[go: up one dir, main page]

JP3286346B2 - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JP3286346B2
JP3286346B2 JP18803992A JP18803992A JP3286346B2 JP 3286346 B2 JP3286346 B2 JP 3286346B2 JP 18803992 A JP18803992 A JP 18803992A JP 18803992 A JP18803992 A JP 18803992A JP 3286346 B2 JP3286346 B2 JP 3286346B2
Authority
JP
Japan
Prior art keywords
indium
battery
zinc alloy
zinc
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18803992A
Other languages
Japanese (ja)
Other versions
JPH0636765A (en
Inventor
欣也 多田
正明 栗村
睦 矢野
泰夫 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP18803992A priority Critical patent/JP3286346B2/en
Publication of JPH0636765A publication Critical patent/JPH0636765A/en
Application granted granted Critical
Publication of JP3286346B2 publication Critical patent/JP3286346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、亜鉛アルカリ電池に関
し、特にその負極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc alkaline battery, and more particularly, to an improvement of a negative electrode thereof.

【0002】[0002]

【従来の技術】従来からの亜鉛アルカリ電池に共通した
問題点として、保存中における負極活物質の電解液によ
る腐食を挙げることができる。この問題に対する対策と
して、亜鉛に対し5〜10重量%程度の水銀を添加した
汞化亜鉛粉末を負極活物質として用い、負極活物質の水
素過電圧を高め、負極活物質電解液による腐食を実用に
問題のない程度に抑制することが行われてきた。
2. Description of the Related Art As a problem common to conventional zinc alkaline batteries, corrosion of a negative electrode active material by an electrolyte during storage can be cited. As a countermeasure against this problem, zinc oxide containing about 5 to 10% by weight of mercury with respect to zinc is used as a negative electrode active material to increase the hydrogen overvoltage of the negative electrode active material and make the corrosion by the negative electrode active material electrolyte practical. Controls have been performed to the extent that there is no problem.

【0003】しかしながら、近年、抵公害化のために、
電池内の含有水銀を低減させることが社会的ニーズとし
て高まり、種々の研究がなされている。例えば、亜鉛中
に鉛やアルミニウムを含有させた亜鉛合金をインジウム
−水銀合金により汞化し、含有水銀を0.6重量%程度
に低減させた汞化亜鉛合金粉末(特公平1−42114
公報)等が活物質として用いられるようになった。
In recent years, however, due to pollution,
Reducing mercury content in batteries has increased as a social need, and various studies have been made. For example, a zinc alloy containing lead and aluminum in zinc is calcined with an indium-mercury alloy, and a mercurized zinc alloy powder in which the content of mercury is reduced to about 0.6% by weight (Japanese Patent Publication No. 1-41214).
Gazettes) have been used as active materials.

【0004】そして、更に、技術改良がなされ、含有水
銀量を0.15重量%程度にした亜鉛合金粉末が負極活
物質として用いられている。
Further, technical improvements have been made, and zinc alloy powder having a mercury content of about 0.15% by weight has been used as a negative electrode active material.

【0005】[0005]

【発明が解決しようとする課題】ところで、近年、水銀
による環境汚染が世界的に問題となり、水銀を全く含有
しない電池の開発が強く期待されるようになった。従来
の技術では、上記したように、汞化率が0.6重量%程
度、更には0.15重量%と非常に低濃度であるが負極
活物質に水銀が含有されているため、本質的に環境問題
を解決したとは言えない。
In recent years, environmental pollution by mercury has become a problem worldwide, and the development of batteries containing no mercury has been strongly expected. According to the conventional technique, as described above, the mercurization rate is as low as about 0.6% by weight, and even as low as 0.15% by weight. However, since mercury is contained in the negative electrode active material, it is essential. It cannot be said that environmental problems have been solved.

【0006】また環境問題に加えて、資源問題を考える
と、使用済みの電池から亜鉛等を再生することが望まし
いが、亜鉛に水銀が随伴していると再生工程における水
銀対策が問題となる。本発明は、このような問題点を解
決するためのものであって、無汞化にしても耐蝕性及び
放電性能を低下させることのない、亜鉛アルカリ電池を
提供することを目的とする。
[0006] Considering resource issues in addition to environmental issues, it is desirable to regenerate zinc or the like from used batteries. However, if zinc is accompanied by mercury, measures against mercury in the regeneration step become a problem. An object of the present invention is to solve such a problem, and an object of the present invention is to provide a zinc-alkali battery that does not reduce corrosion resistance and discharge performance even if it is made non-melted.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、 請求項1の発明は、ビスマスを含有した亜鉛合
金粉末の表面にインジウムが添加被覆されてあり、且
つ、嵩比重が2.30〜2.90g/ccであるインジウ
ム被覆亜鉛合金粉末からなる負極活物質を62〜75w
t%を除く範囲含有してなるゲル状負極を備えているこ
とを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, a zinc alloy powder containing bismuth is coated with indium on a surface thereof and has a bulk specific gravity of 2.30. A negative electrode active material composed of indium-coated zinc alloy powder of about 2.90 g / cc and 62 to 75 w
A gel negative electrode containing a range excluding t% is provided.
And features.

【0008】 請求項2の発明は、前記ビスマスの含
有量が0.005〜0.05重量%、インジウムの被覆量
が0.05〜0.80重量%であることを特徴とする。
The invention of claim 2 is characterized in that the bismuth content is 0.005 to 0.05% by weight and the indium coating amount is 0.05 to 0.80% by weight.

【0009】[0009]

【作用】上記のように構成することにより以下のような
作用がある。亜鉛にビスマスを添加し合金化させると、
ビスマスが負極活物質である亜鉛粉末の水素過電圧を高
めるよう作用し、腐食によるガス発生が抑制される。ま
た、このビスマス亜鉛合金粉末の表面にインジウムを添
加被覆させると、インジウムが亜鉛合金表面にあって水
素過電圧を高めるよう作用するため、該インジウムの添
加効果を最も有効に発揮させることができる。したがっ
て、上記ビスマスの作用効果と相まって負極の腐食を有
効に抑制でき、腐食によるガス発生を低水準に抑制でき
ることになる。
The following effects are obtained by the above-mentioned structure. When bismuth is added to zinc and alloyed,
Bismuth acts to increase the hydrogen overpotential of the zinc powder as the negative electrode active material, and gas generation due to corrosion is suppressed. Further, when indium is added and coated on the surface of the bismuth zinc alloy powder, indium acts on the surface of the zinc alloy to increase the hydrogen overvoltage, so that the effect of adding indium can be exhibited most effectively. Therefore, the corrosion of the negative electrode can be effectively suppressed in combination with the function and effect of the bismuth, and gas generation due to the corrosion can be suppressed to a low level.

【0010】更に、上記構成では、ビスマス亜鉛合金粉
末の表面にインジウムを添加被覆させて成るビスマス被
覆亜鉛合金粉末の嵩比重を2.30〜2.90gcc
限定したことにより、電池放電性能を低下させることな
く負極の耐蝕性を向上させることができる。この理由は
十分に解明されていないが、次のように考えられる。即
ち、亜鉛合金粉末表面に被覆されたインジウムが、該粉
末表面の形状を変化させるが、ここでインジウムは亜鉛
よりも導電性が良いこと、また、一般に合金より純金属
の方が導電性に優れることから、亜鉛合金粉末に被覆さ
れたインジウムが負極内で相互に接触することによって
負極の導電性を高める。そして、特にインジウム被覆ビ
スマス亜鉛合金粉末の嵩比重を2.30〜2.90g/mlに限
定してあることにより、該粉末が負極内で相互に接触し
易い形状すなわち適度に凹凸のある形状とできる。これ
により、一層、負極の導電性が高まり電池の放電性能を
向上させることができるものと考えられる。一方、該イ
ンジウム被覆亜鉛合金粉末の嵩比重が2.30g/ml未満
である場合は該粉末の形状が針状形に近づき表面積(反
応表面積)を過大にするため、耐食性が低下し、該被覆
亜鉛合金粉末の嵩比重が2.90g/mlを越える場合にあ
っては、該粉末の形状が球形に近づき表面積(反応表面
積)を過少にするため、放電性能を減少させるものと考
えられる。
Further, in the above configuration, the bulk specific gravity of the bismuth-coated zinc alloy powder obtained by adding and coating indium on the surface of the bismuth zinc alloy powder is limited to 2.30 to 2.90 g / cc. The corrosion resistance of the negative electrode can be improved without lowering the performance. The reason for this has not been fully elucidated, but is considered as follows. That is, indium coated on the surface of the zinc alloy powder changes the shape of the surface of the powder. Here, indium has better conductivity than zinc, and in general, pure metal has better conductivity than alloy. Therefore, the indium coated on the zinc alloy powder comes into contact with each other in the negative electrode to increase the conductivity of the negative electrode. In particular, since the bulk specific gravity of the indium-coated bismuth-zinc alloy powder is limited to 2.30 to 2.90 g / ml, the powder can have a shape that easily contacts each other in the negative electrode, that is, a shape having moderate irregularities. Thereby, it is considered that the conductivity of the negative electrode is further increased and the discharge performance of the battery can be improved. On the other hand, when the bulk specific gravity of the indium-coated zinc alloy powder is less than 2.30 g / ml, the shape of the powder approaches a needle shape and the surface area (reaction surface area) becomes excessive, so that the corrosion resistance is reduced and When the bulk specific gravity of the alloy powder exceeds 2.90 g / ml, it is considered that the shape of the powder approaches a sphere and the surface area (reaction surface area) becomes too small, so that the discharge performance is reduced.

【0011】[0011]

〔実施例1〕[Example 1]

[被覆亜鉛合金粉末の調製]純度99.995%以上の
亜鉛地金を約500℃で溶融し所定量のビスマスを添加
し、ビスマス0.02%含有したビスマス亜鉛溶融物と
なし、この溶融物を高圧ガスによって噴霧し粉体化して
ビスマス亜鉛合金原粉末を作製した。なお、ビスマス亜
鉛溶融物の噴霧に際しては、高圧ガスの圧力を2±0.2
Kgf/cm2の範囲で変化させ、該粉末が所望の嵩比重
を有する粉体となるよ調整した。
[Preparation of coated zinc alloy powder] A zinc base metal having a purity of 99.995% or more is melted at about 500 ° C, a predetermined amount of bismuth is added, and a bismuth zinc melt containing 0.02% bismuth is formed. Was sprayed with a high-pressure gas and powdered to prepare a bismuth zinc alloy raw powder. When spraying the bismuth zinc melt, the pressure of the high-pressure gas was set to 2 ± 0.2.
Kgf / cm 2 was adjusted so that the powder became a powder having a desired bulk specific gravity.

【0012】この様にして作製したインジウム亜鉛合金
原粉末を、20メッシュ〜325メッシュの粒度範囲に
篩別・整粒し、インジウム被覆用のビスマス亜鉛合金粉
末と成した。次に、このビスマス亜鉛合金粉末と所定量
の金属インジュウムを、窒素ガスを充満した回転ドラム
内に入れ、該回転ドラムを180℃に加温した状態で1
時間回転させた。このような処理により、インジウムは
融点(156.6℃)以上に加熱されるので溶融し、亜鉛合金
粉末の表面にインジウムが徐々にに付着・被覆され、イ
ンジウム被覆亜鉛合金粉末が作製される。
The indium zinc alloy raw powder produced in this manner was sieved and sized to a particle size range of 20 mesh to 325 mesh to obtain a bismuth zinc alloy powder for indium coating. Next, this bismuth zinc alloy powder and a predetermined amount of metal indium were put into a rotating drum filled with nitrogen gas, and the rotating drum was heated to 180 ° C. for 1 hour.
Rotated for hours. By such a treatment, indium is heated to a temperature not lower than the melting point (156.6 ° C.) and is melted. Indium is gradually adhered to and coated on the surface of the zinc alloy powder, thereby producing an indium-coated zinc alloy powder.

【0013】この亜鉛合金粉末の嵩比重を測定したとこ
ろ2.60(g/ml)のであった。なお、上記のインジウ
ム被覆方法を回転ドラム法と称することとする。また、
上記篩別・整粒はJIS標準篩を使用し、嵩比重は日本
工業規格“金属粉の見掛密度試験方法”(Z2504-1
979)の規定にしたがって行った。 [電池の作製]上記で作製したインジウム被覆亜鉛合金
粉末を用い、図1に示すLR6タイプの電池を作製し
た。
When the bulk specific gravity of the zinc alloy powder was measured, it was 2.60 (g / ml). The indium coating method is referred to as a rotating drum method. Also,
The sieving and sizing are performed using a JIS standard sieve, and the bulk specific gravity is determined according to Japanese Industrial Standards “Test method for apparent density of metal powder” (Z2504-1
979). [Production of Battery] Using the indium-coated zinc alloy powder produced above, an LR6 type battery shown in FIG. 1 was produced.

【0014】図1において、1は正極缶であり、この正
極缶1内には二酸化マンガンを主成分とする正極5とセ
パレーター6と、インジウム被覆亜鉛合金粉末を含む負
極7とが配設されている。また上記正極缶1の開口部に
は封口ガスケット3を介してて負極端子板2がとりつけ
られており、この負極端子板2は集電体4を介して上記
負極7と電気的に接続されている。
In FIG. 1, reference numeral 1 denotes a positive electrode can, in which a positive electrode 5 mainly composed of manganese dioxide, a separator 6, and a negative electrode 7 containing indium-coated zinc alloy powder are arranged. I have. A negative electrode terminal plate 2 is attached to the opening of the positive electrode can 1 via a sealing gasket 3. The negative electrode terminal plate 2 is electrically connected to the negative electrode 7 via a current collector 4. I have.

【0015】ここで、上記負極7は、水酸化カリウムの
40%水溶液に酸化亜鉛を飽和させた電解液をポリアク
リル酸によりゲル化し、このゲルに前記被覆亜鉛合金粉
末(比較例にあっては亜鉛粉末又は汞化亜鉛合金粉末)
を混合・分散させて作製した。一方、上記正極は、二酸
化マンガンに黒鉛を混合し、これを加圧成形することに
作製した。
Here, the negative electrode 7 is formed by gelling an electrolyte solution obtained by saturating zinc oxide in a 40% aqueous solution of potassium hydroxide with polyacrylic acid, and the gel is coated with the coated zinc alloy powder (in the comparative example, Zinc powder or Zinc alloy powder
Were mixed and dispersed. On the other hand, the positive electrode was manufactured by mixing graphite with manganese dioxide and pressing the mixture.

【0016】このように作製した電池を以下、本発明例
電池(A1)と称する。 〔実施例2〕 [被覆亜鉛合金粉末の調製]0.02%のビスマスを含
有した亜鉛合金粉末を硫酸インジウム水溶液に入れ、3
0分攪拌することによりインジウムを亜鉛合金粉末表面
に被覆した。次いでこのインジウム被覆粉末をイオン交
換精製水で洗った後、更にアセトンで洗浄し、45℃で
一昼夜乾燥した。そして、前記実施例1と同様な操作に
より篩別・整粒し、嵩比重値が2.60(g/ml)となる
インジウム被覆亜鉛合金粉末を作製した。 上記のイン
ジウム被覆方法を溶液法と称することとする。
The battery fabricated in this manner is hereinafter referred to as a battery of the present invention (A 1 ). [Example 2] [Preparation of coated zinc alloy powder] A zinc alloy powder containing 0.02% bismuth was put in an indium sulfate aqueous solution,
By stirring for 0 minute, indium was coated on the surface of the zinc alloy powder. Next, the indium-coated powder was washed with ion-exchange purified water, further washed with acetone, and dried at 45 ° C. for 24 hours. Then, sieving and sizing were performed in the same manner as in Example 1 to prepare an indium-coated zinc alloy powder having a bulk specific gravity value of 2.60 (g / ml). The above indium coating method is referred to as a solution method.

【0017】なお、上記では、インジュウム被覆用溶液
として硫酸インジウム水溶液を使用したが、本発明に係
る被覆方法はこの溶液に限定されるものでなく、また硫
酸インジウムの代わりに例えば塩化インジウムなどのイ
ンジウム塩を使用してもよい。 [電池の作製]上記インジウム被覆亜鉛合金粉末を用
い、前記実施例1と同様な方法によりLR6タイプの電
池を作製した。
In the above description, an aqueous solution of indium sulfate was used as a solution for coating indium, but the coating method according to the present invention is not limited to this solution, and instead of indium sulfate, indium such as indium chloride may be used. Salts may be used. [Production of Battery] Using the above-mentioned indium-coated zinc alloy powder, an LR6 type battery was produced in the same manner as in Example 1.

【0018】このように作製した電池を以下、本発明例
電池(A2)と称する。 〔比較例1〕純亜鉛粉末を用いたことのほかは前記実施
例と同様な方法によりLR6タイプの電池を作製した。
このように作製した電池を以下、比較例電池(X1)と称
する。 〔比較例2〕亜鉛と金属インジウムを溶融混合し、この
溶融物を高圧ガス噴霧法により粉体化して作製したイン
ジウム合金を使用したほかは前記実施例と同様な方法に
よりLRタイプの電池を作製した。
The battery fabricated in this manner is hereinafter referred to as a battery of the present invention (A 2 ). [Comparative Example 1] An LR6 type battery was manufactured in the same manner as in the above Example except that pure zinc powder was used.
The battery fabricated in this manner is hereinafter referred to as Comparative Example Battery (X 1 ). [Comparative Example 2] An LR type battery was manufactured in the same manner as in the above Example, except that zinc and metal indium were melt-mixed, and an indium alloy manufactured by pulverizing the melt by high-pressure gas atomization was used. did.

【0019】このように作製した電池を以下、比較例電
池(X2)と称する。 〔比較例3〕従来品としてインジウム0.02%、鉛
0.05%、アルミニウム0.05%、水銀0.6%を
添加してなる汞化亜鉛合金粉末(嵩比重3.2〜4.0
g/ml前後)を用い前記と同じLRタイプの電池を作
製した。
The battery thus manufactured is hereinafter referred to as Comparative Example Battery (X 2 ). [Comparative Example 3] As a conventional product, a mercurized zinc alloy powder (bulk specific gravity of 3.2 to 4. 0.%) to which 0.02% of indium, 0.05% of lead, 0.05% of aluminum and 0.6% of mercury are added. 0
g / ml) to produce the same LR type battery as above.

【0020】このように作製した電池を以下、比較例電
池(X3)と称する。 [実験1]上記で作製した各電池について放電性能試験
を行い、各電池の放電性能を比較検討した。放電性能試
験は、放電負荷3.9Ω、20 ℃の放電条件により終止
電圧0.9Vまでの持続時間を測定する方法により行っ
た。
The battery fabricated in this manner is hereinafter referred to as Comparative Battery (X 3 ). [Experiment 1] A discharge performance test was performed for each of the batteries prepared above, and the discharge performance of each battery was compared and examined. The discharge performance test was conducted by a method of measuring the duration up to a final voltage of 0.9 V under a discharge condition of 3.9 Ω and a discharge condition of 20 ° C.

【0021】これらの測定結果を下記表1に示す。表1
から明らかな様に、本発明例電池(A1)及び(A2)は、純
亜鉛粉末を用いた比較例電池(X1)に比べ放電持続時間
が著しく長くなっており、インジウム合金粉末を用いた
比較例(X2)に比較しても顕著に放電持続時間が長くな
っている。更に、本発明例電池(A1)及び(A2)は、従
来品である汞化亜鉛を用いた比較例電池(X3)と同等の
放電持続時間を示している。なお、本発明例電池(A1)
及び(A2)は、同一の放電持続時間を示しており、イン
ジウムの被覆方法による差異は認められなかった。
The results of these measurements are shown in Table 1 below. Table 1
As is clear from the above, the batteries of the present invention (A 1 ) and (A 2 ) have a significantly longer discharge duration than the comparative battery (X 1 ) using pure zinc powder. Compared to the comparative example (X 2 ) used, the discharge duration was significantly longer. Furthermore, the batteries (A 1 ) and (A 2 ) of the present invention exhibit the same discharge duration as the comparative battery (X 3 ) using zinc mercuride as a conventional product. The battery of the present invention (A 1 )
And (A 2 ) show the same discharge duration, and no difference was observed between the indium coating methods.

【0022】[0022]

【表1】 [Table 1]

【0023】[実験2]被覆インジウム亜鉛合金粉末の
嵩比重の違いが、電池放電性能及びガス発生抑制効果に
及ぼす影響を調べるため、嵩比重の異なることをのぞき
前記実施例と同様な方法で作製した各種被覆インジウム
亜鉛合金粉末を用い、前記実施例1と同様に作製した電
池について放電性試験及びガス発生試験を行った。
[Experiment 2] To examine the effect of the difference in the bulk specific gravity of the coated indium zinc alloy powder on the battery discharge performance and the gas generation suppressing effect, the powder was produced in the same manner as in the above-described embodiment except that the bulk specific gravity was different. Using the various coated indium zinc alloy powders, a discharge test and a gas generation test were performed on the battery manufactured in the same manner as in Example 1.

【0024】なお、放電性能試験は上記実験1と同様に
行い、ガス発生試験は各種電池を60℃・30日間保存
後、この電池を水中にて分解し電池内に存在するガスを
捕集し、その容量を求める方法によった。図2及び3に
上記実験結果を示す。なお、比較のため前記汞化亜鉛合
金粉末を用いた比較例電池3についても同様に行った。
その結果、比較例電池(X3)のガス発生量は1.20
(g/ml)であり、放電持続時間は5.25時間であ
った。
The discharge performance test was performed in the same manner as in Experiment 1. The gas generation test was performed by storing various batteries at 60 ° C. for 30 days, decomposing the batteries in water, and collecting gas present in the batteries. And the method for determining the capacity. 2 and 3 show the above experimental results. For comparison, the same procedure was carried out for Comparative Example Battery 3 using the above-mentioned mercurized zinc alloy powder.
As a result, the gas generation amount of the comparative example battery (X 3 ) was 1.20.
(G / ml) and the discharge duration was 5.25 hours.

【0025】図2及び図3から明らかな様に、インジウ
ム被覆亜鉛合金粉末を用いた電池のガス発生量はインジ
ウム被覆亜鉛合金粉末の嵩比重2.30(g/ml)前
後で顕著に変化し、嵩比重2.30(g/ml)以下に
おいてガス発生量が増加した。一方、これら電池の放電
持続時間は2.90(g/ml)前後で変化し、2.9
0(g/ml)を境に減少する傾向を示した。 これら
の結果から、嵩比重2.30〜2.90(g/ml)の
範囲のインジウム被覆亜鉛合金粉末を使用した場合に
は、従来品である汞化亜鉛合金粉末を用いた比較例電池
(X3)と同程度にガス発生量を抑制でき且つ同程度の放
電性能を発揮できる電池と成し得ることが判る。
As is clear from FIGS. 2 and 3, the gas generation amount of the battery using the indium-coated zinc alloy powder changes remarkably around the bulk specific gravity of the indium-coated zinc alloy powder of about 2.30 (g / ml). When the bulk specific gravity was 2.30 (g / ml) or less, the amount of generated gas increased. On the other hand, the discharge duration of these batteries changed around 2.90 (g / ml) and was 2.9.
There was a tendency to decrease at 0 (g / ml). From these results, when an indium-coated zinc alloy powder having a bulk specific gravity of 2.30 to 2.90 (g / ml) was used, a comparative battery using a conventional calomelted zinc alloy powder was used.
It can be seen that a battery capable of suppressing the gas generation amount to the same extent as (X 3 ) and exhibiting the same discharge performance can be obtained.

【0026】[実験3]亜鉛合金に対する好適なビスマ
ス含有量及び好適なインジウム被覆量を調べるために、
ビスマス含有量及びインジウム被覆量を種々変化させた
嵩比重2.60g/mlのインジウム被覆亜鉛合金粉末
を調製してこれら粉末を用いた電池を作製し、ガス発生
試験を行った。なお、インジウム被覆亜鉛合金粉末の調
製方法、電池を作製方法、及びガス発生試験については
全て前記した方法と同様である。
[Experiment 3] In order to determine a suitable bismuth content and a suitable indium coating amount for a zinc alloy,
Indium-coated zinc alloy powders having a bulk specific gravity of 2.60 g / ml in which the bismuth content and the indium coating amount were variously changed were prepared, and batteries using these powders were produced, and a gas generation test was performed. The method for preparing the indium-coated zinc alloy powder, the method for preparing the battery, and the gas generation test are all the same as those described above.

【0027】それらの結果を、図4及び図5に示す。図
4はビスマス含有量0.02%の亜鉛合金粉末を用い、
インジウム被覆量を0.03〜1.00%に変化させた場合にお
ける結果であり、図5はビスマス含有量を0.005 〜0.07
%に変化させた種々の亜鉛合金に一定量(0.10%) のイ
ンジウムを被覆した場合における結果である。図4か
ら、電池内ガス発生量は、インジウム添加量が0.05〜0.
80%の範囲で殆ど変化なく、0.005 %以下及び0.80%以
上を境に顕著に増加することが判り、図5から亜鉛合金
中のビスマス含有量が0.005 〜0.05%の範囲で殆ど変化
なく、0.005 %以下及び0.05%以上を境に顕著に増加す
ることが判る。これらの結果から、ビスマス添加量を0.
005 〜0.05%の範囲とし、インジウム添加量を0.05〜0.
80%の範囲とすることにより、耐食性と放電性能を兼ね
備えた電池とし得ることが判る。
The results are shown in FIG. 4 and FIG. FIG. 4 uses a zinc alloy powder having a bismuth content of 0.02%,
FIG. 5 shows the results when the indium coating amount was changed from 0.03 to 1.00%, and FIG. 5 shows that the bismuth content was changed from 0.005 to 0.07%.
% Of various zinc alloys coated with a fixed amount (0.10%) of indium. From FIG. 4, the gas generation amount in the battery is in the range of 0.05 to 0.
It can be seen that there is almost no change in the range of 80%, and it increases remarkably at 0.005% or less and 0.80% or more. From FIG. 5, the bismuth content in the zinc alloy is almost unchanged in the range of 0.005 to 0.05% and 0.005% or less. % And not less than 0.05%. From these results, the amount of bismuth added was 0.
005-0.05%, and the indium addition amount is 0.05-0.
It can be seen that by setting the range to 80%, a battery having both corrosion resistance and discharge performance can be obtained.

【0028】なお、前記実施例では正極活物質として二
酸化マンガンを使用したが、正極活物質はこれに限定さ
れるものでないことは勿論であって、例えば、酸化銀、
酸素、水酸化ニッケルなどが使用できる。
In the above embodiment, manganese dioxide was used as the positive electrode active material. However, it is needless to say that the positive electrode active material is not limited to this.
Oxygen, nickel hydroxide and the like can be used.

【0029】[0029]

【発明の効果】以上に説明したように、本発明によれば
水銀を全く用いることなく、汞化亜鉛負極を用いた従来
の亜鉛アルカリ電池に比較しても実用上全く遜色のない
優れた耐食性及び強放電性能を併せ持つ亜鉛アルカリ電
池を提供できる。また、本発明に係る亜鉛アルカリ電池
は、水銀を全く含んでいないため、その電池寿命が尽き
た後にあっても、水銀公害を全く発生させることがな
く、また汞化亜鉛負極を使用した従来電池に比較して電
池各成分の回収・再利用が容易であるという効果を奏す
る。これによって、本発明は、環境保全の側面及び資源
リサイクルの側面において、極めて重要な効果を奏する
ものである。
As described above, according to the present invention, there is no use of mercury and excellent corrosion resistance which is practically comparable to that of a conventional zinc-alkali battery using a zinc-aluminized anode. And a zinc alkaline battery having both strong discharge performance. Further, since the zinc alkaline battery according to the present invention does not contain any mercury, it does not cause any mercury pollution even after its battery life has expired, and a conventional battery using a zinc-aluminized anode. As a result, it is possible to easily collect and reuse each component of the battery. As a result, the present invention has extremely important effects in aspects of environmental conservation and resource recycling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例に用いた電池の断面図である。FIG. 1 is a sectional view of a battery used in Examples of the present invention.

【図2】インジウム被覆亜鉛合金粉末の嵩比重と電池内
ガス量との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a bulk specific gravity of an indium-coated zinc alloy powder and a gas amount in a battery.

【図3】インジウム被覆亜鉛合金粉末の嵩比重と電池放
電持続時間との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between bulk specific gravity of indium-coated zinc alloy powder and battery discharge duration.

【図4】インジウム被覆亜鉛合金粉末のインジウム被覆
量と電池内ガス量との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between an indium coating amount of an indium-coated zinc alloy powder and a gas amount in a battery.

【図5】インジウム被覆亜鉛合金粉末のビスマス含有量
と電池内ガス量との関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a bismuth content of an indium-coated zinc alloy powder and a gas amount in a battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢野 睦 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (72)発明者 赤井 泰夫 守口市京阪本通2丁目18番地 三洋エク セル株式会社内 (56)参考文献 特開 平4−366549(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/42 B22F 1/02 H01M 4/06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor, Mutsumi Yano 2--18 Keihanhondori, Moriguchi-shi, Sanyo Electric Co., Ltd. (72) Inventor Yasuo Akai 2--18 Keihanhondori, Moriguchi-shi, Sanyo Excel Co., Ltd. (56) References JP-A-4-366549 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/42 B22F 1/02 H01M 4/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ビスマスを含有した亜鉛合金粉末の表面に
インジウムが添加被覆されてあり、 且つ、嵩比重が2.30〜2.90g/ccであるインジ
ウム被覆亜鉛合金粉末からなる負極活物質を62〜75
wt%を除く範囲含有してなるゲル状負極を備えている
ことを特徴とする亜鉛アルカリ電池。
1. A negative electrode active material comprising an indium-coated zinc alloy powder having a surface area of bismuth-containing zinc alloy powder coated with indium and having a bulk specific gravity of 2.30 to 2.90 g / cc. 62-75
A gel negative electrode containing a range excluding wt% is provided.
A zinc alkaline battery characterized by that:
【請求項2】 前記ビスマスの含有量が0.005〜
0.05重量%、インジウムの被覆量が0.05〜0.8
0重量%であることを特徴とする請求項1に記載の亜鉛
アルカリ電池。
2. The bismuth content is 0.005 to 0.005.
0.05% by weight, indium coverage 0.05-0.8
The zinc alkaline battery according to claim 1, wherein the content is 0% by weight.
JP18803992A 1992-07-15 1992-07-15 Zinc alkaline battery Expired - Fee Related JP3286346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18803992A JP3286346B2 (en) 1992-07-15 1992-07-15 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18803992A JP3286346B2 (en) 1992-07-15 1992-07-15 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPH0636765A JPH0636765A (en) 1994-02-10
JP3286346B2 true JP3286346B2 (en) 2002-05-27

Family

ID=16216607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18803992A Expired - Fee Related JP3286346B2 (en) 1992-07-15 1992-07-15 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JP3286346B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284410B1 (en) * 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form
JP4292431B2 (en) * 1998-10-06 2009-07-08 東芝電池株式会社 Cylindrical alkaline battery
JP5114763B2 (en) * 2004-06-23 2013-01-09 Dowaエレクトロニクス株式会社 Zinc alloy powder for alkaline batteries and method for producing the same
WO2015149335A1 (en) * 2014-04-03 2015-10-08 清华大学深圳研究生院 Zinc ion rechargeable battery and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0636765A (en) 1994-02-10

Similar Documents

Publication Publication Date Title
JP4319253B2 (en) Electrochemical battery zinc anode
EP0172255B1 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP3215448B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JP3286346B2 (en) Zinc alkaline battery
JP2003017077A (en) Sealed alkaline zinc primary battery
JPH0222984B2 (en)
US5296267A (en) Process for preparing non-amalgamated zinc alloy powder for alkali dry cells
JPS60202666A (en) Paste type cadmium anode plate for alkaline storage battery
JP3198891B2 (en) Positive electrode for alkaline storage battery
JP3187862B2 (en) Zinc alkaline battery
JP3219418B2 (en) Zinc alkaline battery
JPH0317181B2 (en)
JPS62123653A (en) Zinc-alkaline battery
JP3163006B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JPH05299075A (en) Zinc alkaline battery
JPS6158164A (en) Zinc alloy powder for negative electrode of nonmercury alkaline battery and its manufacture
JPH0620688A (en) Zinc alkaline battery
JPH06318456A (en) Manufacture of non-amalgamated negative electrode zinc alloy powder for alkaline battery
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JPH04296451A (en) Alkaline battery
JP2003229135A (en) Aluminum battery
JP3155202B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JPH03230476A (en) Negative electrode active material for alkaline battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees