JP3267873B2 - In situ reduction of soluble and insoluble heavy metals and organohalogen compounds by pneumatic fracturing with iron powder injection to purify contaminated soil and groundwater - Google Patents
In situ reduction of soluble and insoluble heavy metals and organohalogen compounds by pneumatic fracturing with iron powder injection to purify contaminated soil and groundwaterInfo
- Publication number
- JP3267873B2 JP3267873B2 JP24887296A JP24887296A JP3267873B2 JP 3267873 B2 JP3267873 B2 JP 3267873B2 JP 24887296 A JP24887296 A JP 24887296A JP 24887296 A JP24887296 A JP 24887296A JP 3267873 B2 JP3267873 B2 JP 3267873B2
- Authority
- JP
- Japan
- Prior art keywords
- iron powder
- groundwater
- soil
- contaminated
- heavy metals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 67
- 239000002689 soil Substances 0.000 title claims description 36
- 239000003673 groundwater Substances 0.000 title claims description 33
- 229910001385 heavy metal Inorganic materials 0.000 title claims description 32
- 150000002896 organic halogen compounds Chemical class 0.000 title description 16
- 238000011065 in-situ storage Methods 0.000 title description 2
- 238000002347 injection Methods 0.000 title 1
- 239000007924 injection Substances 0.000 title 1
- 238000000034 method Methods 0.000 claims description 41
- 239000006185 dispersion Substances 0.000 claims description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 238000007664 blowing Methods 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 238000005553 drilling Methods 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000003344 environmental pollutant Substances 0.000 description 7
- 231100000719 pollutant Toxicity 0.000 description 7
- 239000000356 contaminant Substances 0.000 description 5
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 229950011008 tetrachloroethylene Drugs 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 238000006065 biodegradation reaction Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 2
- 150000001447 alkali salts Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 231100001240 inorganic pollutant Toxicity 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004045 organic chlorine compounds Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 102220115768 rs886039839 Human genes 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、汚染された土壌および
地下水の浄化方法に関し、更に詳しくは汚染された土壌
および地下水中にに含有される重金属および有機ハロゲ
ン化合物を鉄粉の作用により浄化することを目的とす
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying contaminated soil and groundwater, and more particularly to purifying heavy metals and organic halogen compounds contained in contaminated soil and groundwater by the action of iron powder. The purpose is to:
【0002】[0002]
【従来の技術】従来、重金属や有機ハロゲン化合物で汚
染された地下汚染源の処理方法としては、汚染土壌その
ものを固化あるいは不溶化処理して埋め立てを行う固化
安定化法や、熱処理を行って地下の汚染物質を気化さ
せ、生じたガスを除去することにより無害化する熱処理
法が一般的に実施されている。2. Description of the Related Art Conventionally, as a method for treating an underground pollution source contaminated with heavy metals or organic halogen compounds, a solidification stabilization method in which contaminated soil itself is solidified or insolubilized to reclaim it, or a heat treatment is performed to perform underground contamination. Generally, a heat treatment method of detoxifying a substance by vaporizing the substance and removing generated gas is generally performed.
【0003】その他特殊な処理方法として、汚染土壌を
分級して重金属を多く含有する細粒を水等で洗浄する洗
浄分級方法や、土壌中に生息するバクテリアを利用して
汚染物質を処理する生物処理方法も知られている。[0003] Other special treatment methods include a washing and classification method for classifying contaminated soil and washing fine particles containing a large amount of heavy metals with water or the like, and a biological method for treating contaminants using bacteria that inhabit the soil. Processing methods are also known.
【0004】以上のように、対象とする汚染物質の種類
や地質条件によってさまざまな処理方法があるが、これ
らの方法にはそれぞれ一長一短があった。As described above, there are various treatment methods depending on the type of pollutant to be treated and the geological conditions, and each of these methods has advantages and disadvantages.
【0005】上記、固定安定化法は、無機系の汚染物質
が対象であるが、埋立が長期間にわたると雨水の浸出作
用等によりその維持は困難となり、一方、熱処理法は有
機汚染物質への適用には適しているものの、特にアルカ
リ塩による汚染土壌の処理には不適である上、無機系の
重金属に対しても水銀等限られた種類のものにしか適用
できなかった。[0005] The above-mentioned fixed stabilization method is intended for inorganic pollutants, but if landfill is performed for a long period of time, it will be difficult to maintain it due to the leaching action of rainwater. Although suitable for application, it is particularly unsuitable for treating contaminated soil with alkali salts, and is applicable only to limited types of inorganic heavy metals such as mercury.
【0006】更に、洗浄分級方法も非揮発性物質等には
対応が可能であるが、汚染物質が深層におよんでいる場
合には土壌の掘り出しに採掘費がかかり不適当であり、
バクテリアによる生物処理法は、反応時間が長く、更に
単純構造の炭水化物に対してはその効果に限界があり、
無機物に対しては殆ど適用が不可能であった。[0006] Further, the washing and classification method can also deal with non-volatile substances and the like, but when pollutants extend to deep layers, mining costs are required for excavating the soil, which is unsuitable.
The biological treatment method using bacteria has a long reaction time and has a limited effect on carbohydrates having a simple structure.
Almost no application was possible for inorganic substances.
【0007】また、特願平7−93138のように、汚
染地下水の地下水面に達する深さまで掘削したピットの
底部に鉄粉層を形成し、汚染地下水を鉄粉層に通して浄
化させる方法もある。これは、安価な鉄粉を使って地下
水中の重金属と有機塩素化合物を一括除去できる有効な
方法であるが、適用範囲が地下水路のある場所に限定さ
れるので、汚染地域が広範囲にわたる場合や地下の水路
が複雑に分岐しているような場合には適しない。Further, as disclosed in Japanese Patent Application No. Hei 7-93138, a method of forming an iron powder layer at the bottom of a pit excavated to a depth reaching the groundwater level of contaminated groundwater and purifying the contaminated groundwater through the iron powder layer is proposed. is there. This is an effective method that can remove heavy metals and organochlorine compounds in groundwater at once using inexpensive iron powder.However, since the applicable range is limited to the place where the groundwater channel is located, it can be used in a wide range of contaminated areas. It is not suitable when the underground waterway is complicatedly branched.
【0008】また、上記土壌中の汚染物質は、時間の経
過と共に雨水等により地下水脈に混入し、井戸水等の水
資源を害することになるため、その対策として、汚染地
下水を揚水して重金属分を除去する方法や、揚水した地
下水を曝気しながら汚染物質を抽出する方法が知られて
いる。しかしこれらの方法には、揚水時の電力費や抽出
費等のコストがかかる上、地上に処理設備や建造物を設
置しなければならないという問題があった。[0008] In addition, the contaminants in the soil are mixed into the groundwater vein by rainwater or the like with the passage of time and harm water resources such as well water. There is known a method of removing contaminants and a method of extracting pollutants while aerating pumped ground water. However, these methods have problems that power costs and extraction costs at the time of pumping are required, and that processing facilities and buildings must be installed on the ground.
【0009】[0009]
【発明が解決しようとする課題】上記のように汚染土壌
を掘削し地上にて浄化する方法は、汚染源が狭い範囲で
あればコストを安く処理出来る方法であるが、長期にわ
たって広い範囲で汚染された場合には不都合な手法であ
る。As described above, the method of excavating contaminated soil and purifying it on the ground is a method that can be treated at low cost if the source of the contamination is narrow, but it can be contaminated in a wide range over a long period of time. This is an inconvenient method.
【0010】従って本発明は、汚染された土壌および地
下水を処理対象として、安価に且つ恒久的に重金属およ
び有機ハロゲン化合物を原位置で浄化できる新規な処理
法の提供を目的とする。[0010] Accordingly, an object of the present invention is to provide a novel treatment method capable of inexpensively and permanently purifying heavy metals and organic halogen compounds in situ by treating contaminated soil and groundwater.
【0011】[0011]
【課題を解決するための手段】本発明者等は斯かる課題
を解決するために鋭意研究したところ、地下水中に含有
される重金属および有機ハロゲン化合物の浄化に安価な
鉄分を利用できることを見い出し、本発明法を提供する
ことができた。Means for Solving the Problems The inventors of the present invention have made intensive studies to solve such problems, and found that inexpensive iron can be used for purifying heavy metals and organic halogen compounds contained in groundwater. The method of the present invention could be provided.
【0012】すなわち本発明法によれば、汚染土壌内に
ボーリングした後、ボーリング孔1に圧縮空気および鉄
粉を同時にまたは別々に吹き込むことによってボーリン
グ孔1に沿って鉄粉が圧入されたフラクチャー2を発生
させ、鉄粉分散層4を形成し、該鉄粉分散層4を上記汚
染土壌内を流れる地下水と接触させることによって、土
壌中のクロム、銅、ニッケル、カドミウム、鉛等の重金
属およびトリクロロエチレン、テトラクロロエチレン等
の有機ハロゲン化合物の少なくとも一種を無害な形にす
ることができる。That is, according to the method of the present invention, after boring into contaminated soil, the compressed air and the iron powder are blown into the boring hole 1 simultaneously or separately, so that the fracture 2 into which the iron powder is injected along the boring hole 1. And forming the iron powder dispersion layer 4 and bringing the iron powder dispersion layer 4 into contact with the groundwater flowing in the contaminated soil, whereby heavy metals such as chromium, copper, nickel, cadmium, and lead in the soil and trichloroethylene And at least one of organic halogen compounds such as tetrachloroethylene can be made into a harmless form.
【0013】[0013]
【作用】本発明によれば、地下内部に生じた鉄粉が圧入
されたフラクチャー2によって鉄粉分散層4を形成し、
該鉄粉分散層4を汚染地下水が浸透して通過する際に、
汚染物質(主として有機ハロゲン化合物および無機系重
金属)が鉄粉分散層4内で還元、吸着、置換等の反応を
受けて無害化される。According to the present invention, the iron powder dispersed layer 4 is formed by the fracture 2 into which the iron powder generated inside the underground is injected,
When the contaminated groundwater permeates and passes through the iron powder dispersion layer 4,
Pollutants (mainly organic halogen compounds and inorganic heavy metals) are rendered harmless by reactions such as reduction, adsorption, and substitution in the iron powder dispersion layer 4.
【0014】本発明は、米国特許5032042の権利
範囲に属し、米国ニュージャージー州キーポート、アキ
ュテック・リミーダル・システムズ社に実施許諾された
ニューマチック・フラクチャリング技術と、同和鉱業株
式会社の鉄粉技術とを組み合わせて開発された技術であ
る。The present invention belongs to the scope of the patent of US Pat. No. 5,032,042 and is licensed to Accutech Remidal Systems, Inc. of Keyport, NJ, U.S.A., as well as iron powder technology of Dowa Mining Co., Ltd. It is a technology developed by combining
【0015】米国特許5032042には、圧縮空気を
地下に圧入して汚染土壌層にフラクチャーを作り、有害
な液体汚染物質を蒸発させるかまたは生分解によって無
害な液体成分に変換する装置と方法が記載されている。
これに対して本発明の方法では、上記のように汚染成分
を鉄粉に接触・反応させるので、熱処理や生分解で対処
できなかった重金属を無害化することが可能になる。ま
た鉄粉を使用する前記の先行技術(特願平7−9313
8)では、既に述べたように適用範囲が地下水路のある
場合に限定されると言う課題があったが、本発明法で
は、ニューマチック・フラクチャリングによって任意の
場所に鉄粉分散層を形成できるので、汚染地域が広範囲
にわたる場合にも十分対処できる。このように本発明の
方法によって上記先行技術では対応できなかった汚染土
壌の浄化が可能になったのである。US Pat. No. 5,032,042 describes an apparatus and method for injecting compressed air underground to create a fracture in a contaminated soil layer and evaporate or convert harmful liquid pollutants to harmless liquid components by biodegradation. Have been.
On the other hand, in the method of the present invention, since the contaminant is brought into contact with and reacts with the iron powder as described above, it is possible to detoxify heavy metals that could not be dealt with by heat treatment or biodegradation. The above prior art using iron powder (Japanese Patent Application No. 7-9313)
In 8), as described above, there was a problem that the applicable range was limited to the case where there was a groundwater channel. However, in the method of the present invention, an iron powder dispersion layer was formed at an arbitrary location by pneumatic fracturing. Therefore, it can sufficiently deal with the case where the contaminated area is wide. Thus, the method of the present invention makes it possible to purify contaminated soil that could not be handled by the above prior art.
【0016】本発明の方法では、重金属と有機ハロゲン
化合物の移動性および非移動性の汚染源に鉄粉が圧入さ
れたフラクチャーを発生させ、鉄粉分散層を形成させ、
該鉄粉分散層と汚染土壌内を流れる地下水とを接触させ
る。鉄粉は、水分の存在下で、鉄より貴な可溶性移動性
重金属および有機ハロゲン化合物に直接接触して、また
電子媒介物としての土壌組成物を通して同様な非移動性
の重金属や有機ハロゲン化合物に接触して、次のような
望ましい還元反応を起こし、代表的な重金属イオン(C
r6+、Cu2+、Ni2+、Cd2+、Pb2+)および有機ハ
ロゲン化合物トリクロロエチレン(C2HCl3)を還元
するための電子を提供する。In the method of the present invention, a fracture in which iron powder is injected into a mobile or non-mobile pollutant of a heavy metal and an organic halogen compound is generated to form an iron powder dispersed layer,
The iron powder dispersion layer is brought into contact with the groundwater flowing in the contaminated soil. Iron powder, in the presence of moisture, comes into direct contact with soluble mobile heavy metals and organohalogens, which are nobler than iron, and to similar immobile heavy metals and organohalogens through soil compositions as electron mediators. When contacted, the following desired reduction reaction occurs, and a typical heavy metal ion (C
r 6+ , Cu 2+ , Ni 2+ , Cd 2+ , Pb 2+ ) and electrons for reducing the organohalogen trichloroethylene (C 2 HCl 3 ).
【0017】 Fe0 → 酸化 → Fe2+ + 2e (1) Fe2+ → 酸化 → Fe3+ + e (2) 2H2O+Fe0 → H2+2OH-+Fe2+ (3) Cr6++3Fe2+ → Cr3++3Fe3+ (4) Cu2++Fe0 → Cu0+Fe2+ (5) Ni2++Fe0 → Ni0+Fe2+ (6) Cd2++Fe0 → Cd0+Fe2+ (7) Pb2++Fe0 → Pb0+Fe2+ (8) C2HCl3+3H++3Fe0→C2H4+3Cl-+3Fe2+ (9) 上記重金属陽イオンを原子価ゼロの状態まで還元する
と、これらの重金属は無害、不溶性かつ非移動性にな
る。クロムおよび有機ハロゲン化合物は還元されて、か
なり毒性の低い生成物になる。例えば、米国の規則によ
れば、7.8%のCr3+で汚染された土壌は無害とみな
されているのに対し、15ppmのCr6+を含む土壌は
浄化処理を必要する。Fe 0 → oxidation → Fe 2+ + 2e (1) Fe 2+ → oxidation → Fe 3+ + e (2) 2H 2 O + Fe 0 → H 2 + 2OH − + Fe 2+ (3) Cr 6+ + 3Fe 2 + → Cr 3+ + 3Fe 3+ (4) Cu 2+ + Fe 0 → Cu 0 + Fe 2+ (5) Ni 2+ + Fe 0 → Ni 0 + Fe 2+ (6) Cd 2+ + Fe 0 → Cd 0 + Fe 2+ (7) Pb 2+ + Fe 0 → Pb 0 + Fe 2+ (8) C 2 HCl 3 + 3H + + 3Fe 0 → C 2 H 4 + 3Cl − + 3Fe 2+ (9) Reduction of the heavy metal cation to a state of zero valence These heavy metals then become harmless, insoluble and immobile. Chromium and organohalogen compounds are reduced to considerably less toxic products. For example, according to U.S. regulations, soil contaminated with 7.8% Cr3 + is considered harmless, while soil containing 15ppm Cr6 + requires purification.
【0018】前記ニューマチック・フラクチャリング技
術では、フラクチャーを作るために圧縮ガスが使用され
る。このフラクチャーは、ボーリング孔から基本的に水
平な面に沿って外側へ広がって、可溶性および不溶相の
重金属および有機ハロゲン化合物を含む汚染帯に入る。
図3にニューマチック・フラクチャリング法の概略断面
図を示した。必要なボーリング孔およびフラクチャーの
数は、これらの汚染帯の体積と深さによって決まる。In the pneumatic fracturing technique, a compressed gas is used to create a fracture. This fracture extends outwardly from the borehole along an essentially horizontal plane and enters a contaminated zone containing soluble and insoluble phases of heavy metals and organohalogen compounds.
FIG. 3 shows a schematic sectional view of the pneumatic fracturing method. The number of boreholes and fractures required depends on the volume and depth of these contaminated zones.
【0019】フラクチャーは、所定の粒度範囲とかさ密
度を有する鉄粉を圧縮ガスまたはスラリーを使って気圧
または水圧で注入する際の通路の役割をする。鉄粉を送
るのにどの方法を選ぶかは、既知量の可溶性および不溶
相重金属および有機ハロゲン化合物に直接または間接的
に到達するのに要する散布の量と距離によって決まる。The fracture serves as a passage for injecting iron powder having a predetermined particle size range and bulk density at a pressure or a water pressure using a compressed gas or a slurry. The method chosen to deliver the iron powder depends on the amount and distance of spraying required to reach, directly or indirectly, known amounts of soluble and insoluble heavy metals and organohalogen compounds.
【0020】可溶性および不溶相の典型的な重金属およ
び有機ハロゲン化合物を1kg還元するのに要する鉄粉
の最低量は、(4)式〜(9)式から従来の化学量論的
計算で推定できる。反応物が100%酸化および還元す
るとすれば、鉄粉の最低必要量は表1のようになる。The minimum amount of iron powder required to reduce 1 kg of typical heavy metals and organohalogen compounds in the soluble and insoluble phases can be estimated by conventional stoichiometric calculations from equations (4) to (9). . Assuming that the reactants are 100% oxidized and reduced, the minimum required amount of iron powder is as shown in Table 1.
【0021】しかし、汚染源の浄化に実際に必要な鉄粉
の量は、現場毎に決める必要がある。存在する重金属や
有機ハロゲン化合物のタイプ、量、分布および場所、土
壌のタイプ、通気率および透水係数について現場を特性
づけすることによって必要な情報が提供される。However, the amount of iron powder that is actually required for purifying the pollutant must be determined for each site. Characterizing the site about the type, amount, distribution and location of heavy metals and organohalogen compounds present, soil type, permeability and permeability provides the necessary information.
【0022】[0022]
【表1】 [Table 1]
【0023】尚、一般に地下水の移動速度は1〜1.5
m/日の速度であるとされ、本発明の処理対象である汚
染地下水も同程度の速度で移動すると判断されることか
ら、本発明法を実施する際に、地下水の移動速度を6c
m/Hrに設定し、施工現場は、図1に示すようにフラ
クチャー2内に鉄粉を充填してその中を汚染地下水が浸
透する構造とした。Generally, the moving speed of groundwater is 1 to 1.5.
m / day, and it is determined that the contaminated groundwater to be treated according to the present invention also moves at a similar speed.
m / Hr, and the construction site had a structure in which the fracture 2 was filled with iron powder as shown in FIG. 1 and contaminated groundwater penetrated therein.
【0024】以下、実施例をもって本発明を詳細に説明
するが、本発明はこれらに限定されるものではない。Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
【0025】[0025]
【実施例1】図2に示すようにA汚染土壌地にボーリン
グを行い、ボーリング孔1を掘り下げた。次いで地表面
7を封じて地下に圧縮空気を吹き込み、地盤の弱い部分
にフラクチャー2を発生させた。Example 1 As shown in FIG. 2, a boring was performed on a soil contaminated with A and a boring hole 1 was dug down. Next, the ground surface 7 was sealed and compressed air was blown into the underground to generate the fracture 2 in the weak part of the ground.
【0026】次いで図1の部分拡大図に示されるよう
に、地表面7を封じた鉄粉吹込口から圧縮空気を鉄粉と
共に吹き込み、先に得られたフラクチャー2にこれらの
鉄粉を吹き込んで鉄粉分散層4を形成し、該鉄粉分散層
4を透過した地下水6をボーリング孔1底部のピット部
3に受水する構造とした。Next, as shown in the partially enlarged view of FIG. 1, compressed air is blown together with the iron powder from the iron powder blowing port that seals the ground surface 7, and these iron powders are blown into the fracture 2 obtained earlier. The iron powder dispersion layer 4 was formed, and the underground water 6 permeating the iron powder dispersion layer 4 was received by the pit 3 at the bottom of the boring hole 1.
【0027】A汚染土壌の浸透水5をボーリング孔1掘
削時に分析したところ、pHは4.9であり、各重金属
の含有量は、Cr6+ 0.76mg/l、トータルCr
1.2mg/l、Ni 8.5mg/lであった。When the permeated water 5 of the A-contaminated soil was analyzed at the time of drilling the boring hole 1, the pH was 4.9, the content of each heavy metal was Cr 6+ 0.76 mg / l,
1.2 mg / l and Ni 8.5 mg / l.
【0028】該汚染浸透水5を6cm/Hrの速度でフ
ラクチャー2内の鉄粉分散層4中に透過させ、ボーリン
グ孔1底部のピット部3で受水した透過後の地下水6を
分析したところ、pHは6.0であり、各重金属の含有
量は、Cr6+ tr.、トータルCr tr.、Ni
0.1mg/lであり、重金属処理の効果は満足すべき
ものであった。The contaminated permeated water 5 was permeated into the iron powder dispersion layer 4 in the fracture 2 at a rate of 6 cm / Hr, and the permeated groundwater 6 received at the pit 3 at the bottom of the borehole 1 was analyzed. , PH is 6.0, and the content of each heavy metal is Cr 6+ tr. , Total Cr tr. , Ni
0.1 mg / l, and the effect of the heavy metal treatment was satisfactory.
【0029】[0029]
【実施例2】実施例1に示すと同様の手段でB汚染土壌
地にボーリング孔1を掘り下げ、フラクチャー2を発生
させ、その浸透水5を分析したところ有機ハロゲン化合
物であるトリクロロエチレンおよびテトラクロロエチレ
ンの含有量はいずれも5mg/lであった。Example 2 A boring hole 1 was dug down in the soil contaminated with B by the same means as shown in Example 1, a fracture 2 was generated, and the permeated water 5 was analyzed. As a result, it was found that trichlorethylene and tetrachloroethylene, which are organic halogen compounds, were contained. The amounts were all 5 mg / l.
【0030】その後、フラクチャー2に鉄粉を充填させ
て鉄粉分散層4を形成した後、汚染浸透水5を6cm/
Hrの速度で透過させ、透過後の地下水6を分析したと
ころ、トリクロロエチレンおよびテトラクロロエチレン
の含有量はいずれも0.1mg/l以下になっていた。
このように、本発明法は有機ハロゲン化合物の処理にも
適用できることが確認された。After that, the fracture 2 is filled with iron powder to form an iron powder dispersion layer 4.
Permeation at the rate of Hr and analysis of the groundwater 6 after permeation revealed that the contents of trichlorethylene and tetrachloroethylene were all 0.1 mg / l or less.
Thus, it was confirmed that the method of the present invention can be applied to the treatment of an organic halogen compound.
【0031】[0031]
【発明の効果】本発明法は、上述のように安価な鉄粉を
用い、汚染地下水の重金属分や有機ハロゲン化合物を一
括浄化できる処理方法であり、ある期間経過後に鉄粉を
入れ替える操作を行うことで恒久的に汚染地下水を浄化
できるものである。また、本発明法には、汚染物質を地
上で処理するための設備や建造物が要らない、処理に要
する時間が短い、地質条件(通気率、透水係数、密度
等)による影響が少ない等の利点がある。The method of the present invention is a treatment method capable of purifying heavy metal components and organic halogen compounds in contaminated groundwater using inexpensive iron powder as described above, and replacing the iron powder after a certain period of time. This will permanently purify the contaminated groundwater. In addition, the method of the present invention does not require facilities or buildings for treating contaminants on the ground, the time required for treatment is short, and the influence of geological conditions (air permeability, permeability coefficient, density, etc.) is small. There are advantages.
【図1】本発明法による施工現場のフラクチャー周辺部
の部分拡大断面図である。FIG. 1 is a partially enlarged cross-sectional view of a fracture site around a construction site according to the method of the present invention.
【図2】本発明法による施工現場の概略断面図である。FIG. 2 is a schematic sectional view of a construction site according to the method of the present invention.
【図3】ニューマチック・フラクチャリング法の概略を
示す断面図である。FIG. 3 is a cross-sectional view schematically showing a pneumatic fracturing method.
1 ボーリング孔 2 フラクチャー 3 ピット部 4 鉄粉分散層 5 浸透水 6 地下水 7 地表面 DESCRIPTION OF SYMBOLS 1 Boring hole 2 Fracture 3 Pit part 4 Iron powder dispersion layer 5 Infiltration water 6 Groundwater 7 Ground surface
───────────────────────────────────────────────────── フロントページの続き (73)特許権者 596137645 Cass Street at Hig hway 35, Keyport, N ew Jersey 07735, U.S. A. (72)発明者 木村 利宗 東京都千代田区丸の内1丁目8番2号 同和鉱業株式会社内 (72)発明者 尾形 潤 東京都千代田区丸の内1丁目8番2号 同和鉱業株式会社内 (72)発明者 ジョン ジェイ リスコウィッツ アメリカ合衆国 07735 ニュージャー ジー州 キイポート カス ストリート アト ハイウェイ 35 アキュテック リミーダル システムズ インコーポ レイテッド内 (56)参考文献 特表 平5−501520(JP,A) 米国特許5032042(US,A) (58)調査した分野(Int.Cl.7,DB名) B09C 1/00 - 1/10 C02F 1/70 A62D 3/00 ──────────────────────────────────────────────────続 き Continued on front page (73) Patent holder 596137645 Cass Street at Highway 35, Keyport, New Jersey 07735, U.S.A. S.A. (72) Inventor Toshimune Kimura 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Jun Ogata 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor John Jay Riskowitz United States 07735 Keyport Cass Street at Highway 35, New Jersey 35 Accutech Remidal Systems, Inc. (56) References Reference , A) (58) Fields studied (Int. Cl. 7 , DB name) B09C 1/00-1/10 C02F 1/70 A62D 3/00
Claims (4)
孔を穿孔した後、該ボーリング孔に圧縮空気を吹き込む
ことによって地下にフラクチャーを発生させ、次いで得
られたフラクチャーに圧縮空気によって鉄粉を注入して
該鉄粉を含有し該ボーリング孔から基本的に水平な面に
沿って外側へ広がる複数の鉄粉分散層を形成し、該鉄粉
分散層を上記汚染土壌内を流れる地下水と接触させるこ
とによって土壌および地下水中の上記重金属を無害化す
ることを特徴とする土壌および地下水の浄化方法。1. After drilling a borehole in soil contaminated with heavy metals, a fracture is generated underground by blowing compressed air into the borehole, and then iron powder is injected into the obtained fracture by compressed air. do it
Contains the iron powder and from the borehole to a basically horizontal surface
Forming a plurality of iron powder dispersion layers extending outward along the soil, and contacting the iron powder dispersion layer with groundwater flowing in the contaminated soil to detoxify the soil and the heavy metals in the groundwater. And how to purify groundwater.
孔を穿孔した後、該ボーリング孔に圧縮空気を吹き込む
ことによって地下にフラクチャーを発生させ、次いで得
られたフラクチャーに圧縮空気によって鉄粉を注入して
該鉄粉を含有し該ボーリング孔から基本的に水平な面に
沿って外側へ広がり、該汚染土壌の体積と深さによって
決まる複数の鉄粉分散層を形成し、該鉄粉分散層を上記
汚染土壌内を流れる地下水と接触させることによって土
壌および地下水中の上記重金属を該地下において恒久的
に無害化することを特徴とする土壌および地下水の浄化
方法。2. After drilling a borehole in soil contaminated with heavy metal, a fracture is generated underground by blowing compressed air into the borehole, and then iron powder is injected into the obtained fracture with compressed air. do it
Contains the iron powder and from the borehole to a basically horizontal surface
Along the outside, depending on the volume and depth of the contaminated soil
Forming a plurality of iron powder dispersion layers, and contacting the iron powder dispersion layer with groundwater flowing in the contaminated soil to permanently remove the heavy metals in soil and groundwater under the ground.
A method for purifying soil and groundwater , comprising detoxifying the soil and groundwater.
求項1または2記載の土壌および地下水の浄化方法。3. The method according to claim 1, wherein the heavy metal is a heavy metal that is nobler than iron.
3. The method for purifying soil and groundwater according to claim 1 or 2 .
ドミウムおよび鉛から成る群から選ばれる少なくとも1
種である請求項3記載の土壌および地下水の浄化方法。4. The at least one heavy metal selected from the group consisting of chromium, copper, nickel, cadmium and lead.
The method for purifying soil and groundwater according to claim 3, which is a seed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24887296A JP3267873B2 (en) | 1996-08-30 | 1996-08-30 | In situ reduction of soluble and insoluble heavy metals and organohalogen compounds by pneumatic fracturing with iron powder injection to purify contaminated soil and groundwater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24887296A JP3267873B2 (en) | 1996-08-30 | 1996-08-30 | In situ reduction of soluble and insoluble heavy metals and organohalogen compounds by pneumatic fracturing with iron powder injection to purify contaminated soil and groundwater |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001302409A Division JP3753644B2 (en) | 2001-09-28 | 2001-09-28 | In situ reduction of soluble and insoluble heavy metals and organohalogen compounds by pneumatic fracturing with iron powder injection to purify contaminated soil and groundwater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1071386A JPH1071386A (en) | 1998-03-17 |
JP3267873B2 true JP3267873B2 (en) | 2002-03-25 |
Family
ID=17184687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24887296A Expired - Lifetime JP3267873B2 (en) | 1996-08-30 | 1996-08-30 | In situ reduction of soluble and insoluble heavy metals and organohalogen compounds by pneumatic fracturing with iron powder injection to purify contaminated soil and groundwater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3267873B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1166904B1 (en) * | 1998-11-17 | 2016-06-15 | Dowa Eco-System Co., Ltd. | Method for detoxification treatment of soil |
JP5109036B2 (en) * | 1998-11-17 | 2012-12-26 | Dowaエコシステム株式会社 | Detoxification method of soil |
EP1151807A4 (en) * | 1999-07-29 | 2004-08-18 | Hazama Gumi | SOIL PURIFYING AGENT AND SOIL PURIFYING METHOD |
KR100414194B1 (en) * | 2000-11-16 | 2004-01-07 | 한라산업개발 주식회사 | Method of reactive materials modularaization used in the continuous permeable reactive barriers |
JP2003275735A (en) * | 2002-03-22 | 2003-09-30 | Ohbayashi Corp | Apparatus for treating harmful chemical substance |
JP2005281438A (en) * | 2004-03-29 | 2005-10-13 | Alpha Green:Kk | Afforestation/soil stabilization material having pollutant elution inhibitory effect, thick-layer base material hydroseeding method using the same, soil stabilization method and method for processing polluted soil |
US20060081811A1 (en) * | 2004-10-19 | 2006-04-20 | Toda Kogyo Corporation | Iron composite particles for purifying soil or ground water, purifying agent containing the iron composite particles, and method for purifying soil or ground water |
US7351355B2 (en) | 2004-11-29 | 2008-04-01 | Toda Kogyo Corporation | Purifying agent for purifying soil or ground water, process for producing the same, and method for purifying soil or ground water using the same |
JP5076246B2 (en) * | 2009-11-02 | 2012-11-21 | Dowaエコシステム株式会社 | Method for producing organohalogen compound decomposing agent |
CN103922456A (en) * | 2014-04-14 | 2014-07-16 | 北京工业大学 | Method for preparing PRB filler of sodium alginate coated with coarse sand and loaded with zero-valent iron |
KR102419797B1 (en) * | 2020-09-23 | 2022-07-13 | 주식회사 지엔에스엔지니어링 | Underground pollutant treatment device using wind energy |
CN114965956B (en) * | 2022-05-23 | 2023-04-11 | 同济大学 | Multifunctional casing for fracturing, permeability-increasing and cooperative repairing test of low-permeability polluted soil |
-
1996
- 1996-08-30 JP JP24887296A patent/JP3267873B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1071386A (en) | 1998-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5789649A (en) | Method for Remediating contaminated soils | |
Liang et al. | In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination—A proof of concept study | |
US6019548A (en) | Chemical oxidation of volatile organic compounds | |
US5975798A (en) | In-situ decontamination of subsurface waste using distributed iron powder | |
JP3267873B2 (en) | In situ reduction of soluble and insoluble heavy metals and organohalogen compounds by pneumatic fracturing with iron powder injection to purify contaminated soil and groundwater | |
CA2845211C (en) | System and method for treating an excavation activity | |
US5324433A (en) | In-situ restoration of contaminated soils and groundwater | |
JPH06218355A (en) | Method of restoring contaminated soil in site | |
US5275739A (en) | In-situ restoration of contaminated soils and groundwater using calcium chloride | |
JP4069174B2 (en) | Detoxification method of soil | |
US20030210956A1 (en) | Method for purifying a layer of contaminated soil and apparatus | |
US7160471B2 (en) | In-situ generation of oxygen-releasing metal peroxides | |
Thomson et al. | Permeable barriers: a new alternative for treatment of contaminated groundwater | |
JPH11235577A (en) | Detoxicating treatment of soil | |
JP3215102B2 (en) | How to clean contaminated soil | |
US6428695B1 (en) | Aquifer remediation barrier for removal of inorganic contaminants | |
JP3615064B2 (en) | Contaminated soil purification method | |
JP3753644B2 (en) | In situ reduction of soluble and insoluble heavy metals and organohalogen compounds by pneumatic fracturing with iron powder injection to purify contaminated soil and groundwater | |
Morrison et al. | Subsurface injection of dissolved ferric chloride to form a chemical barrier: laboratory investigations | |
US20020117433A1 (en) | Deep aquifer remediation system | |
JP2000061442A (en) | Method for cleaning soil and groundwater using granular cleaning material and its equipment | |
JP2000135484A (en) | Soil purification | |
JP2003080222A (en) | Method of removing contaminant | |
JP5109036B2 (en) | Detoxification method of soil | |
JP2002159960A (en) | Detoxicating treating method of soil and iron powder material for decomposing organic halogen compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080111 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080111 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090111 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090111 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100111 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120111 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120111 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130111 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130111 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140111 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |