、最終の冷間加工前に
施す熱処理は、400〜500℃で10分〜24時間の
処理が望ましい。この温度は400℃未満では、銅合金
中に固溶したCr、Zrの微細な析出が十分になされ
ず、強度や導電率の点で不十分になるからである。また
この熱処理の時間が10分未満でも、同様に同合金中に
固溶したCr、Zrの微細な析出が十分になされず、強
度や導電率の点で不十分になるからである。一方、温度
が500℃を超えると、結晶粒径が大きくなり過ぎて、
打ち抜き加工性等が劣化する。また熱処理時間は24時
間以下が適当である。これを超えて熱処理してもあまり
特性向上に寄与せず、製造コストの面で経済的ではな
い。The heat treatment performed before the final cold working after the cold working is preferably performed at 400 to 500 ° C. for 10 minutes to 24 hours. If the temperature is lower than 400 ° C., fine precipitation of Cr and Zr dissolved in the copper alloy is not sufficient, and the strength and the electrical conductivity are insufficient. If the heat treatment time is less than 10 minutes, fine precipitation of Cr and Zr similarly dissolved in the alloy is not sufficient, and the strength and electrical conductivity are insufficient. On the other hand, if the temperature exceeds 500 ° C., the crystal grain size becomes too large,
Punching workability and the like deteriorate. The heat treatment time is suitably 24 hours or less. Heat treatment beyond this does not contribute much to the property improvement and is not economical in terms of manufacturing cost.
【0030】最終の冷間加工は、加工率50%以下で行
うことが望ましい。50%を越えると強度的には向上す
るものの、半田耐熱剥離性が劣化して、特に多ピン型の
リードフレームには不適当になる。The final cold working is desirably performed at a working ratio of 50% or less. If it exceeds 50%, the strength is improved, but the soldering heat-peeling resistance is deteriorated, and it becomes unsuitable especially for a multi-pin type lead frame.
【0031】最終の冷間加工の後、300〜600℃で
10秒〜12時間の最終熱処理を施す。熱処理はバッチ
式の処理でも、テンションアニーリング等の走間処理で
も良い。この熱処理によって半田耐熱剥離性が改善され
ると共に、曲げ加工性も改善される。また特性や加工性
の係る異方性も緩和され、内部応力の低減にも寄与す
る。この熱処理の温度が300℃未満では、上記の改善
が不十分になる。またこの熱処理時間が10秒未満でも
同様である。一方、この熱処理を600℃を超える温度
で施すと、結晶粒径が大きくなり、打ち抜き加工性等が
劣化する。また、熱処理時間は12時間以下が適当であ
る。これを超えて熱処理してもあまり特性向上に寄与せ
ず、製造コストの面で経済的ではない。After the final cold working, a final heat treatment is applied at 300 to 600 ° C. for 10 seconds to 12 hours. The heat treatment may be a batch process or a running process such as tension annealing. The heat treatment improves the solder heat-peelability and the bending workability. In addition, the anisotropy related to characteristics and workability is also reduced, which contributes to a reduction in internal stress. If the temperature of this heat treatment is lower than 300 ° C., the above-mentioned improvement becomes insufficient. The same applies when the heat treatment time is less than 10 seconds. On the other hand, when this heat treatment is performed at a temperature exceeding 600 ° C., the crystal grain size increases, and the punching workability and the like deteriorate. The heat treatment time is suitably 12 hours or less. Heat treatment beyond this does not contribute much to the property improvement and is not economical in terms of manufacturing cost.
【0032】その他、必要に応じて熱処理後、テンショ
ンレベラーやローラーレベラー等によって矯正処理を行
っても良い。In addition, if necessary, after the heat treatment, a straightening treatment may be performed by a tension leveler, a roller leveler or the like.
【0033】[0033]
実施例1 高周波溶解炉を用い、表1に記す組成(SとO2 につい
てはppm表示)の銅合金を溶解し、これを冷却速度6
℃/秒で鋳込んだ。鋳塊のサイズは厚さ30mm、幅1
00mm、長さ150mmである。次にこれらの鋳塊を
980℃で熱間圧延をしてから、速やかに30℃/秒の
冷却速度で急冷した。表面の酸化膜を除去するため、厚
さ約9mm程、面削した。次に冷間圧延により厚さ0.
33mmまで加工した。この後、不活性雰囲気中で42
0℃×2時間の熱処理を施してから、更に冷間圧延して
厚さ0.2mmにした。最終焼鈍は350℃×2時間で
ある。そうして製造したリード材からサンプリングして
各種評価を行った。なお比較例22は熱間加工時に割れ
が発生して製造できなかった。Example 1 Using a high-frequency melting furnace, a copper alloy having the composition shown in Table 1 (S and O 2 are expressed in ppm) was melted and cooled at a cooling rate of 6%.
Casted at ° C / sec. The size of the ingot is 30mm thick and 1 width
It is 00 mm and 150 mm in length. Next, these ingots were hot-rolled at 980 ° C. and then rapidly cooled at a cooling rate of 30 ° C./sec. In order to remove the oxide film on the surface, the surface was cut to a thickness of about 9 mm. Next, a thickness of 0.
It was processed to 33 mm. After this, 42 in an inert atmosphere
After a heat treatment of 0 ° C. × 2 hours, it was further cold-rolled to a thickness of 0.2 mm. Final annealing is performed at 350 ° C. × 2 hours. Various evaluations were made by sampling from the lead material thus manufactured. Comparative Example 22 could not be manufactured due to cracking during hot working.
【0034】[0034]
【表1】 [Table 1]
【0035】結晶粒径の大きさは試験片を顕微鏡観察
(200倍)して測定した。また晶出物若しくは析出物
の大きさも同様にして測定した。表2にはこれらの平均
値を記す。引張強度はJISZ2241に、導電率はJ
ISH005に準じて測定し、その結果も表2に記し
た。The crystal grain size was measured by observing the test piece with a microscope (200 times). The size of the crystallized substance or the precipitate was measured in the same manner. Table 2 shows these average values. Tensile strength is JISZ2241, conductivity is J
The measurement was performed according to ISH005, and the results are also shown in Table 2.
【0036】[0036]
【表2】 [Table 2]
【0037】また、試験片を塩化第2鉄溶液を用いてエ
ッチング加工し、圧延方向に対し垂直方向に幅0.5m
mのリード部を形成した。このエッチング端面を顕微鏡
観察(50倍)し、突起物の有無を調べた。この顕微鏡
観察で明瞭に突起物が認められる場合は表2に有と記し
た。The test piece was etched by using a ferric chloride solution, and the width was 0.5 m in the direction perpendicular to the rolling direction.
m lead portions were formed. The etched end face was observed under a microscope (50 times), and the presence or absence of a protrusion was examined. In the case where protrusions were clearly observed by this microscopic observation, the presence was described in Table 2.
【0038】半田付け性の評価は半田の濡れ性と、半田
の剥離性を調べることで評価した。半田の濡れ性の評価
は次のようにして行ったものである。まず10mm×5
0mmの圧延面を有する試験片を、ロジン系(RMA)
のフラックスに5秒間浸漬後、230℃の共晶半田(P
b−63wt%Sn)の浴中に5秒間浸漬し、半田の濡
れ具合を調べることで評価した。半田の濡れ具合は目視
観察により、濡れ面積が90%以上の場合は良と、90
%未満の場合は不良として表2に記した。The solderability was evaluated by examining the wettability of the solder and the peelability of the solder. Evaluation of solder wettability was performed as follows. First 10mm x 5
A rosin-based (RMA)
After immersion in a flux of 5 seconds, the eutectic solder (P
b-63 wt% Sn) for 5 seconds, and evaluated by examining the degree of solder wetting. The degree of wetting of the solder was determined by visual observation.
% Is shown in Table 2 as defective.
【0039】半田加熱による半田の剥離の具合は、上記
と同様に半田を付着させた試験片を150℃×1000
時間大気加熱してから、180度の密着曲げ、および曲
げ戻しをした後、その部分の半田の剥離具合を調べるこ
とで評価した。半田の剥離が目視で認められる場合は、
表2に有と記しておく。The condition of the peeling of the solder due to the heating of the solder was as follows.
After being heated for 180 hours in the air and then subjected to 180 ° close contact bending and bending back, evaluation was made by examining the degree of solder peeling at that portion. If peeling of the solder is visually observed,
Table 2 indicates that there is.
【0040】打ち抜き性は、金型(SKD11製)で打
ち抜き試験(1mm×5mmの角孔を設ける)を行うこ
とによって調べた。そして5001回目から10000
回目の打ち抜き分から20個を無作為抽出したサンプル
のバリの大きさ(高さ)を観察し、その平均値を表2に
示した。また打ち抜き面を観察して破断部の厚さを測定
した。表2には試験片の厚さに対する破断部の厚さの割
合(破断部/板厚×100)を%表示で記す。The punching property was examined by performing a punching test (providing a square hole of 1 mm × 5 mm) with a mold (manufactured by SKD11). And from the 5001th to 10,000
The size (height) of burrs of 20 randomly sampled samples from the second punching was observed, and the average value is shown in Table 2. The thickness of the fractured part was measured by observing the punched surface. Table 2 shows the ratio of the thickness of the fractured part to the thickness of the test piece (fracture part / plate thickness x 100) in%.
【0041】表2を見ると、本発明例1〜13は何れも
優れた特性を示していることが判る。Cr量の少ない比
較例14やSn量の少ない比較例17は本発明例に比べ
強度が低い。またCr、Zrの含有量が多い比較例1
5、16はエッチング後の突起物が認められ、これらが
短絡の原因になりかねず、リードフレーム用として不都
合である。From Table 2, it can be seen that Examples 1 to 13 of the present invention all show excellent characteristics. Comparative Example 14 with a small amount of Cr and Comparative Example 17 with a small amount of Sn have lower strength than the inventive examples. Comparative Example 1 having a large content of Cr and Zr
In Nos. 5 and 16, protrusions after etching are observed, which may cause short-circuiting, which is inconvenient for a lead frame.
【0042】Sn量が多い比較例18はその強度は高い
ものの、導電率が低い他、エッチング後の突起物が認め
られ、上記同様、リードフレーム用として不都合であ
る。Znは半田めっき性や半田の耐剥離性を改善する
が、このZnの少ない比較例19では半田剥離が認めら
れた。逆にZnの多い比較例20では半田濡れ性が劣化
していた。Comparative Example 18, which has a large amount of Sn, has a high strength, but has a low electrical conductivity, and a protrusion after etching is recognized, which is inconvenient for use as a lead frame as described above. Zn improves the solder plating properties and the peeling resistance of the solder. However, in Comparative Example 19 containing less Zn, the solder peeling was observed. Conversely, in Comparative Example 20 containing a large amount of Zn, the solder wettability was deteriorated.
【0043】PbやCaはプレス成形性を改善するが、
その含有総量の少ない比較例21は上述の打ち抜き性の
評価でバリが大きくなることが判った。また打ち抜き面
における破断面の割合も小さく、あまり精密な成形がで
きていないことが判る。一方総量が多い比較例22は加
工性が悪く、熱間加工時に割れが生じたので、それ以後
の特性評価ができなかった。Although Pb and Ca improve the press formability,
In Comparative Example 21 having a small total content, it was found that the evaluation of the punching property described above resulted in a large burr. Further, the ratio of the fractured surface on the punched surface was small, and it was found that the molding was not so precise. On the other hand, in Comparative Example 22 having a large total amount, the workability was poor, and cracks occurred during hot working, so that subsequent property evaluation could not be performed.
【0044】その他、PやSが本発明範囲外にある比較
例23、24はエッチング後の突起物が認められ、上記
同様、リードフレーム用として不都合である。またO2
が多い比較例25は、析出硬化作用が不十分で強度が低
い上、半田濡れ性に優れない。In addition, in Comparative Examples 23 and 24 in which P and S are out of the range of the present invention, protrusions after etching are recognized, and are inconvenient for use as a lead frame as described above. Also O 2
Comparative Example 25, which has a large content, has insufficient precipitation hardening action, has low strength, and is not excellent in solder wettability.
【0045】実施例2 表1における本発明合金3、6、9および13を用い
て、表3に記す条件にて鋳造、熱間圧延、冷却、熱処
理、冷間圧延を施した。なお表3には本発明例3、6、
9、13を再掲しておく。比較例52〜55、57、5
8、60〜62は請求項3、4に対する比較例である。
表示する本発明例および比較例につき、実施例1と同様
に結晶粒径、晶出物(析出物)の大きさ、引張強度、導
電率、エッチング後の突起物の有無、バリの高さ、打ち
抜き面の破断部割合、および半田の加熱剥離製について
調査した。結果を表4に記す。Example 2 Using the alloys 3, 6, 9 and 13 of the present invention in Table 1, casting, hot rolling, cooling, heat treatment and cold rolling were performed under the conditions shown in Table 3. Table 3 shows Examples 3 and 6 of the present invention.
9 and 13 are repeated. Comparative Examples 52-55, 57, 5
8, 60 to 62 are comparative examples with respect to claims 3 and 4.
Regarding the present invention examples and comparative examples to be displayed, similarly to Example 1, the crystal grain size , the size of the crystallized substance (precipitate), the tensile strength, the conductivity, the presence or absence of protrusions after etching, the height of burrs, Investigations were made on the ratio of the fractured portion of the punched surface and the heat peeling of the solder. The results are shown in Table 4.
【0046】[0046]
【表3】 [Table 3]
【0047】[0047]
【表4】 [Table 4]
【0048】表3、4を見ると、本発明例3、9および
31〜40は何れも優れた特性を示していることが判
る。一方、鋳造時の冷却速度が遅い比較例51は晶出物
が大きくなり、その大きな晶出物が熱間加工や冷間加工
において針状化、板状化した結果、エッチング後の端面
に突起物が認められた。Tables 3 and 4 show that Examples 3, 9, and 31 to 40 of the present invention all show excellent characteristics. On the other hand, in Comparative Example 51 in which the cooling rate at the time of casting was low, the crystallized substance became large, and the large crystallized substance became acicular or plate-like in hot working or cold working. Things were found.
【0049】熱間加工の温度が低い比較例52も、晶出
物が大きくなり、その大きな晶出物が熱間加工や冷間加
工において針状化、板状化した結果、エッチング後の端
面に突起物が認められた。熱間加工後の冷却速度が遅い
比較例53も同様にエッチング後の端面に突起物が認め
られた。これら比較例52、53は引張強度も低くなっ
ていた。In Comparative Example 52 in which the temperature of the hot working was low, the crystallized product also became large, and the large crystallized product became acicular or plate-shaped in hot working or cold working. A protrusion was observed in the sample. In Comparative Example 53 in which the cooling rate after the hot working was slow, a protrusion was also observed on the end face after the etching. These Comparative Examples 52 and 53 also had low tensile strengths.
【0050】熱間加工後の冷間加工の加工率の低い比較
例54では、強度と導電率が劣り、リドフレーム材とし
ては不適当である。In Comparative Example 54 in which the working ratio of the cold working after the hot working is low, the strength and the electric conductivity are inferior, and thus it is not suitable as a lid frame material.
【0051】この冷間加工後に最終冷間加工前に施す焼
鈍(熱処理)の温度が高い比較例56は、結晶粒径が大
きくなり、本発明例と比較して強度の不足および大きな
バリの発生および破断部割合の低下が認められた。また
引張強度も低くなった。逆に焼鈍(熱処理)の温度が低
い比較例55、60は、半田の耐剥離性が劣化してい
る。In Comparative Example 56 in which the temperature of the annealing (heat treatment) performed before the final cold working after the cold working is high, the crystal grain size is large, and the strength is insufficient and large burrs are generated as compared with the present invention. And a decrease in the fractured portion ratio was observed. Also, the tensile strength was reduced. Conversely, in Comparative Examples 55 and 60 where the annealing (heat treatment) temperature is low, the peeling resistance of the solder is deteriorated.
【0052】最終の冷間加工の加工率が高い比較例5
7、61は半田の耐剥離性が劣化している。Comparative Example 5 in which the working ratio of the final cold working is high
In Nos. 7 and 61, the peeling resistance of the solder is deteriorated.
【0053】また最終の焼鈍(熱処理)温度が高い比較
例59は結晶粒径が大きくなり、大きなバリの発生およ
び破断部割合の低下が認められると共に引張強度も低く
なった。逆に最終の焼鈍(熱処理)温度が低い比較例5
8、62は結晶粒径が大きくなり、半田の耐剥離性が劣
化している。このような半田の耐剥離性が悪い比較例5
5、57、58、60、61、62は特に多ピン型のリ
ードフレームには適さない。In Comparative Example 59, in which the final annealing (heat treatment) temperature was high, the crystal grain size was large, generation of large burrs and reduction in the ratio of fractured parts were observed, and tensile strength was low. Conversely, Comparative Example 5 having a low final annealing (heat treatment) temperature
In Nos. 8 and 62, the crystal grain size is large and the peeling resistance of the solder is deteriorated. Comparative Example 5 in which such solder has poor peeling resistance
5, 57, 58, 60, 61 and 62 are not particularly suitable for a multi-pin type lead frame.
【0054】その他、実施例では挙げないが、熱間加工
を1000℃を越える温度で行っても、特に特性向上に
寄与しない上、高い温度で熱間加工すると銅表面に酸化
膜が顕著に形成される恐れがある等、あまり望ましくな
い。また高い温度で処理するためエネルギー的に経済的
ではない。つまり製造コストの観点で、熱間加工の温度
は1000℃以下が適当であることが判る。Although not described in the examples, even if hot working is performed at a temperature exceeding 1000 ° C., it does not particularly contribute to the improvement of characteristics, and when hot working at a high temperature, an oxide film is remarkably formed on the copper surface. It is not very desirable, for example, Further, since the treatment is performed at a high temperature, it is not economical in terms of energy. That is, from the viewpoint of manufacturing cost, it is understood that the temperature of the hot working is preferably 1000 ° C. or less.
【0055】[0055]
【発明の効果】以上詳述したように、本発明の電子機器
用銅合金およびその製造方法は、強度や導電性の特性に
優れ、また半田付け性や打ち抜き加工性、半田の耐熱剥
離性等にも優れるものであるから、電子機器の近年の傾
向である高密度化、高集積化に好適に対応できる。本発
明によって提供される電子機器用銅合金は、特にピン数
が多い、多ピンリードフレームに好適に適用できるが、
その他、端子、コネクター、電極材等、一般導電材料と
しても好適である。このように本発明は産業上顕著な貢
献を奏するものである。As described in detail above, the copper alloy for electronic equipment and the method of manufacturing the same according to the present invention are excellent in strength and electrical conductivity, solderability, punching workability, heat-peelability of solder and the like. Therefore, it is possible to suitably cope with the recent trend of high density and high integration of electronic devices. The copper alloy for electronic devices provided by the present invention has a particularly large number of pins, and can be suitably applied to a multi-pin lead frame.
In addition, they are also suitable as general conductive materials such as terminals, connectors, and electrode materials. As described above, the present invention has a remarkable industrial contribution.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−198439(JP,A) 特開 昭63−38561(JP,A) 特開 平3−199355(JP,A) 特開 昭63−143230(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 1/00 - 49/14 C22F 1/00 - 3/02 H01L 23/50 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-198439 (JP, A) JP-A-63-38561 (JP, A) JP-A-3-199355 (JP, A) JP-A-63-1984 143230 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 1/00-49/14 C22F 1/00-3/02 H01L 23/50
Claims (4)
0.05〜2重量%、Znが0.05〜2重量%、Pb
またはCaの内少なくとも1種類が総計0.005〜
0.2重量%、Pが0.01重量%未満、Sが0.00
5重量%未満、O2が0.005重量%未満含まれ、残
部Cuと不可避的不純物とからなる銅合金であって、晶
出物または析出物の大きさが3μm未満であると共に結
晶粒径が5μm未満である電子機器用薄板銅合金。1. Cr is 0.1 to 0.4% by weight, Sn is 0.05 to 2% by weight, Zn is 0.05 to 2% by weight, Pb
Or at least one of Ca has a total of 0.005 to
0.2 wt%, P is less than 0.01 wt%, S is 0.00
A copper alloy containing less than 5% by weight, less than 0.005% by weight of O 2 , and a balance of Cu and unavoidable impurities, wherein the size of a crystallized substance or a precipitate is less than 3 μm and the crystal grain size is less than 3 μm. electronic equipment sheet copper alloy but is less than 5 [mu] m.
0.05〜2重量%、Znが0.05〜2重量%、Zr
が0.01〜0.2重量%、PbまたはCaの内少なく
とも1種類が総計0.005〜0.2重量%、Pが0.
01重量%未満、Sが0.005重量%未満、O2が
0.005重量%未満含まれ、残部Cuと不可避的不純
物とからなる銅合金であって、晶出物または析出物の大
きさが3μm未満であると共に結晶粒径が5μm未満で
ある電子機器用薄板銅合金。2. Cr is 0.1 to 0.4% by weight, Sn is 0.05 to 2% by weight, Zn is 0.05 to 2% by weight, Zr is
Is 0.01 to 0.2% by weight, at least one of Pb and Ca is 0.005 to 0.2% by weight in total, and P is 0.1 to 0.2% by weight.
A copper alloy containing less than 01% by weight, less than 0.005% by weight of S, less than 0.005% by weight of O 2 , and a balance of Cu and unavoidable impurities; electronic equipment sheet copper alloy grain size of less than 5μm with but less than 3 [mu] m.
0.05〜2重量%、Znが0.05〜2重量%、Pb
またはCaの内少なくとも1種類が総計0.005〜
0.2重量%、Pが0.01重量%未満、Sが0.00
5重量%未満、O2が0.005重量%未満含まれ、残
部Cuと不可避的不純物とからなる銅合金を冷却速度5
℃/秒以上の冷却速度で鋳造し、850〜1000℃で
熱間加工した後、10℃/秒以上の速度で冷却し、しか
る後、加工率80%以上の冷間加工、400〜500℃
で10分〜24時間の熱処理、加工率50%以下の冷間
加工、300〜600℃で10秒〜12時間の最終熱処
理を順次施して、晶出物または析出物の大きさが3μm
未満であると共に結晶粒径を5μm未満にする、電子機
器用薄板銅合金の製造方法。3. Cr is 0.1 to 0.4% by weight, Sn is 0.05 to 2% by weight, Zn is 0.05 to 2% by weight, Pb
Or at least one of Ca has a total of 0.005 to
0.2 wt%, P is less than 0.01 wt%, S is 0.00
A copper alloy containing less than 5% by weight and less than 0.005% by weight of O 2 and a balance of Cu and unavoidable impurities is cooled at a cooling rate of 5%.
Casting at a cooling rate of at least ℃ / sec, hot working at 850-1000 ° C, cooling at a rate of at least 10 ° C / sec, then cold working at a working rate of 80% or more, 400-500 ° C
For 10 minutes to 24 hours, cold working at a working rate of 50% or less, and final heat treatment at 300 to 600 ° C. for 10 seconds to 12 hours, and the size of a crystallized substance or a precipitate is 3 μm.
Crystal grain size be less than 5μm the method for producing a thin copper alloy for an electronic device with less than.
0.05〜2重量%、Znが0.05〜2重量%、Zr
が0.01〜0.2重量%、PbまたはCaの内少なく
とも1種類が総計0.005〜0.2重量%、Pが0.
01重量%未満、Sが0.005重量%未満、O2が
0.005重量%未満含まれ、残部Cuと不可避的不純
物とからなる銅合金を冷却速度5℃/秒以上の冷却速度
で鋳造し、850〜1000℃で熱間加工した後、10
℃/秒以上の速度で冷却し、しかる後、加工率80%以
上の冷間加工、400〜500℃で10分〜24時間の
熱処理、加工率50%以下の冷間加工、300〜600
℃で10秒〜12時間の最終熱処理を順次施して、晶出
物または析出物の大きさが3μm未満であると共に結晶
粒径を5μm未満にする、電子機器用薄板銅合金の製造
方法。4. Cr is 0.1 to 0.4% by weight, Sn is 0.05 to 2% by weight, Zn is 0.05 to 2% by weight, Zr
Is 0.01 to 0.2% by weight, at least one of Pb and Ca is 0.005 to 0.2% by weight in total, and P is 0.1 to 0.2% by weight.
Less than 01 wt%, S less than 0.005 wt%, O 2 is contained less than 0.005 wt%, the cast copper alloy consisting of the remainder Cu and unavoidable impurities at a cooling rate of 5 ° C. / sec or more cooling rate After hot working at 850-1000 ° C.
Cooling at a rate of at least ℃ / sec, then cold working at a working rate of 80% or more, heat treatment at 400 to 500 ° C for 10 minutes to 24 hours, cold working at a working rate of 50% or less, 300 to 600
A method for producing a sheet copper alloy for electronic equipment, in which a final heat treatment at 10 ° C. for 10 seconds to 12 hours is sequentially performed so that the size of a crystallized substance or a precipitate is less than 3 μm and the crystal grain size is less than 5 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00276896A JP3296709B2 (en) | 1995-07-10 | 1996-01-11 | Thin copper alloy for electronic equipment and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17370095 | 1995-07-10 | ||
JP7-173700 | 1995-07-10 | ||
JP00276896A JP3296709B2 (en) | 1995-07-10 | 1996-01-11 | Thin copper alloy for electronic equipment and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0978162A JPH0978162A (en) | 1997-03-25 |
JP3296709B2 true JP3296709B2 (en) | 2002-07-02 |
Family
ID=26336233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00276896A Expired - Lifetime JP3296709B2 (en) | 1995-07-10 | 1996-01-11 | Thin copper alloy for electronic equipment and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3296709B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2160473B1 (en) * | 1999-02-08 | 2002-06-16 | Farga Lacambra S A | MANUFACTURE OF COPPER MICROALEATIONS. |
US7696092B2 (en) * | 2001-11-26 | 2010-04-13 | Globalfoundries Inc. | Method of using ternary copper alloy to obtain a low resistance and large grain size interconnect |
JP3731600B2 (en) | 2003-09-19 | 2006-01-05 | 住友金属工業株式会社 | Copper alloy and manufacturing method thereof |
CN100574909C (en) | 2004-01-16 | 2009-12-30 | 住友金属工业株式会社 | Manufacturing method of seamless pipe |
TW200531762A (en) * | 2004-01-30 | 2005-10-01 | Sumitomo Metal Ind | Continuous casting method for copper alloy |
CA2559103A1 (en) * | 2004-03-12 | 2005-09-22 | Sumitomo Metal Industries, Ltd. | Copper alloy and method for production thereof |
WO2006104152A1 (en) * | 2005-03-28 | 2006-10-05 | Sumitomo Metal Industries, Ltd. | Copper alloy and process for producing the same |
-
1996
- 1996-01-11 JP JP00276896A patent/JP3296709B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0978162A (en) | 1997-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101158113B1 (en) | Copper alloy plate for electrical and electronic components | |
JP4056175B2 (en) | Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability | |
TWI429768B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
JP4950734B2 (en) | High strength and high conductivity copper alloy with excellent hot workability | |
JP2000087158A (en) | Copper alloy for semiconductor lead frame | |
JP3383615B2 (en) | Copper alloy for electronic materials and manufacturing method thereof | |
JP3797736B2 (en) | High strength copper alloy with excellent shear processability | |
JP2000178670A (en) | Copper alloy for semiconductor lead frame | |
JP3418301B2 (en) | Copper alloy for electrical and electronic equipment with excellent punching workability | |
JP3296709B2 (en) | Thin copper alloy for electronic equipment and method for producing the same | |
JP5232794B2 (en) | High strength and high conductivity copper alloy with excellent hot workability | |
JP4177221B2 (en) | Copper alloy for electronic equipment | |
JP4251672B2 (en) | Copper alloy for electrical and electronic parts | |
JP3459520B2 (en) | Copper alloy for lead frame | |
JP3735005B2 (en) | Copper alloy having excellent punchability and method for producing the same | |
JP3374037B2 (en) | Copper alloy for semiconductor lead frame | |
JP5748945B2 (en) | Copper alloy material manufacturing method and copper alloy material obtained thereby | |
JPH10287939A (en) | Copper alloy for electric and electronic equipment, excellent in punchability | |
JP4175920B2 (en) | High strength copper alloy | |
JPH11323463A (en) | Copper alloy for electrical and electronic parts | |
JP5101149B2 (en) | High strength and high conductivity copper alloy with excellent hot workability | |
JPH10110228A (en) | Copper alloy for electronic equipment and its production | |
JP3519888B2 (en) | Copper alloy for electronic equipment and method for producing the same | |
JPH1060562A (en) | Copper alloy for electronic equipment and its production | |
JP3989161B2 (en) | Copper alloy for electronic and electrical equipment with excellent bending workability and stress relaxation resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090412 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090412 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100412 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110412 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120412 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120412 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130412 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130412 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140412 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |