[go: up one dir, main page]

JP3270695B2 - Method for producing vanadyl naphthalocyanine compound - Google Patents

Method for producing vanadyl naphthalocyanine compound

Info

Publication number
JP3270695B2
JP3270695B2 JP32162996A JP32162996A JP3270695B2 JP 3270695 B2 JP3270695 B2 JP 3270695B2 JP 32162996 A JP32162996 A JP 32162996A JP 32162996 A JP32162996 A JP 32162996A JP 3270695 B2 JP3270695 B2 JP 3270695B2
Authority
JP
Japan
Prior art keywords
group
compound
producing
vanadyl
naphthalocyanine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32162996A
Other languages
Japanese (ja)
Other versions
JPH10158533A (en
Inventor
順一 谷口
繁雄 藤田
洋二郎 熊谷
▲頼▼明 松▲崎▼
龍 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Chemicals Inc
Mitsui Chemicals Inc
Original Assignee
Yamamoto Chemicals Inc
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Chemicals Inc, Mitsui Chemicals Inc filed Critical Yamamoto Chemicals Inc
Priority to JP32162996A priority Critical patent/JP3270695B2/en
Publication of JPH10158533A publication Critical patent/JPH10158533A/en
Application granted granted Critical
Publication of JP3270695B2 publication Critical patent/JP3270695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はバナジルナフタロシ
アニン化合物の製造方法に関し、詳しくは近赤外線吸収
剤、情報記録材料、有機光導電体、色素等として有用な
バナジルナフタロシアニン化合物を高収率、高純度で製
造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a vanadyl naphthalocyanine compound, and more particularly, to a vanadyl naphthalocyanine compound useful as a near-infrared absorbing agent, an information recording material, an organic photoconductor, a dye, etc., in a high yield and a high yield. It relates to a method of producing with purity.

【0002】[0002]

【従来の技術】ナフタロシアニン化合物の製造方法とし
てはWyler法が良く知られている。Wyler法は2,3−ナ
フタレンジカルボン酸化合物又はその無水物と金属又は
金属誘導体とを触媒、例えばモリブデン酸アンモニウム
の存在下、尿素中で溶融反応させるというものである。
この際、反応溶媒として、例えばトリクロロベンゼン、
ニトロベンゼン、クロロナフタレン、ポリエチレングリ
コール、キノリン、ベンゾニトリル等を用いる方法も知
られている。しかしながらこの方法では得られるナフタ
ロシアニン化合物の収率及び純度が低いという欠点があ
る。
2. Description of the Related Art As a method for producing a naphthalocyanine compound, the Wyler method is well known. In the Wyler method, a 2,3-naphthalenedicarboxylic acid compound or an anhydride thereof and a metal or a metal derivative are melt-reacted in urea in the presence of a catalyst such as ammonium molybdate.
At this time, as a reaction solvent, for example, trichlorobenzene,
Methods using nitrobenzene, chloronaphthalene, polyethylene glycol, quinoline, benzonitrile and the like are also known. However, this method has a disadvantage that the yield and purity of the obtained naphthalocyanine compound are low.

【0003】またナフタロシアニン化合物は有機溶剤に
対する溶解性が低いものも多く、そのようなものは溶剤
による精製が困難である。特に尿素中で溶融反応させる
場合は反応後、ナフタロシアニン化合物が固化するため
単離することが困難である。
[0003] Many naphthalocyanine compounds have low solubility in organic solvents, and such compounds are difficult to purify with a solvent. In particular, when the melt reaction is performed in urea, it is difficult to isolate the naphthalocyanine compound after the reaction because the compound solidifies.

【0004】特開昭63−159386号公報には、
2,3−ナフタレンジカルボン酸誘導体、金属ハロゲン
化物又は酸化物、および尿素をキノリンまたはクロロナ
フタレン溶媒中で反応させることによりナフタロシアニ
ン化合物を製造する方法が提案されている。しかし、こ
の方法によって得られるナフタロシアニン化合物も、収
率及び純度が未だ低い。
Japanese Patent Application Laid-Open No. 63-159386 discloses that
A method for producing a naphthalocyanine compound by reacting a 2,3-naphthalenedicarboxylic acid derivative, a metal halide or oxide, and urea in a quinoline or chloronaphthalene solvent has been proposed. However, the naphthalocyanine compound obtained by this method still has a low yield and purity.

【0005】また特開昭63−154767号公報に
は、2,3−ナフタレンジカルボン酸又は/及びその無
水物、金属又は/及びその化合物及び尿素を触媒の存在
下に反応させてアルミニウムナフタロシアニン等のナフ
タロシアニン化合物を製造するにあたり、1,3−ジメ
チル−2−イミダゾリジノンを用いる方法が提案されて
いる。
Japanese Unexamined Patent Publication (Kokai) No. 63-154767 discloses an aluminum naphthalocyanine or the like by reacting 2,3-naphthalenedicarboxylic acid or / and its anhydride, a metal or / and its compound and urea in the presence of a catalyst. A method using 1,3-dimethyl-2-imidazolidinone has been proposed for producing the naphthalocyanine compound.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は経済性
の高い原料を使用して、バナジルナフタロシアニン化合
物を高収率、高純度、経済的かつ簡便な操作法で製造す
る事である。
SUMMARY OF THE INVENTION An object of the present invention is to produce a vanadyl naphthalocyanine compound with high yield, high purity, economically and simply using a highly economical raw material.

【0007】[0007]

【課題を解決するための手段】前記した課題を解決する
ために種々検討した結果、本発明者等は2,3−ナフタ
レンジカルボン酸誘導体、バナジウム化合物、尿素を用
い、1,3−ジメチル−2−イミダゾリジノン(以下D
MIと表記)を反応溶媒として反応させることにより、
触媒の非存在下に、高収率、高純度でバナジルナフタロ
シアニン化合物を製造できることを見い出した。
As a result of various studies to solve the above problems, the present inventors have found that 2,3-naphthalenedicarboxylic acid derivatives, vanadium compounds and urea can be used to prepare 1,3-dimethyl-2. -Imidazolidinone (hereinafter D)
MI) as a reaction solvent,
It has been found that a vanadyl naphthalocyanine compound can be produced with high yield and high purity in the absence of a catalyst.

【0008】即ち本発明は下記一般式(I)で表わされ
るバナジルナフタロシニン化合物の製造方法に於いて、
下記一般式(II)〜(VI)で表わされる化合物から選ば
れる少なくとも一種の2,3−ナフタレンジカルボン酸
誘導体、バナジウム化合物、及び尿素を、触媒の非存在
下、DMIを用いて反応させることを特徴とする、一般
式(I)で表わされるバナジルナフタロシアニン化合物
の製造方法に関する。
That is, the present invention relates to a method for producing a vanadyl naphthalosinin compound represented by the following general formula (I):
Reacting at least one kind of a 2,3-naphthalenedicarboxylic acid derivative selected from compounds represented by the following general formulas (II) to (VI), a vanadium compound, and urea with DMI in the absence of a catalyst: The present invention relates to a method for producing a vanadyl naphthalocyanine compound represented by the general formula (I).

【0009】[0009]

【化3】 (式中、Rは各々個別にアルキル基、アルコキシ基、ア
ルキルチオ基、アリールチオ基、ジアルキルアミノ基、
ニトロ基、アニリノ基、メチルアニリノ基、N−フェニ
ル−N−メチルアミノ基を示し、nは0〜6の整数を示
す。)
Embedded image (Wherein, R is each independently an alkyl group, an alkoxy group, an alkylthio group, an arylthio group, a dialkylamino group,
It represents a nitro group, anilino group, methylanilino group, N-phenyl-N-methylamino group, and n represents an integer of 0 to 6. )

【0010】[0010]

【化4】 (式中、R及びnは一般式(I)におけるものと同じも
のを示す。)
Embedded image (In the formula, R and n are the same as those in the general formula (I).)

【0011】[0011]

【発明の実施の形態】本発明の製造方法に用いられる原
料である2,3−ナフタレンジカルボン酸誘導体として
は、下記一般式(II)で表わされる2,3−ナフタレン
ジカルボン酸化合物、下記一般式(III)で表わされる
無水2,3−ナフタレンジカルボン酸化合物、下記一般
式(IV)で表わされる2,3−ナフタレンジカルボン酸
イミド化合物、下記一般式(V)で表わされる2,3−
ナフタレンジカルボン酸ジアミド化合物、下記一般式
(VI)で表わされる2,3−ナフタレンジニトリル化合
物が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION As a raw material used in the production method of the present invention, a 2,3-naphthalenedicarboxylic acid derivative represented by the following general formula (II): 2,3-naphthalenedicarboxylic acid compound represented by (III), 2,3-naphthalenedicarboxylic acid imide compound represented by the following general formula (IV), 2,3-naphthalenedicarboxylic acid imide compound represented by the following general formula (V)
Examples include naphthalenedicarboxylic acid diamide compounds and 2,3-naphthalenedinitrile compounds represented by the following general formula (VI).

【0012】[0012]

【化5】 (式中、Rはアルキル基、アルコキシ基、アルキルチオ
基、アリールチオ基、ジアルキルアミノ基、ニトロ基、
アニリノ基、メチルアニリノ基、N−フェニル−N−メ
チルアミノ基を示し、nは0〜6の整数を示す。)
Embedded image (Wherein, R represents an alkyl group, an alkoxy group, an alkylthio group, an arylthio group, a dialkylamino group, a nitro group,
Anilino group, methylanilino group, N-phenyl-N-methylamino group is shown, and n shows the integer of 0-6. )

【0013】特に2,3−ナフタレンジカルボン酸誘導
体が上記一般式(II)または(III)であるものが経済
性の点から好ましい。又入手性の点からは、nが0〜2
のものが好ましい。
Particularly, the 2,3-naphthalenedicarboxylic acid derivative represented by the above general formula (II) or (III) is preferable from the viewpoint of economy. Also, from the viewpoint of availability, n is 0 to 2
Are preferred.

【0014】上記一般式(II)〜(VI)の2,3−ナフ
タレンジカルボン酸誘導体に於いて、置換基Rnが異な
る2種以上を用いて反応を行うことにより、一般式
(I)のバナジルナフタロシアニン化合物に於いて、1
分子内に異種の置換基が混在する化合物を製造すること
ができる。
[0014] In the 2,3-naphthalene dicarboxylic acid derivatives of the general formula (II) ~ (VI), by carrying out the reaction with two or more substituents R n are different, the general formula (I) In vanadyl naphthalocyanine compounds, 1
A compound in which different types of substituents are mixed in the molecule can be produced.

【0015】また2,3−ナフタレンジカルボン酸誘導
体は、一般式(II)〜(VI)の化合物のうちの2種以上
を同時に使用してもよい。
As the 2,3-naphthalenedicarboxylic acid derivative, two or more of the compounds represented by formulas (II) to (VI) may be used simultaneously.

【0016】上記一般式(II)〜(VI)において、Rが
アルキル基である場合は炭素数1〜15の直鎖又は分岐
アルキル基が好ましく、炭素数1〜8の直鎖又は分岐ア
ルキル基が特に好ましい。例としてメチル基、エチル
基、n−プロピル基、イソプロピル基、n−ブチル基、
イソブチル基、sec−ブチル基、tert−ブチル
基、n−ペンチル基、イソペンチル基、tert−ペン
チル基、n−ヘキシル基、イソヘキシル基、n−ヘプチ
ル基、イソヘプチル基、sec−ヘプチル基、n−オク
チル基、tert−オクチル基、2−エチルヘキシル
基、n−ドデシル基等が挙げられる。
In the above formulas (II) to (VI), when R is an alkyl group, it is preferably a straight-chain or branched alkyl group having 1 to 15 carbon atoms, and preferably a straight-chain or branched alkyl group having 1 to 8 carbon atoms. Is particularly preferred. Examples are methyl, ethyl, n-propyl, isopropyl, n-butyl,
Isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, n-hexyl group, isohexyl group, n-heptyl group, isoheptyl group, sec-heptyl group, n-octyl Group, tert-octyl group, 2-ethylhexyl group, n-dodecyl group and the like.

【0017】Rがアルコキシ基である場合は総炭素数1
〜15の直鎖、分岐又は環状アルコキシ基が好ましく、
特に総炭素数1〜8の直鎖、分岐又は環状アルコキシ基
が好ましい。例としてメトキシ基、エトキシ基、n−プ
ロポキシ基、イソプロポキシ基、n−ブトキシ基、イソ
ブトキシ基、sec−ブトキシ基、tert−ブトキシ
基、n−ペンチルオキシ基、イソペンチルオキシ基、n
−ヘキシルオキシ基、シクロヘキシルオキシ基、n−ヘ
プチルオキシ基、イソヘプチルオキシ基、sec−ヘプ
チルオキシ基、n−オクチルオキシ基、2−エチルヘキ
シルオキシ基、メトキシエトキシ基、メトキシプロポキ
シ基、メトキシブトキシ基、エトキシエトキシ基、エト
キシプロポキシ基、エトキシブトキシ基、n−プロポキ
シエトキシ基、イソプロポキシエトキシ基、(2−メト
キシエトキシ)メトキシ基、(2−エトキシエトキシ)
メトキシ基、2−(2−メトキシエトキシ)エトキシ
基、2−(1−メトキシエトキシ)エトキシ基、2−
(2−エトキシエトキシ)エトキシ基、2−(プロポキ
シエトキシ)エトキシ基、3−(2−メトキシエトキ
シ)プロポキシ基、3−(2−エトキシエトキシ)プロ
ポキシ基、2−メチルチオエトキシ基、2−エチルチオ
エトキシ基、2−ジメチルアミノエトキシ基等が挙げら
れる。
When R is an alkoxy group, the total number of carbon atoms is 1
~ 15 linear, branched or cyclic alkoxy groups are preferred,
Particularly, a linear, branched or cyclic alkoxy group having 1 to 8 carbon atoms is preferred. Examples are methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, n-pentyloxy, isopentyloxy, n
-Hexyloxy group, cyclohexyloxy group, n-heptyloxy group, isoheptyloxy group, sec-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, methoxyethoxy group, methoxypropoxy group, methoxybutoxy group, Ethoxyethoxy group, ethoxypropoxy group, ethoxybutoxy group, n-propoxyethoxy group, isopropoxyethoxy group, (2-methoxyethoxy) methoxy group, (2-ethoxyethoxy)
Methoxy group, 2- (2-methoxyethoxy) ethoxy group, 2- (1-methoxyethoxy) ethoxy group, 2-
(2-ethoxyethoxy) ethoxy group, 2- (propoxyethoxy) ethoxy group, 3- (2-methoxyethoxy) propoxy group, 3- (2-ethoxyethoxy) propoxy group, 2-methylthioethoxy group, 2-ethylthio An ethoxy group, a 2-dimethylaminoethoxy group and the like can be mentioned.

【0018】Rがアルキルチオ基である場合は総炭素数
1〜15の直鎖、分岐又は環状アルキルチオ基が好まし
く、総炭素数1〜8の直鎖、分岐又は環状アルキルチオ
基が特に好ましい。例としてメチルチオ基、エチルチオ
基、n−プロピルチオ基、イソプロピルチオ基、n−ブ
チルチオ基、sec−ブチルチオ基、tert−ブチル
チオ基、n−ペンチルチオ基、イソペンチルチオ基、n
−ヘキシルチオ基、シクロヘキシルチオ基、n−オクチ
ルチオ基等が挙げられる。
When R is an alkylthio group, a straight-chain, branched or cyclic alkylthio group having a total of 1 to 15 carbon atoms is preferred, and a straight-chain, branched or cyclic alkylthio group having a total of 1 to 8 carbon atoms is particularly preferred. Examples include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, sec-butylthio, tert-butylthio, n-pentylthio, isopentylthio, n
-Hexylthio group, cyclohexylthio group, n-octylthio group and the like.

【0019】Rがアリールチオ基である場合はフェニル
チオ基、p−メチルフェニルチオ基、p−tert−ブ
チルフェニルチオ基、ナフチルチオ基等が挙げられる。
When R is an arylthio group, examples thereof include a phenylthio group, a p-methylphenylthio group, a p-tert-butylphenylthio group and a naphthylthio group.

【0020】Rがジアルキルアミノ基である場合のアル
キル基は炭素数1〜12の直鎖、分岐又は環状アルキル
基が好ましく、炭素数1〜8の直鎖、分岐又は環状アル
キル基が特に好ましい。例としてジメチルアミノ基、ジ
エチルアミノ基、ジ−n−プロピルアミノ基、ジイソプ
ロピルアミノ基、ジ−n−ブチルアミノ基、ジイソブチ
ルアミノ基、ジ−n−ペンチルアミノ基、ジ−n−ヘキ
シルアミノ基、ジ−n−ヘプチルアミノ基、ジ−n−オ
クチルアミノ基、N−エチル−N−メチルアミノ基、N
−イソプロピル−N−エチルアミノ基、N−sec−ブ
チル−N−エチルアミノ基、N−イソペンチル−N−エ
チルアミノ基、N−シクロヘキシル−N−メチルアミノ
基、N−sec−ヘプチル−N−エチルアミノ基、N−
(2−エチルヘキシル)−N−ブチルアミノ基等が挙げ
られる。
When R is a dialkylamino group, the alkyl group is preferably a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, particularly preferably a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms. Examples include dimethylamino, diethylamino, di-n-propylamino, diisopropylamino, di-n-butylamino, diisobutylamino, di-n-pentylamino, di-n-hexylamino, -N-heptylamino group, di-n-octylamino group, N-ethyl-N-methylamino group, N
-Isopropyl-N-ethylamino group, N-sec-butyl-N-ethylamino group, N-isopentyl-N-ethylamino group, N-cyclohexyl-N-methylamino group, N-sec-heptyl-N-ethyl Amino group, N-
(2-ethylhexyl) -N-butylamino group and the like.

【0021】その他の好ましいRの具体例としては、ニ
トロ基、アニリノ基、メチルアニリノ基、N−フェニル
−N−メチルアミノ基等も挙げられる。
Other specific examples of preferred R include nitro, anilino, methylanilino, N-phenyl-N-methylamino and the like.

【0022】本発明は溶媒としてDMIを用いる。DM
Iの使用量は前記一般式(II)〜(VI)で表わされる
2,3−ナフタレンジカルボン酸誘導体に対し1〜10
0倍重量、好ましくは2〜50倍重量である。
In the present invention, DMI is used as a solvent. DM
I is used in an amount of 1 to 10 with respect to the 2,3-naphthalenedicarboxylic acid derivative represented by the general formulas (II) to (VI).
The weight is 0 times, preferably 2 to 50 times the weight.

【0023】本発明に用いられるバナジウム化合物はV
Cl3、VOCl3、(CH3COCH=C(CH3)O)2
VO(バナジル(II)アセチルアセトネート)が好まし
い。
The vanadium compound used in the present invention is V
Cl 3 , VOCl 3 , (CH 3 COCH = C (CH 3 ) O) 2
VO (vanadyl (II) acetylacetonate) is preferred.

【0024】バナジウム化合物の使用量は前記一般式
(II)〜(VI)で表わされる2,3−ナフタレンジカル
ボン酸誘導体の0.2〜0.6倍モル、好ましくは0.
25〜0.4倍モルである。
The amount of the vanadium compound used is 0.2 to 0.6 times, preferably 0.1 to 2.0 times the molar amount of the 2,3-naphthalenedicarboxylic acid derivative represented by the above general formulas (II) to (VI).
It is 25 to 0.4 times mol.

【0025】本発明に用いられる尿素の量は前記一般式
(II)〜(VI)で表わされる2,3−ナフタレンジカル
ボン酸誘導体に対して1〜100倍重量、好ましくは1
〜50倍重量である。
The amount of urea used in the present invention is 1 to 100 times, preferably 1 to 100 times the weight of the 2,3-naphthalenedicarboxylic acid derivative represented by the above general formulas (II) to (VI).
5050 times the weight.

【0026】反応温度は80〜300℃、好ましくは1
00〜250℃である。反応温度が80℃より低い場
合、反応速度が極端に遅く、300℃より高い場合は生
成したバナジルナフタロシアニン化合物の分解が促進さ
れる。
The reaction temperature is 80 to 300 ° C., preferably 1 to
00-250 ° C. When the reaction temperature is lower than 80 ° C., the reaction rate is extremely slow. When the reaction temperature is higher than 300 ° C., decomposition of the formed vanadyl naphthalocyanine compound is accelerated.

【0027】反応時間は1〜25時間、好ましく2〜1
5時間である。
The reaction time is 1 to 25 hours, preferably 2 to 1 hour.
5 hours.

【0028】反応後、冷却して50〜150℃にて反応
物をそのまま濾取するか、又はメタノール、エタノー
ル、イソプロピルアルコール、ジメチルホルムアミド、
ジメチルアセトアミド、ジメチルスルホキシド、N−メ
チルピロリドン等の溶媒で希釈分散後、濾取し、必要に
応じ上記希釈溶媒にて更に洗浄して目的のバナジルナフ
タロシアニン化合物を得ることができる。
After the reaction, the reaction product is cooled and filtered at 50 to 150 ° C. as it is, or methanol, ethanol, isopropyl alcohol, dimethylformamide,
After diluting and dispersing with a solvent such as dimethylacetamide, dimethylsulfoxide, or N-methylpyrrolidone, the resultant is collected by filtration and, if necessary, further washed with the above diluting solvent to obtain a desired vanadyl naphthalocyanine compound.

【0029】本発明の製造方法により得られるバナジル
ナフタロシアニン化合物は十分な純度を有するが、用途
により、更に高い純度を要求される分野に対しては、昇
華法、又は有機溶剤に溶解性を有するバナジルナフタロ
シアニン化合物については再結晶又はカラムクロマトグ
ラフィーにより更に精製してもよい。
Although the vanadyl naphthalocyanine compound obtained by the production method of the present invention has a sufficient purity, it is soluble in an organic solvent by a sublimation method or an organic solvent in a field where higher purity is required depending on the use. The vanadyl naphthalocyanine compound may be further purified by recrystallization or column chromatography.

【0030】本発明の製造方法によれば、高価な触媒を
使用する必要がないため、製造コストが低減され、また
生成物からの触媒の濾過除去操作が不要である。
According to the production method of the present invention, since there is no need to use an expensive catalyst, the production cost is reduced, and the operation of removing the catalyst from the product by filtration is not required.

【0031】得られたバナジルナフタロシアニン化合物
は近赤外吸収フィルター、熱線遮断フィルム、保護眼
鏡、情報記録材料、有機光導電体などの用途に対し十分
な純度を有し、収率も高いため、本発明の製造方法は極
めて有用な製造方法である。
The obtained vanadyl naphthalocyanine compound has a sufficient purity and a high yield for applications such as near-infrared absorption filters, heat-shielding films, protective glasses, information recording materials, and organic photoconductors. The production method of the present invention is a very useful production method.

【0032】[0032]

【実施例】以下に、実施例により本発明を具体的に説明
するが、本発明は実施例に限定されるものではない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to the examples.

【0033】[実施例1] バナジルナフタロシアニン
の合成 窒素気流下、2,3−ナフタレンジカルボン酸無水物6
g、尿素7.2g、DMI20g及びオキシ塩化バナジ
ウム1.3gを210〜215℃にて10時間攪拌し
た。100℃に冷却して濾過し、濾取物をメタノールで
十分洗浄し乾燥して暗緑色粉末4.6gを得た。下記分
析結果より目的物であることを確認した。なお本実施例
及び以下の実施例において、金属の確認には原子吸光法
を用いた。
Example 1 Synthesis of vanadyl naphthalocyanine 2,3-naphthalenedicarboxylic anhydride 6 under a nitrogen stream
g, 7.2 g of urea, 20 g of DMI and 1.3 g of vanadium oxychloride were stirred at 210 to 215 ° C. for 10 hours. The mixture was cooled to 100 ° C. and filtered, and the collected matter was sufficiently washed with methanol and dried to obtain 4.6 g of a dark green powder. It was confirmed to be the target substance from the following analysis results. In this example and the following examples, metal was confirmed by the atomic absorption method.

【0034】[0034]

【表1】 このようにして得られた化合物の濃硫酸溶液は929n
mに極大吸収(図1に可視−近赤外吸収スペクトルを示
す)を示し、グラム吸光係数は1.1×105ml/
g.cmであった。
[Table 1] The thus obtained compound in a concentrated sulfuric acid solution was 929 n
m shows the maximum absorption (the visible-near infrared absorption spectrum is shown in FIG. 1), and the gram extinction coefficient is 1.1 × 10 5 ml /
g. cm.

【0035】[実施例2] バナジルナフタロシアニン
の合成 窒素気流下、2,3−ナフタレンジカルボン酸無水物6
g、尿素13.7g、DMI30g及びオキシ塩化バナ
ジウム1.73gを185〜190℃にて5時間攪拌し
た。100℃に冷却して濾過し、濾取物をメタノールで
十分洗浄し乾燥して暗緑色粉末4.7gを得た。下記分
析結果より目的物であることを確認した。
Example 2 Synthesis of vanadyl naphthalocyanine 2,3-naphthalenedicarboxylic anhydride 6 under a nitrogen stream
g, urea 13.7 g, DMI 30 g and vanadium oxychloride 1.73 g were stirred at 185 to 190 ° C. for 5 hours. The mixture was cooled to 100 ° C., filtered, and the collected matter was sufficiently washed with methanol and dried to obtain 4.7 g of a dark green powder. It was confirmed to be the target substance from the following analysis results.

【0036】[0036]

【表2】 このようにして得られた化合物の濃硫酸溶液は929n
mに極大吸収を示し、グラム吸光係数は1.0×105
ml/g.cmであった。
[Table 2] The thus obtained compound in a concentrated sulfuric acid solution was 929 n
m shows a maximum absorption, and the gram extinction coefficient is 1.0 × 10 5
ml / g. cm.

【0037】[実施例3] バナジルナフタロシアニン
の合成 実施例1における2,3−ナフタレンジカルボン酸無水
物6gの代わりに2,3−ナフタレンジカルボン酸イミ
ド6gを用いた以外は実施例1と同様にして暗緑色粉末
5.0gを得た。下記分析結果より目的物であることを
確認した。
Example 3 Synthesis of vanadyl naphthalocyanine In the same manner as in Example 1 except that 6 g of 2,3-naphthalenedicarboxylic acid imide was used instead of 6 g of 2,3-naphthalenedicarboxylic anhydride in Example 1. This gave 5.0 g of a dark green powder. It was confirmed to be the target substance from the following analysis results.

【0038】[0038]

【表3】 このようにして得られた化合物の濃硫酸溶液は929n
mに極大吸収を示し、グラム吸光係数は1.0×105
ml/g.cmであった。
[Table 3] The thus obtained compound in a concentrated sulfuric acid solution was 929 n
m shows a maximum absorption, and the gram extinction coefficient is 1.0 × 10 5
ml / g. cm.

【0039】[実施例4] テトラ−tert−ペンチ
ルバナジルナフタロシアニンの合成 実施例1における2,3−ナフタレンジカルボン酸無水
物6gの代わりに7−tert−ペンチル−2,3−ナ
フタレンジカルボン酸無水物8.1gを用いた以外は実
施例1と同様にして暗緑色粉末6.0gを得た。下記分
析結果より目的物であることを確認した。
Example 4 Synthesis of tetra-tert-pentylvanadyl naphthalocyanine Instead of 6 g of 2,3-naphthalenedicarboxylic anhydride in Example 1, 7-tert-pentyl-2,3-naphthalenedicarboxylic anhydride was used. 6.0 g of dark green powder was obtained in the same manner as in Example 1 except that 8.1 g was used. It was confirmed to be the target substance from the following analysis results.

【0040】[0040]

【表4】 このようにして得られた化合物のトルエン溶液は808
nmに極大吸収を示し、グラム吸光係数は1.9×10
5ml/g.cmであった。
[Table 4] The toluene solution of the compound thus obtained was 808.
It shows a maximum absorption in nm and a gram extinction coefficient of 1.9 × 10
5 ml / g. cm.

【0041】[比較例1] アルミニウムナフタロシア
ニンの合成 実施例1におけるオキシ塩化バナジウム1.3gの代わ
りに無水塩化アルミニウム1gを使用した以外は実施例
1と同様な操作を行って淡緑色粉末4.2gを得た。こ
のようにして得られた化合物のDMF溶液は775nm
に極大吸収を示したが、グラム吸光係数は4.8×10
2ml/g.cmであり、目的物を微量含有しているの
みであることが確認された。
Comparative Example 1 Synthesis of Aluminum Naphthalocyanine A pale green powder was obtained by performing the same operation as in Example 1 except that 1 g of anhydrous aluminum chloride was used instead of 1.3 g of vanadium oxychloride in Example 1. 2 g were obtained. The DMF solution of the compound thus obtained is 775 nm
Showed a maximum absorption, but the gram extinction coefficient was 4.8 × 10
2 ml / g. cm, and it was confirmed that it contained only a trace amount of the target substance.

【0042】[比較例2] 銅ナフタロシアニンの合成 実施例1におけるオキシ塩化バナジウム1.3gの代わ
りに塩化銅(I)0.74gを使用した以外は実施例1
と同様な操作を行って淡橙色粉末3.3gを得た。この
ようにして得られた化合物のDMF溶液は400nm〜
1100nmの範囲に極大吸収を示さず、目的物が得ら
れていないことが確認された。
Comparative Example 2 Synthesis of Copper Naphthalocyanine Example 1 was repeated except that 0.74 g of copper (I) chloride was used instead of 1.3 g of vanadium oxychloride in Example 1.
The same operation as described above was performed to obtain 3.3 g of a pale orange powder. The DMF solution of the compound thus obtained is 400 nm or more.
It showed no maximum absorption in the range of 1100 nm, and it was confirmed that the desired product was not obtained.

【0043】[比較例3] 亜鉛ナフタロシアニンの合
成 実施例1におけるオキシ塩化バナジウム1.3gの代わ
りに硫酸亜鉛1.2gを使用した以外は実施例1と同様
な操作を行って緑色粉末3.2gを得た。このようにし
て得られた化合物のDMF溶液は760nmに極大吸収
(図2に可視−近赤外吸収スペクトルを示す)を示した
が、グラム吸光係数は2.2×103ml/g.cmで
あり、目的物を微量含有しているのみであることが確認
された。
Comparative Example 3 Synthesis of Zinc Naphthalocyanine A green powder was prepared in the same manner as in Example 1 except that 1.2 g of zinc sulfate was used instead of 1.3 g of vanadium oxychloride in Example 1. 2 g were obtained. The DMF solution of the compound thus obtained showed a maximum absorption at 760 nm (the visible-near infrared absorption spectrum is shown in FIG. 2), but the gram extinction coefficient was 2.2 × 10 3 ml / g. cm, and it was confirmed that it contained only a trace amount of the target substance.

【0044】[比較例4] チタニルナフタロシアニン
の合成 実施例1におけるオキシ塩化バナジウム1.3gの代わ
りにチタニウムn−ブトキシド2.6gを使用した以外
は実施例1と同様な操作を行って淡緑色粉末2.7gを
得た。このようにして得られた化合物のDMF溶液は、
400nm〜1100nmの範囲に極大吸収を示さず、
目的物が得られていないことが確認された。
Comparative Example 4 Synthesis of titanyl naphthalocyanine Light green color was obtained in the same manner as in Example 1, except that 1.3 g of vanadium oxychloride in Example 1 was replaced with 2.6 g of titanium n-butoxide. 2.7 g of a powder were obtained. The DMF solution of the compound thus obtained is
Does not show a maximum absorption in the range of 400 nm to 1100 nm,
It was confirmed that the desired product was not obtained.

【0045】[比較例5] バナジルナフタロシアニン
の合成 実施例1におけるDMI20gの代わりにキノリン20
gを用いた以外は実施例1と同様にして暗緑色粉末2.
2gを得た。
Comparative Example 5 Synthesis of Vanadyl Naphthalocyanine Quinoline 20 was used instead of DMI 20 g in Example 1.
g of dark green powder except that g was used.
2 g were obtained.

【0046】このようにして得られた化合物の濃硫酸溶
液は929nmに極大吸収を示し、グラム吸光係数は
2.6×104ml/g.cmであった。各実施例及び
比較例で得られた生成物の収量及び溶液中でのグラム吸
光係数を下記表−1にまとめる。
The concentrated sulfuric acid solution of the compound thus obtained shows a maximum absorption at 929 nm and a gram extinction coefficient of 2.6 × 10 4 ml / g. cm. The yields of the products obtained in the respective Examples and Comparative Examples and the gram extinction coefficients in the solutions are summarized in Table 1 below.

【0047】[0047]

【表5】 [Table 5]

【0048】表−1に示されるように、金属化合物とし
てバナジウム化合物を用い(即ちバナジルナフタロシア
ニン化合物を製造する場合にのみ)、且つ溶媒としてD
MIを使用した場合にのみ、触媒の非存在下に、目的物
が高純度、高収率で得られた。
As shown in Table 1, a vanadium compound was used as a metal compound (that is, only when a vanadyl naphthalocyanine compound was produced), and D was used as a solvent.
Only when MI was used, the target product was obtained in high purity and high yield in the absence of a catalyst.

【0049】[0049]

【発明の効果】本発明の方法により、バナジルナフタロ
シアニン化合物を、高収率、高純度、経済的かつ簡便な
操作法で製造することができた。
According to the method of the present invention, a vanadyl naphthalocyanine compound can be produced with high yield, high purity, economically and simply.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に於いて得られたナフタロシアニン化
合物の濃硫酸溶液の可視−近赤外吸収スペクトルであ
る。
FIG. 1 is a visible-near infrared absorption spectrum of a concentrated sulfuric acid solution of a naphthalocyanine compound obtained in Example 1.

【図2】比較例3に於いて得られたナフタロシアニン化
合物のDMF溶液の可視−近赤外吸収スペクトルであ
る。
FIG. 2 is a visible-near infrared absorption spectrum of a DMF solution of a naphthalocyanine compound obtained in Comparative Example 3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊谷 洋二郎 大阪府八尾市弓削町南1丁目43番地 山 本化成株式会社内 (72)発明者 松▲崎▼ ▲頼▼明 神奈川県横浜市栄区笠間町1190番地 三 井東圧化学株式会社内 (72)発明者 大井 龍 神奈川県横浜市栄区笠間町1190番地 三 井東圧化学株式会社内 (56)参考文献 特開 平9−48926(JP,A) 特開 平8−311359(JP,A) 特開 昭63−159386(JP,A) 特開 昭63−154767(JP,A) 特開 昭61−215663(JP,A) 特開 昭60−23451(JP,A) 特開 平1−287175(JP,A) 特開 昭61−186384(JP,A) 特開 昭63−113076(JP,A) 特開 平8−225752(JP,A) (58)調査した分野(Int.Cl.7,DB名) C09B 47/04 CA(STN)──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yojiro Kumagai 1-43, Yugecho Minami, Yao-shi, Osaka Yamamoto Kasei Co., Ltd. (72) Inventor Matsu ▲ saki ▼ 1190 No. Mitsui Toatsu Chemical Co., Ltd. (72) Ryu Oi 1190 No. Mitsui Toatsu Chemical Co., Ltd., Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture (56) References JP-A-9-48926 (JP, A) JP-A-8-311359 (JP, A) JP-A-63-159386 (JP, A) JP-A-63-154767 (JP, A) JP-A-61-215663 (JP, A) JP-A-60-23451 (JP, A) JP-A-1-287175 (JP, A) JP-A-61-186384 (JP, A) JP-A-63-113076 (JP, A) JP-A-8-2255752 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C09B 47/04 CA (ST N)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記一般式(I)で表わされるバナジル
ナフタロシニン化合物の製造方法において、下記一般式
(II)〜(VI)で表わされる化合物から選ばれる少なく
とも一種の2,3−ナフタレンジカルボン酸誘導体、バ
ナジウム化合物、及び尿素を、触媒の非存在下、1,3
−ジメチル−2−イミダゾリジノンを用いて反応させる
ことを特徴とする、一般式(I)で表わされるバナジル
ナフタロシアニン化合物の製造方法。 【化1】 (式中、Rは各々個別にアルキル基、アルコキシ基、ア
ルキルチオ基、アリールチオ基、ジアルキルアミノ基、
ニトロ基、アニリノ基、メチルアニリノ基、N−フェニ
ル−N−メチルアミノ基を示し、nは0〜6の整数を示
す。) 【化2】 (式中、R及びnは一般式(I)におけるものと同じも
のを示す。)
1. A method for producing a vanadyl naphthalosinin compound represented by the following general formula (I), wherein at least one kind of 2,3-naphthalenedicarboxylic acid selected from the compounds represented by the following general formulas (II) to (VI): The acid derivative, vanadium compound, and urea were converted to 1,3 in the absence of a catalyst.
A method for producing a vanadyl naphthalocyanine compound represented by the general formula (I), wherein the reaction is carried out using dimethyl-2-imidazolidinone. Embedded image (Wherein, R is each independently an alkyl group, an alkoxy group, an alkylthio group, an arylthio group, a dialkylamino group,
It represents a nitro group, anilino group, methylanilino group, N-phenyl-N-methylamino group, and n represents an integer of 0 to 6. ) (In the formula, R and n are the same as those in the general formula (I).)
【請求項2】 反応を水素気流下に行う請求項1のバナ
ジルナフタロシアニン化合物の製造方法。
2. The method for producing a vanadyl naphthalocyanine compound according to claim 1, wherein the reaction is carried out in a hydrogen stream.
【請求項3】 バナジウム化合物がVCl3、VOC
3、(CH3COCH=C(CH3)O)2VOである、
請求項1または2のバナジルナフタロシアニン化合物の
製造方法。
3. The method according to claim 1, wherein the vanadium compound is VCl 3 or VOC.
l 3 , (CH 3 COCH = C (CH 3 ) O) 2 VO;
A method for producing a vanadyl naphthalocyanine compound according to claim 1 or 2.
【請求項4】 2,3−ナフタレンジカルボン酸誘導体
が一般式(II)及び(III)から選ばれる少なくとも1
種である、請求項1乃至3のいずれか1項のバナジルナ
フタロシアニン化合物の製造方法。
4. The method according to claim 1, wherein the 2,3-naphthalenedicarboxylic acid derivative is at least one selected from the general formulas (II) and (III):
The method for producing a vanadyl naphthalocyanine compound according to any one of claims 1 to 3, which is a seed.
JP32162996A 1996-12-02 1996-12-02 Method for producing vanadyl naphthalocyanine compound Expired - Lifetime JP3270695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32162996A JP3270695B2 (en) 1996-12-02 1996-12-02 Method for producing vanadyl naphthalocyanine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32162996A JP3270695B2 (en) 1996-12-02 1996-12-02 Method for producing vanadyl naphthalocyanine compound

Publications (2)

Publication Number Publication Date
JPH10158533A JPH10158533A (en) 1998-06-16
JP3270695B2 true JP3270695B2 (en) 2002-04-02

Family

ID=18134646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32162996A Expired - Lifetime JP3270695B2 (en) 1996-12-02 1996-12-02 Method for producing vanadyl naphthalocyanine compound

Country Status (1)

Country Link
JP (1) JP3270695B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104744505B (en) * 2015-02-13 2017-07-11 武汉弘跃医药科技有限公司 A kind of vanadyl class complex and its application

Also Published As

Publication number Publication date
JPH10158533A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
George et al. Synthesis of 3‐nitrophthalonitrile and tetra‐α‐substituted phthalocyanines
Dinçer et al. A novel route to 4-chloro-5-alkyl-phthalonitrile and phthalocyanines derived from it
JPH07188178A (en) Production of perylene-3,4-dicarboxylic acid derivative, derivative produced thereby, and its use
EP0492508B1 (en) Method for preparing alkoxyphthalocyanine
Yao et al. A Convenient Synthetic Method for Pure Oxo (phthalocyaninato) titanium (IV) and Application to Other Metal Phthalocyanines.
US20090018328A1 (en) Phthalocyanine compound and method for producing the same, and coloring composition containing the phthalocyanine compound
Kandaz et al. Metal ion sensing multi-functional differently octasubstituted ionophore chiral metallophthalocyanines: Synthesis, characterization, spectroscopy, and electrochemistry
Dinçer et al. Tuning of phthalocyanine absorption ranges by additional substituents
JP4962812B2 (en) Phthalocyanine compound and method for producing the same, and coloring composition containing the phthalocyanine compound
JP3270695B2 (en) Method for producing vanadyl naphthalocyanine compound
Dinçer et al. The synthesis and spectral properties of novel phthalocyanines with pendant bulky units
Akdemir et al. Synthesis and properties of 1, 4-bis [N-(2-tolylsulphonylaminoethyl)]-1, 4-diazacyclohexane bridged network polymeric phthalocyanines
Şaşmaz et al. Synthesis and characterization of phthalocyanines containing phenothiazine moieties
JP4751644B2 (en) Method for producing tetraazaporphyrin compound
JP3287129B2 (en) Phthalocyanine compound, intermediate thereof, method for producing the compound, and near-infrared absorbing material containing the same
JPH1088017A (en) Method for producing naphthalocyanine compound
Bajji et al. Synthesis of indeno [2, 1‐b][1, 4] benzothiazine derivatives from 2‐bromoinden‐1‐ones
RU2188200C2 (en) β, β, β′, β′-TETRAMETHYLTRIARENOTETRAAZACHLORINES AND METHODS OF THEIR SYNTHESIS
JPS61215662A (en) Naphthalocyanine compound
JPH06172361A (en) Phthalocyanine compound
Ağar et al. Synthesis and characterization of novel phthalocyanines containing four 15-membered oxadithiadiaza mixed-donor macrocycles
JPH07103317B2 (en) Azaannulene compound
Al-Sammerrai et al. Synthesis of some 7-substituted 9, 10-dimethyldibenz [b, e] indolizine-8, 11-diones
JPH0435515B2 (en)
JPH0796540B2 (en) Phthalocyanine compound and its intermediate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term