JP3267104B2 - Air-fuel ratio sensor deterioration determination control device for internal combustion engine - Google Patents
Air-fuel ratio sensor deterioration determination control device for internal combustion engineInfo
- Publication number
- JP3267104B2 JP3267104B2 JP15392795A JP15392795A JP3267104B2 JP 3267104 B2 JP3267104 B2 JP 3267104B2 JP 15392795 A JP15392795 A JP 15392795A JP 15392795 A JP15392795 A JP 15392795A JP 3267104 B2 JP3267104 B2 JP 3267104B2
- Authority
- JP
- Japan
- Prior art keywords
- value
- response time
- deterioration
- average
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Testing Of Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は内燃機関の空燃比セン
サ劣化判定制御装置に係り、特に、空燃比センサの劣化
判定精度を高め得て、排気有害成分値の増大を未然に防
止し得て、誤判定を回避し得て信頼性を向上し得て、誤
判定による不要な部品交換を回避し得て、コストの上昇
を回避し得る内燃機関の空燃比センサ劣化判定制御装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio sensor deterioration judging control device for an internal combustion engine, and more particularly to an air-fuel ratio sensor deterioration judging accuracy which can prevent an increase in exhaust harmful component values. The present invention relates to an air-fuel ratio sensor deterioration determination control device for an internal combustion engine that can avoid erroneous determination, improve reliability, avoid unnecessary component replacement due to erroneous determination, and avoid an increase in cost.
【0002】[0002]
【従来の技術】車両に搭載される内燃機関には、排気通
路に空燃比センサであるO2 センサを設け、このO2 セ
ンサの出力する信号に基づき空燃比が目標値になるよう
燃料噴射量をフィードバック制御する制御手段を設けた
ものがある。これにより、内燃機関は、触媒体による排
気浄化効率を向上し、排出される排気有害成分値の低減
を図っている。2. Description of the Related Art An internal combustion engine mounted on a vehicle is provided with an O2 sensor serving as an air-fuel ratio sensor in an exhaust passage, and a fuel injection amount is fed back so that the air-fuel ratio becomes a target value based on a signal output from the O2 sensor. Some control means are provided for control. As a result, in the internal combustion engine, the exhaust gas purification efficiency of the catalyst body is improved, and the exhaust emission harmful component value is reduced.
【0003】このように内燃機関の排気通路に設けられ
たO2 センサは、通常に使用される運転状態において
は、その機能の著しい低下を招くことがない。しかし、
O2 センサは、無鉛ガソリンを燃料とする内燃機関に有
鉛ガソリンを供給した場合や、なんらかの不慮の原因に
より高温に晒された場合等に、劣化を招いて機能を著し
く低下し、出力する信号が変化する。[0003] The function of the O2 sensor provided in the exhaust passage of the internal combustion engine does not cause a remarkable decrease in its function in an ordinary operating condition. But,
The O2 sensor deteriorates significantly when it supplies leaded gasoline to an internal combustion engine that uses unleaded gasoline as a fuel, or when exposed to high temperatures due to some unforeseen cause. Change.
【0004】この結果、O2 センサの出力を利用して燃
料噴射量を制御する場合には、燃料噴射量が目標量から
大きく変化してしまい、排気有害成分値の増加を招い
て、大気中に排出されることになる。As a result, when the fuel injection amount is controlled using the output of the O2 sensor, the fuel injection amount greatly changes from the target amount, causing an increase in the harmful component value of the exhaust gas. Will be discharged.
【0005】そこで、内燃機関には、O2 センサの劣化
状態を判定する空燃比センサ劣化判定制御装置を設けた
ものがある。[0005] Therefore, some internal combustion engines are provided with an air-fuel ratio sensor deterioration judgment control device for judging the deterioration state of the O2 sensor.
【0006】このような空燃比センサ劣化判定制御装置
としては、特開平2−169835号公報に開示される
ものがある。この公報に開示されるものは、O2 センサ
による空燃比のフィードバック制御中に燃料供給量の増
減周期が安定する運転条件における前記燃料供給量の増
減周期に基づいてO2 センサの劣化状態を判定し、O2
センサが劣化していると判定されたときはO2 センサの
出力する信号が目標空燃比からリーン側に反転したこと
が判別されてから、所定時間遅らせて燃料供給量の増量
制御を開始するものである。An example of such an air-fuel ratio sensor deterioration determination control device is disclosed in Japanese Patent Application Laid-Open No. 2-169835. What is disclosed in this publication is to determine the deterioration state of the O2 sensor based on the increase / decrease cycle of the fuel supply amount under the operating condition in which the increase / decrease cycle of the fuel supply amount is stable during the feedback control of the air-fuel ratio by the O2 sensor, O2
When it is determined that the sensor has deteriorated, it is determined that the signal output from the O2 sensor has been inverted from the target air-fuel ratio to the lean side, and then the control for increasing the fuel supply amount is started after a predetermined time delay. is there.
【0007】[0007]
【発明が解決しようとする課題】ところで、O2 センサ
の劣化状態を判定する場合は、判定精度が低いと、O2
センサの機能が正常であるにもかかわらず異常を知らせ
ることとなり、いたずらに混乱を招く不都合があるとと
もに、信頼性を低下させる不都合がある。したがって、
空燃比センサ劣化判定制御装置は、高い判定精度を必要
とする。When the deterioration state of the O2 sensor is determined, if the accuracy of the determination is low, the O2
Although the function of the sensor is normal, the abnormality is notified, and there is a disadvantage that the confusion is unnecessarily caused and a problem that the reliability is lowered. Therefore,
The air-fuel ratio sensor deterioration determination control device requires high determination accuracy.
【0008】従来の空燃比センサ劣化判定制御装置にお
いては、図8に示す如く、空燃比センサであるO2 セン
サの出力する信号の周期aと立ち上がり応答時間bと立
ち下がり応答時間cとを計測し、周期aのみ、または、
立ち上がり応答時間bのみあるいは立ち下がり応答時間
cのみ、または、立ち上がり応答時間b及び立ち下がり
応答時間cの合計時間(b+c)のみ、によってO2 セ
ンサの劣化状態を判定している。In a conventional air-fuel ratio sensor deterioration determination control device, as shown in FIG. 8, a cycle a of a signal output from an O2 sensor serving as an air-fuel ratio sensor, a rise response time b, and a fall response time c are measured. , Period a only, or
The deterioration state of the O2 sensor is determined based on only the rising response time b or only the falling response time c, or only the total time (b + c) of the rising response time b and the falling response time c.
【0009】ところが、O2 センサの信号の周期aによ
って判定する場合は、図9・図10に示す如く、周期a
のみが長くなっても、立ち上がり応答時間bと立ち下が
り応答時間cとの割合によって、各排気成分毎の悪化度
合が変化する問題がある。また、O2 センサの立ち上が
り応答時間bあるいは立ち下がり応答時間cのみ、立ち
上がり応答時間b及び立ち下がり応答時間cの合計時間
(b+c)のみによって判定する場合も、前記と同様な
問題がある。However, when the determination is made based on the period a of the signal of the O2 sensor, as shown in FIGS.
Even if only the length becomes longer, there is a problem that the degree of deterioration for each exhaust gas component varies depending on the ratio between the rise response time b and the fall response time c. The same problem as described above also occurs when the determination is made based only on the rising response time b or the falling response time c of the O2 sensor, and only on the total time (b + c) of the rising response time b and the falling response time c.
【0010】このため、O2 センサの信号の態様の一部
のみによって劣化状態を判定する場合は、各排気成分毎
の悪化度合が変化することによって、正確に判定をする
ことができず、O2 センサの機能が正常であるにもかか
わらず異常を知らせることとなり、いたずらに混乱を招
く不都合があるとともに、信頼性を低下させる不都合が
あり、また、誤判定による不要な部品交換を招き、コス
トの上昇を招く不都合がある。For this reason, when the deterioration state is determined only by a part of the signal form of the O2 sensor, the degree of deterioration for each exhaust gas component changes, so that it is not possible to make an accurate determination, and the O2 sensor Function is normal, but an error is reported, which causes inconvenience unnecessarily, reduces reliability, and causes unnecessary component replacement due to erroneous determination, resulting in an increase in cost. Inconvenience.
【0011】[0011]
【課題を解決するための手段】そこで、この発明は、上
述不都合を除去するために、内燃機関の排気通路に空燃
比センサを設け、前記内燃機関の機関負荷を検出する負
荷センサを設け、前記空燃比センサの劣化判定条件が成
立する場合に、前記空燃比センサの出力する信号の周期
と立ち上がり応答時間と立ち下がり応答時間とを計測す
るとともにこれらの値を計測中に前記負荷センサにより
機関負荷を検出し、前記周期と立ち上がり応答時間と立
ち下がり応答時間とをこれらの値を計測中の機関負荷に
より補正して補正周期と補正立ち上がり応答時間と補正
立ち下がり応答時間とを求め、これら随時所定回の値を
平均して夫々平均周期と平均立ち上がり応答時間と平均
立ち下がり応答時間とを求め、前記平均立ち上がり応答
時間を平均立ち下がり応答時間により除算した値より前
記空燃比センサの劣化比較値を求め、この劣化比較値と
予め設定される異常判定値とを比較して前記空燃比セン
サの劣化状態を判定する制御手段を設けたことを特徴と
する。In order to solve the above-mentioned problems, the present invention provides an air-fuel ratio sensor in an exhaust passage of an internal combustion engine and a load sensor for detecting an engine load of the internal combustion engine. When the condition for determining the deterioration of the air-fuel ratio sensor is satisfied, the cycle of the signal output from the air-fuel ratio sensor, the rise response time, and the fall response time are measured, and the engine load is measured by the load sensor while these values are being measured. , The cycle, the rise response time, and the fall response time are corrected based on the engine load during measurement to obtain a correction cycle, a corrected rise response time, and a corrected fall response time. The average value, the average rise response time and the average fall response time are obtained by averaging the values of the times, respectively, and the average rise response time is averaged fall time. Control means for determining a deterioration comparison value of the air-fuel ratio sensor from a value obtained by dividing the air-fuel ratio sensor by a response time, and comparing the deterioration comparison value with a preset abnormality determination value to determine a deterioration state of the air-fuel ratio sensor. It is characterized by having.
【0012】[0012]
【作用】この発明の構成によれば、空燃比センサ劣化判
定制御装置は、制御手段によって、空燃比センサの周期
と立ち上がり応答時間と立ち下がり応答時間とをこれら
の値を計測中の機関負荷により補正し、これら随時所定
回の補正した各値を平均して平均周期と平均立ち上がり
応答時間と平均立ち下がり応答時間とを求め、平均した
各値の平均立ち上がり応答時間を平均立ち下がり応答時
間により除算した値より空燃比センサの劣化比較値を求
め、この劣化比較値と予め設定される異常判定値とを比
較して空燃比センサの劣化状態を判定することにより、
空燃比センサの出力する信号の各種の態様を考慮すると
ともに機関負荷を加味して判定を行なうことができ、各
排気成分毎の悪化度合が変化する問題を回避して、正確
な判定を行なうことができる。According to the configuration of the present invention, the air-fuel ratio sensor deterioration determination control device uses the control means to determine the cycle of the air-fuel ratio sensor, the rise response time, and the fall response time according to the engine load whose values are being measured. The average value, average rise response time, and average fall response time are obtained by averaging these corrected values at predetermined times as needed, and the average rise response time of each averaged value is divided by the average fall response time. By determining a deterioration comparison value of the air-fuel ratio sensor from the calculated value, and comparing the deterioration comparison value with a preset abnormality determination value to determine the deterioration state of the air-fuel ratio sensor,
The determination can be made in consideration of various aspects of the signal output from the air-fuel ratio sensor and the engine load, and the problem of changing the degree of deterioration for each exhaust gas component can be avoided and accurate determination can be performed. Can be.
【0013】[0013]
【実施例】以下図面に基づいて、この発明の実施例を説
明する。図1〜図7は、この発明の実施例を示すもので
ある。図7において、2は内燃機関、4は吸気通路、6
は排気通路である。内燃機関2の吸気通路4は、上流側
から順次に接続されたエアクリーナ8とエアフローメー
タ10とスロットルボディ12と吸気マニホルド14と
により形成される。前記スロットルボディ12内の吸気
通路4には、吸気絞り弁16を備えている。吸気通路4
は、内燃機関2の燃焼室18に連通されている。Embodiments of the present invention will be described below with reference to the drawings. 1 to 7 show an embodiment of the present invention. 7, 2 is an internal combustion engine, 4 is an intake passage, 6
Is an exhaust passage. The intake passage 4 of the internal combustion engine 2 is formed by an air cleaner 8, an air flow meter 10, a throttle body 12, and an intake manifold 14 which are sequentially connected from the upstream side. The intake passage 4 in the throttle body 12 is provided with an intake throttle valve 16. Intake passage 4
Is connected to a combustion chamber 18 of the internal combustion engine 2.
【0014】また、内燃機関2の燃焼室18に連通され
る排気通路6は、上流側から順次に接続された排気マニ
ホルド20と上流側排気管22と触媒コンバータ24と
下流側排気管26とにより形成される。触媒コンバータ
24内の排気通路6には、触媒体28を設けている。The exhaust passage 6 communicating with the combustion chamber 18 of the internal combustion engine 2 includes an exhaust manifold 20, an upstream exhaust pipe 22, a catalytic converter 24, and a downstream exhaust pipe 26 which are sequentially connected from the upstream. It is formed. A catalyst body 28 is provided in the exhaust passage 6 in the catalytic converter 24.
【0015】前記内燃機関2には、燃焼室18に指向さ
せて燃料噴射弁30を設けている。燃料噴射弁30は、
燃料分配通路32を介して燃料供給通路34により燃料
タンク36に連通されている。燃料タンク36内の燃料
は、燃料ポンプ38により圧送され、燃料フィルタ40
により塵埃を除去されて燃料供給通路34により燃料分
配通路32に供給され、燃料噴射弁30に分配供給され
る。The internal combustion engine 2 is provided with a fuel injection valve 30 directed to the combustion chamber 18. The fuel injection valve 30
The fuel supply passage 34 communicates with the fuel tank 36 via the fuel distribution passage 32. The fuel in the fuel tank 36 is pumped by a fuel pump 38 and a fuel filter 40
Then, the dust is removed, and the dust is supplied to the fuel distribution passage 32 by the fuel supply passage 34 and distributed to the fuel injection valve 30.
【0016】前記燃料分配通路32には、燃料の圧力を
調整する燃料圧力調整部42を設けている。燃料圧力調
整部42は、吸気通路4に連通する導圧通路44から導
入される吸気圧により燃料圧力を所定値に調整し、余剰
の燃料を燃料戻り通路46により燃料タンク36に戻
す。The fuel distribution passage 32 is provided with a fuel pressure adjusting section 42 for adjusting the fuel pressure. The fuel pressure adjusting unit 42 adjusts the fuel pressure to a predetermined value by the intake pressure introduced from the pressure guiding passage 44 communicating with the intake passage 4, and returns excess fuel to the fuel tank 36 through the fuel return passage 46.
【0017】前記燃料タンク36は、蒸発燃料用通路4
8によりスロットルボディ12の吸気通路4に連通して
設け、蒸発燃料用通路48の途中に2方向弁50とキャ
ニスタ52とを介設している。また、前記スロットルボ
ディ12には、吸気絞り弁16を迂回するバイパス通路
54を設け、このバイパス通路54の途中にアイドル空
気量制御弁56を介設している。The fuel tank 36 is provided with the fuel vapor passage 4.
8, a two-way valve 50 and a canister 52 are provided in communication with the intake passage 4 of the throttle body 12 in the middle of the evaporative fuel passage 48. The throttle body 12 is provided with a bypass passage 54 that bypasses the intake throttle valve 16, and an idle air amount control valve 56 is provided in the middle of the bypass passage 54.
【0018】なお、符号58はエアレギュレータ、符号
60はパワーステアリングスイッチ、符号62はパワー
ステアリング用空気量制御弁、64はブローバイガス通
路、66はPCVバルブである。Reference numeral 58 denotes an air regulator, reference numeral 60 denotes a power steering switch, reference numeral 62 denotes a power steering air amount control valve, reference numeral 64 denotes a blow-by gas passage, and reference numeral 66 denotes a PCV valve.
【0019】前記エアフローメータ10、燃料噴射弁3
0、アイドル空気量制御弁56、パワーステアリング用
空気量制御弁62は、空燃比センサ劣化判定制御装置6
8のる制御手段70に接続されている。制御手段70に
は、クランク角及び機関回転速度を検出するクランク角
センサ72と、点火電流を分配するディストリビュータ
74と、吸気絞り弁16の開度を検出する開度センサ7
6と、内燃機関2のノックを検出するノックセンサ78
と、冷却水温度を検出する水温センサ80と、社則を検
出する車速センサ82と、が夫々接続されている。な
お、符号84はイグニションコイル、符号86は点火用
パワーユニットである。The air flow meter 10 and the fuel injection valve 3
0, the idle air amount control valve 56 and the power steering air amount control valve 62 are provided by the air-fuel ratio sensor deterioration determination control device 6.
8 is connected to the control means 70. The control means 70 includes a crank angle sensor 72 for detecting the crank angle and the engine speed, a distributor 74 for distributing the ignition current, and an opening sensor 7 for detecting the opening of the intake throttle valve 16.
6 and a knock sensor 78 for detecting knock of the internal combustion engine 2
, A water temperature sensor 80 for detecting a cooling water temperature, and a vehicle speed sensor 82 for detecting a company rule. Reference numeral 84 is an ignition coil, and reference numeral 86 is an ignition power unit.
【0020】また、前記内燃機関2には、触媒体28の
上流側及び下流側の排気通路6に、夫々排気成分値たる
酸素濃度を検出する空燃比センサである第1O2 センサ
88及び第2O2 センサ90を設けている。これら第1
O2 センサ88及び第2O2センサ90は、ヒータ付で
あり、制御手段70に接続して設けている。In the internal combustion engine 2, a first O2 sensor 88 and a second O2 sensor, which are air-fuel ratio sensors for detecting an oxygen concentration as an exhaust component value, are provided in the exhaust passages 6 upstream and downstream of the catalyst body 28, respectively. 90 are provided. These first
The O2 sensor 88 and the second O2 sensor 90 are provided with a heater and are connected to the control means 70.
【0021】制御手段70は、第1O2 センサ88及び
第2O2 センサ90の出力する第1信号及び第2信号に
基づいて、空燃比が目標値になるよう燃料噴射弁30の
作動をフィードバック制御して燃料噴射量を制御する。
これにより、触媒体28による排気浄化効率を向上し、
排気有害成分値の低減を図っている。The control means 70 performs feedback control of the operation of the fuel injection valve 30 based on the first signal and the second signal output from the first O 2 sensor 88 and the second O 2 sensor 90 so that the air-fuel ratio becomes a target value. Control the fuel injection amount.
Thereby, the exhaust gas purification efficiency by the catalyst body 28 is improved,
The emission harmful component value is reduced.
【0022】なお、符号92はダッシュポット、符号9
4はサーモセンサ、符号96はアラームリレー、符号9
8は警告灯、符号100はダイアグノーシススイッチ、
符号102はTSスイッチ、符号104はダイアグノー
シスランプ、符号106はメインスイッチ、符号108
はバッテリである。Reference numeral 92 indicates a dashpot, and reference numeral 9
4 is a thermo sensor, 96 is an alarm relay, 9 is
8 is a warning light, 100 is a diagnosis switch,
102 is a TS switch, 104 is a diagnosis lamp, 106 is a main switch, 108
Is a battery.
【0023】前記内燃機関2の空燃比センサ劣化判定装
置68は、前記制御手段70によって、触媒体28の上
流側の排気通路6に設けた空燃比センサである第1O2
センサ88の劣化状態を判定する。The air-fuel ratio sensor deterioration judging device 68 of the internal combustion engine 2 is controlled by the control means 70 to be a first oxygen-fuel ratio sensor provided in the exhaust passage 6 on the upstream side of the catalyst body 28.
The deterioration state of the sensor 88 is determined.
【0024】空燃比センサ劣化判定装置68は、内燃機
関2の排気通路6に空燃比センサである第1O2 センサ
88を設け、内燃機関2の機関負荷を検出する負荷セン
サとして空気量を検出するエアフローメータ10を設け
ている。The air-fuel ratio sensor deterioration judging device 68 is provided with a first O 2 sensor 88 as an air-fuel ratio sensor in the exhaust passage 6 of the internal combustion engine 2, and detects an air flow as a load sensor for detecting the engine load of the internal combustion engine 2. A meter 10 is provided.
【0025】制御手段70は、第1O2センサ88の劣
化判定条件が成立する場合に、第1O2センサ88の出
力する第1信号の周期aと立ち上がり応答時間bと立ち
下がり応答時間cとを計測するとともにこれらの値を計
測中にエアフローメータ10により機関負荷である空気
量Gaを検出し、周期aと立ち上がり応答時間bと立ち
下がり応答時間cとをこれらの値を計測中の機関負荷で
ある空気量Gaにより補正して補正周期a0と補正立ち
上がり応答時間b0と補正立ち下がり応答時間c0とを
求め、これら随時所定回の値a0・b0・c0を平均し
て夫々平均周期Aと平均立ち上がり応答時間Bと平均立
ち下がり応答時間Cとを求め、これらの値A・B・Cの
平均立ち上がり応答時間Bを平均立ち下がり応答時間C
により除算した値(B/C)より第1O2センサ88の
劣化比較値REKを求め、この劣化比較値REKと予め
設定される異常判定値NGとを比較して第1O2センサ
88の劣化状態を判定する。The control means 70 measures the period a, the rising response time b, and the falling response time c of the first signal output from the first O2 sensor 88 when the condition for determining the deterioration of the first O2 sensor 88 is satisfied. At the same time, while measuring these values, the air flow meter 10 detects the amount of air Ga, which is the engine load, by using the air flow meter 10. The period a, the rise response time b, and the fall response time c are used to determine the air load Ga, A correction cycle a0, a corrected rise response time b0, and a corrected fall response time c0 are obtained by correcting with the quantity Ga, and the values a0, b0, c0 of the predetermined times are averaged as needed, and the average cycle A and the average rise response time are obtained, respectively. B and the average fall response time C are obtained, and the average rise response time B of these values A, B, and C is calculated as the average fall response time C
The deterioration comparison value REK of the first O2 sensor 88 is obtained from the value (B / C) obtained by dividing by the formula (1), and the deterioration comparison value REK is compared with a predetermined abnormality determination value NG to determine the deterioration state of the first O2 sensor 88. I do.
【0026】前記制御手段70は、平均立ち上がり応答
時間Bを平均立ち下がり応答時間Cにより除算した値
(B/C)が1.0以上の場合に、この値(B/C)が
1.0以上の場合における平均周期Aとこの平均周期A
の排気成分値による相関値K1とを乗算した値(A×K
1)を前記除算した値(B/C)に加算して劣化比較値
REKを求めるとともに、前記平均立ち上がり応答時間
Bを平均立ち下がり応答時間Cにより除算した値(B/
C)が1.0未満の場合に、この値(B/C)が1.0
未満の場合における平均周期Aとこの平均周期Aの排気
成分値による相関値K2とを乗算した値(A×K2)を
前記除算した値(B/C)から減算して劣化比較値RE
Kを求める。When the value (B / C) obtained by dividing the average rise response time B by the average fall response time C is 1.0 or more, the control means 70 sets this value (B / C) to 1.0. Average period A in this case and average period A
(A × K) multiplied by the correlation value K1 based on the exhaust component value of
1) is added to the divided value (B / C) to obtain a deterioration comparison value REK, and a value (B / C) obtained by dividing the average rising response time B by the average falling response time C.
When C) is less than 1.0, this value (B / C) is 1.0
The value (A × K2) obtained by multiplying the average period A in the case of less than the correlation value K2 by the exhaust component value of the average period A from the divided value (B / C) is subtracted from the deterioration comparison value RE.
Find K.
【0027】制御手段70は、求められた劣化比較値R
EKと予め設定される最小異常判定値NG1及び最大異
常判定値NG2とを比較し、前記劣化比較値REKが最
小異常判定値NG1越え且つ最大異常判定値NG2未満
である場合は第1O2 センサ88を正常と判定するとと
もに、前記劣化比較値REKが最小異常判定値NG1以
下及び最大異常判定値NG2以上のいずれかである場合
は第1O2 センサ88を異常と判定する。The control means 70 calculates the degradation comparison value R
EK is compared with a preset minimum abnormality determination value NG1 and a maximum abnormality determination value NG2. If the deterioration comparison value REK is greater than the minimum abnormality determination value NG1 and less than the maximum abnormality determination value NG2, the first O2 sensor 88 is activated. If the deterioration comparison value REK is equal to or smaller than the minimum abnormality determination value NG1 and equal to or larger than the maximum abnormality determination value NG2, the first O2 sensor 88 is determined to be abnormal.
【0028】次に、空燃比センサ劣化判定制御装置68
の判定を図1に従って説明する。Next, the air-fuel ratio sensor deterioration determination control device 68
Will be described with reference to FIG.
【0029】制御手段70は、内燃機関2を始動して判
定(ステップ200)がスタートすると、所定の劣化判
定条件を読込み(ステップ202)、第1O2 センサ8
8の劣化判定条件が成立するか否かを判断(ステップ2
04)する。When the control means 70 starts the internal combustion engine 2 and starts the judgment (step 200), the control means 70 reads a predetermined condition for judging deterioration (step 202), and the first O2 sensor 8
It is determined whether the deterioration determination condition of No. 8 is satisfied (step 2
04).
【0030】劣化判定条件としては、例えば、第1O2
センサ86によりフィードバック制御中であり且つフィ
ードバック制御開始後所定時間x経過後であること、機
関回転速度Neが所定速度域内(Nelow≦Ne≦N
ehigh)にあること、機関負荷(空気量Ga)が所
定領域内(Galow≦Ga≦Gahigh)にあるこ
と、機関負変化量(例えば、空気量変化量)△GAが判
定値δGA以下(ΔGA≦δA)であること、内燃機関
2の暖機が完了していること、のすべてを満足するか否
かにより判断する。As the deterioration judgment condition, for example, the first O2
The feedback control is being performed by the sensor 86 and the predetermined time x has elapsed after the start of the feedback control, and the engine speed Ne is within a predetermined speed range (Nelow ≦ Ne ≦ N).
high), the engine load (air amount Ga) is within a predetermined range (Glow ≦ Ga ≦ Gahigh), and the engine negative change amount (for example, air amount change amount) △ GA is equal to or smaller than the determination value δGA (ΔGA ≦ δA), and that the internal combustion engine 2 has been completely warmed up.
【0031】前記判断(ステップ204)において、い
ずれか一を満足しないでNOの場合は、劣化判定条件の
読込み(ステップ202)にリターンする。前記判断
(ステップ204)において、すべてを満足してYES
の場合は、図2に示すように第1O2 センサ88の出力
する第1信号の周期aと立ち上がり応答時間bと立ち下
がり応答時間cとを計測する(ステップ206)。In the above judgment (step 204), if any one of the conditions is not satisfied and the judgment is NO, the process returns to the reading of the deterioration judgment condition (step 202). In the judgment (step 204), all are satisfied and YES
In the case of (1), as shown in FIG. 2, the period a, the rising response time b, and the falling response time c of the first signal output from the first O2 sensor 88 are measured (step 206).
【0032】これらの値a・b・cを計測中にエアフロ
ーメータ10により機関負荷である空気量Gaを検出
し、一定時間内の空気量変化量ΔGaを計測する(ステ
ップ208)。While measuring these values a, b, and c, the air flow meter 10 detects the air amount Ga as the engine load, and measures the air amount change ΔGa within a predetermined time (step 208).
【0033】前記計測中に劣化判定条件が不成立となっ
た場合は、それまでの計測結果を記憶し、次回の劣化判
定条件の成立を待つ(ステップ210)。When the deterioration judgment condition is not satisfied during the measurement, the measurement result up to that time is stored and the next deterioration judgment condition is satisfied (step 210).
【0034】N回の計測が完了したか否かを判断する
(ステップ212)。この判断(ステップ212)がN
Oの場合は、前記劣化判定条件の読込み(ステップ20
2)にリターンする。It is determined whether N measurements have been completed (step 212). This determination (step 212) is N
In the case of O, the deterioration judgment condition is read (step 20).
Return to 2).
【0035】この判断(ステップ212)がYESの場
合は、図3に示す如く、周期aと立ち上がり応答時間b
と立ち下がり応答時間cとを空気量Gaにより補正し
て、補正周期a0と補正立ち上がり応答時間b0と補正
立ち下がり応答時間c0とを求め、これら随時N回の値
a0・b0・c0を平均して夫々平均周期Aと平均立ち
上がり応答時間Bと平均立ち下がり応答時間Cとを求め
る(ステップ214)。If the judgment (step 212) is YES, as shown in FIG. 3, the period a and the rising response time b
And the fall response time c are corrected by the air amount Ga to obtain a correction cycle a0, a corrected rise response time b0, and a corrected fall response time c0, and these N times a0, b0, c0 are averaged at any time. Then, an average period A, an average rise response time B, and an average fall response time C are obtained (step 214).
【0036】前記第1O2 センサ88の周期aと立ち上
がり応答時間bと立ち下がり応答時間cとは、機関負荷
GA(この実施例においては空気量Ga)に対して、図
3に示す如く概ね直線的な相関がある。この相関から、
各値a・b・cは、補正をしないと、比較判定値REK
のばらつきが大きくなり、判定精度を低下させることに
なる。The period a, the rise response time b, and the fall response time c of the first O2 sensor 88 are substantially linear with respect to the engine load GA (air amount Ga in this embodiment) as shown in FIG. There is a great correlation. From this correlation,
Unless the values a, b, and c are corrected, the comparison determination value REK
Becomes large, and the judgment accuracy is reduced.
【0037】そこで、周期aと立ち上がり応答時間bと
立ち下がり応答時間cとを機関負荷GAとして例えば空
気量Gaにより補正して、補正周期a0 と補正立ち上が
り応答時間b0 と補正立ち下がり応答時間c0 とを求め
る。なお、この補正は、図3に示す式により、各値a・
b・c毎に求める。Therefore, the period a, the rise response time b, and the fall response time c are corrected as the engine load GA by, for example, the air amount Ga, and the correction period a 0 , the corrected rise response time b 0, and the corrected fall response time are corrected. Find c 0 . Note that this correction is performed by using the equations shown in FIG.
It is determined for each of bc.
【0038】また、前記平均周期Aと平均立ち上がり応
答時間Bと平均立ち下がり応答時間Cとは、図1のステ
ップ214に記載される式により算出される。なお、ス
テップ214には、平均周期A(AVEa0 )の式のみ
を例示しているが、平均立ち上がり応答時間B(AVE
b0 )と平均立ち下がり応答時間C(AVEc0 )とに
ついても同様の式により求められる。The average period A, the average rise response time B, and the average fall response time C are calculated by the equations described in step 214 in FIG. Although only the equation of the average period A (AVEa 0 ) is illustrated in step 214, the average rise response time B (AVE
b 0 ) and the average fall response time C (AVEc 0 ) are obtained by the same formula.
【0039】前記求められた各値A・B・Cの平均立ち
上がり応答時間Bを平均立ち下がり応答時間Cにより除
算した値(B/C)より第1O2センサ88の劣化比較
値REKを求め、この劣化比較値REKと予め設定され
る異常判定値NGとを比較して、第1O2センサ88の
劣化状態を判定する(ステップ216〜ステップ22
4)。A deterioration comparison value REK of the first O2 sensor 88 is obtained from a value (B / C) obtained by dividing the obtained average rise response time B of the values A, B, and C by the average fall response time C. The deterioration state of the first O2 sensor 88 is determined by comparing the deterioration comparison value REK with a preset abnormality determination value NG (steps 216 to 22).
4).
【0040】まず、平均立ち上がり応答時間Bを平均立
ち下がり応答時間Cにより除算した値(B/C)が1.
0以上であるか否かを判断する(ステップ216)。First, the value (B / C) obtained by dividing the average rise response time B by the average fall response time C is 1.
It is determined whether it is 0 or more (step 216).
【0041】平均立ち上がり応答時間Bを平均立ち下が
り応答時間Cにより除算した値(B/C)、及び平均周
期A、または平均立ち上がり応答時間Bに平均立ち下が
り応答時間Cを加算した値(B+C)と、排気成分値と
の相関は、図4・図5に示す関係にあり、B/C≧1.
0の場合はCO値及びTHC値の悪化が著しく、一方、
B/C<1.0の場合はNOx値の悪化が著しい。The value obtained by dividing the average rise response time B by the average fall response time C (B / C), and the value obtained by adding the average fall response time C to the average period A or the average rise response time B (B + C) And the exhaust gas component value have a relationship shown in FIGS. 4 and 5, where B / C ≧ 1.
In the case of 0, the CO value and the THC value are significantly deteriorated.
When B / C <1.0, the NOx value is significantly deteriorated.
【0042】そこで、前記判断(ステップ216)にお
いて、平均立ち上がり応答時間Bを平均立ち下がり応答
時間Cにより除算した値(B/C)が1.0以上でYE
Sの場合には、この値(B/C)が1.0以上の場合に
おける平均周期Aとこの平均周期Aの排気成分値による
相関値K1とを乗算した値(A×K1)を、前記除算し
た値(B/C)に加算して劣化比較値REKを求める
(ステップ218)。Therefore, in the determination (step 216), when the value (B / C) obtained by dividing the average rise response time B by the average fall response time C is 1.0 or more, YE
In the case of S, the value (A × K1) obtained by multiplying the average period A when the value (B / C) is 1.0 or more by the correlation value K1 based on the exhaust component value of the average period A is calculated as The deterioration comparison value REK is obtained by adding to the divided value (B / C) (step 218).
【0043】一方、前記判断(ステップ216)におい
て、平均立ち上がり応答時間Bを平均立ち上がり応答時
間Bを平均立ち下がり応答時間Cにより除算した値(B
/C)が1.0未満でNOの場合には、この値(B/
C)が1.0未満の場合における平均周期Aとこの平均
周期Aの排気成分値による相関値K2とを乗算した値
(A×K2)を、前記除算した値(B/C)から減算し
て劣化比較値REKを求める(ステップ220)。On the other hand, in the judgment (step 216), the average rise response time B is divided by the average rise response time B by the average fall response time C (B
/ C) is less than 1.0 and NO, this value (B /
The value (A × K2) obtained by multiplying the average period A when C) is less than 1.0 by the correlation value K2 based on the exhaust component value of the average period A is subtracted from the divided value (B / C). To determine the deterioration comparison value REK (step 220).
【0044】求められた劣化比較値REKと予め設定さ
れる最小異常判定値NG1及び最大異常判定値NG2と
を比較し(ステップ222)、NG1<REK<NG2
を判断する(ステップ224)。The obtained deterioration comparison value REK is compared with a preset minimum abnormality determination value NG1 and a maximum abnormality determination value NG2 (step 222), and NG1 <REK <NG2.
Is determined (step 224).
【0045】この判断(ステップ224)において、劣
化比較値REKが最小異常判定値NG1越え且つ最大異
常判定値NG2未満でYESである場合、つまり、NG
1<REK<NG2の場合は、第1O2 センサ88を正
常と判定し、エンドになる(ステップ228)。In this determination (step 224), if the deterioration comparison value REK is greater than the minimum abnormality determination value NG1 and less than the maximum abnormality determination value NG2, that is, if YES, that is, NG
If 1 <REK <NG2, it is determined that the first O2 sensor 88 is normal, and the process ends (step 228).
【0046】前記判断(ステップ224)において、劣
化比較値REKが最小異常判定値NG1以下及び最大異
常判定値NG2以上のいずれかである場合、つまり、R
EK≦NG1またはNG2≦REKの場合は、第1O2
センサ88を異常と判定し、警告灯98の点灯等により
警告を発してユーザに告知し(ステップ226)、エン
ドになる(ステップ228)。In the above judgment (step 224), when the deterioration comparison value REK is one of the minimum abnormality judgment value NG1 or less and the maximum abnormality judgment value NG2 or more, that is, R
If EK ≦ NG1 or NG2 ≦ REK, the first O2
The sensor 88 is determined to be abnormal, a warning is issued by turning on the warning lamp 98, etc., and the user is notified (step 226), and the process ends (step 228).
【0047】このように、制御手段70は、第1O2セ
ンサ88の劣化判定条件が成立する場合に、第1O2セ
ンサ88の出力する第1信号の周期aと立ち上がり応答
時間bと立ち下がり応答時間cとを計測するとともにこ
れらの値を計測中にエアフローメータ10により機関負
荷である空気量Gaを検出し、周期aと立ち上がり応答
時間bと立ち下がり応答時間cとをこれらの値を計測中
の機関負荷である空気量Gaにより補正して補正周期a
0と補正立ち上がり応答時間b0と補正立ち下がり応答
時間c0とを求め、これら随時N回の値a0・b0・c
0を平均して夫々平均周期Aと平均立ち上がり応答時間
Bと平均立ち下がり応答時間Cとを求め、これらの値A
・B・Cの平均立ち上がり応答時間Bを平均立ち下がり
応答時間Cにより除算した値(B/C)より第1O2セ
ンサ88の劣化比較値REKを求め、この劣化比較値R
EKと予め設定される異常判定値NGとを比較して第1
O2センサ88の劣化状態を判定する。As described above, when the condition for determining the deterioration of the first O2 sensor 88 is satisfied, the control means 70 sets the period a, the rising response time b, and the falling response time c of the first signal output from the first O2 sensor 88. While measuring these values, the air flow meter 10 detects the amount of air Ga, which is the engine load, while measuring these values, and determines the period a, the rising response time b, and the falling response time c by the engine that is measuring these values. The correction period a is corrected by the air amount Ga as a load.
0, a corrected rise response time b0, and a corrected fall response time c0, and these N times a0, b0, c
0 to obtain an average period A, an average rise response time B, and an average fall response time C, respectively.
A deterioration comparison value REK of the first O2 sensor 88 is obtained from a value (B / C) obtained by dividing the average rise response time B of B · C by the average fall response time C, and this deterioration comparison value R
EK is compared with a preset abnormality determination value NG to determine the first
The deterioration state of the O2 sensor 88 is determined.
【0048】前記制御手段70は、平均立ち上がり応答
時間Bを平均立ち下がり応答時間Cにより除算した値
(B/C)が1.0以上の場合に、この値(B/C)が
1.0以上の場合における平均周期Aとこの平均周期A
の排気成分値による相関値K1とを乗算した値(A×K
1)を前記除算した値(B/C)に加算して劣化比較値
REKを求めるとともに、前記平均立ち上がり応答時間
Bを平均立ち下がり応答時間Cにより除算した値(B/
C)が1.0未満の場合に、この値(B/C)が1.0
未満の場合における平均周期Aとこの平均周期Aの排気
成分値による相関値K2とを乗算した値(A×K2)を
前記除算した値(B/C)から減算して劣化比較値RE
Kを求める。When the value (B / C) obtained by dividing the average rise response time B by the average fall response time C is 1.0 or more, the control means 70 sets this value (B / C) to 1.0. Average period A in this case and average period A
(A × K) multiplied by the correlation value K1 based on the exhaust component value of
1) is added to the divided value (B / C) to obtain a deterioration comparison value REK, and a value (B / C) obtained by dividing the average rising response time B by the average falling response time C.
When C) is less than 1.0, this value (B / C) is 1.0
The value (A × K2) obtained by multiplying the average period A in the case of less than the correlation value K2 by the exhaust component value of the average period A from the divided value (B / C) is subtracted from the deterioration comparison value RE.
Find K.
【0049】制御手段70は、求められた劣化比較値R
EKと予め設定される最小異常判定値NG1及び最大異
常判定値NG2とを比較し、前記劣化比較値REKが最
小異常判定値NG1越え且つ最大異常判定値NG2未満
である場合は第1O2 センサ88を正常と判定するとと
もに、前記劣化比較値REKが最小異常判定値NG1以
下及び最大異常判定値NG2以上のいずれかである場合
は第1O2 センサ88を異常と判定する。The control means 70 calculates the deterioration comparison value R
EK is compared with a preset minimum abnormality determination value NG1 and a maximum abnormality determination value NG2. If the deterioration comparison value REK is greater than the minimum abnormality determination value NG1 and less than the maximum abnormality determination value NG2, the first O2 sensor 88 is activated. If the deterioration comparison value REK is equal to or smaller than the minimum abnormality determination value NG1 and equal to or larger than the maximum abnormality determination value NG2, the first O2 sensor 88 is determined to be abnormal.
【0050】このように、空燃比センサ劣化判定制御装
置68は、第1O2 センサ88の信号の周期aと立ち上
がり応答時間bと立ち下がり応答時間cとの各種の態様
を考慮するとともに機関負荷を加味して判定を行なって
いることにより、各排気成分毎の悪化度合が変化する問
題を回避して、正確な判定を行なうことができる。As described above, the air-fuel ratio sensor deterioration determination control device 68 considers various aspects of the period a, the rise response time b, and the fall response time c of the signal of the first O 2 sensor 88 and takes into account the engine load. As a result, the problem that the degree of deterioration for each exhaust gas component changes can be avoided, and accurate determination can be made.
【0051】このため、この空燃比センサ劣化判定制御
装置は、第1O2 センサ88の劣化判定精度を高め得
て、排気有害成分値の増大を未然に防止し得て、誤判定
を回避し得て信頼性を向上し得て、誤判定による不要な
部品交換を回避し得て、コストの上昇を回避することが
できる。Therefore, the air-fuel ratio sensor deterioration determination control device can enhance the accuracy of the deterioration determination of the first O2 sensor 88, prevent the exhaust harmful component value from increasing, and avoid erroneous determination. Reliability can be improved, unnecessary component replacement due to erroneous determination can be avoided, and an increase in cost can be avoided.
【0052】[0052]
【発明の効果】このように、この発明によれば、空燃比
センサ劣化判定制御装置は、空燃比センサの信号の周期
と立ち上がり応答時間と立ち下がり応答時間との各種の
態様を考慮するとともに機関負荷を加味して判定を行な
っていることにより、各排気成分毎の悪化度合が変化す
る問題を回避して、正確な判定を行なうことができる。As described above, according to the present invention, the air-fuel ratio sensor deterioration determination control device takes into account various aspects of the period of the signal of the air-fuel ratio sensor, the rise response time, and the fall response time, as well as the engine. Since the determination is performed in consideration of the load, a problem in which the degree of deterioration of each exhaust gas component changes can be avoided, and accurate determination can be performed.
【0053】このため、この空燃比センサ劣化判定制御
装置は、空燃比センサの劣化判定精度を高め得て、排気
有害成分値の増大を未然に防止し得て、誤判定を回避し
得て信頼性を向上し得て、誤判定による不要な部品交換
を回避し得て、コストの上昇を回避することができる。For this reason, this air-fuel ratio sensor deterioration determination control device can improve the accuracy of the deterioration determination of the air-fuel ratio sensor, can prevent an increase in the harmful component value of exhaust gas, can avoid erroneous determination, and can be reliable. Therefore, unnecessary parts replacement due to erroneous determination can be avoided, and an increase in cost can be avoided.
【図1】この発明の実施例を示す内燃機関の空燃比セン
サ劣化判定制御装置の判定のフローチャートである。FIG. 1 is a flowchart of a determination performed by an air-fuel ratio sensor deterioration determination control device for an internal combustion engine according to an embodiment of the present invention.
【図2】O2 センサの信号を示す図である。FIG. 2 is a diagram showing a signal of an O2 sensor.
【図3】機関負荷とO2 センサの信号との相関を示す図
である。FIG. 3 is a diagram showing a correlation between an engine load and a signal of an O2 sensor.
【図4】排成分値とO2 センサの信号との相関を示す図
である。FIG. 4 is a diagram showing a correlation between an exhaust component value and a signal of an O2 sensor.
【図5】立ち上がり応答時間を立ち下がり応答時間で除
算した値が一定のときの排気成分値による相関値を示す
図である。FIG. 5 is a diagram showing a correlation value based on an exhaust component value when a value obtained by dividing a rising response time by a falling response time is constant.
【図6】劣化比較値と異常判定値との関係を示す図であ
る。FIG. 6 is a diagram illustrating a relationship between a deterioration comparison value and an abnormality determination value.
【図7】空燃比センサ劣化判定制御装置の構成図であ
る。FIG. 7 is a configuration diagram of an air-fuel ratio sensor deterioration determination control device.
【図8】O2 センサの信号を示す図である。FIG. 8 is a diagram showing a signal of an O2 sensor.
【図9】排成分値とO2 センサの信号との相関を示す図
である。FIG. 9 is a diagram showing a correlation between an exhaust component value and a signal of an O2 sensor.
【図10】立ち上がり応答時間を立ち下がり応答時間で
除算した値が一定のときの排気成分値による相関値を示
す図である。FIG. 10 is a diagram showing a correlation value based on an exhaust component value when a value obtained by dividing a rising response time by a falling response time is constant.
2 内燃機関 4 吸気通路 6 排気通路 10 エアフローセンサ 30 燃料噴射弁 68 空燃比センサ劣化判定制御装置 70 制御手段 88 第1O2 センサ Reference Signs List 2 internal combustion engine 4 intake passage 6 exhaust passage 10 air flow sensor 30 fuel injection valve 68 air-fuel ratio sensor deterioration determination control device 70 control means 88 first O2 sensor
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F02D 41/14 310 F02B 77/08 G01M 15/00 F02D 45/00 314 F02D 45/00 358 G01M 15/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F02D 41/14 310 F02B 77/08 G01M 15/00 F02D 45/00 314 F02D 45/00 358 G01M 15/00
Claims (2)
け、前記内燃機関の機関負荷を検出する負荷センサを設
け、前記空燃比センサの劣化判定条件が成立する場合
に、前記空燃比センサの出力する信号の周期と立ち上が
り応答時間と立ち下がり応答時間とを計測するとともに
これらの値を計測中に前記負荷センサにより機関負荷を
検出し、前記周期と立ち上がり応答時間と立ち下がり応
答時間とをこれらの値を計測中の機関負荷により補正し
て補正周期と補正立ち上がり応答時間と補正立ち下がり
応答時間とを求め、これら随時所定回の値を平均して夫
々平均周期と平均立ち上がり応答時間と平均立ち下がり
応答時間とを求め、前記平均立ち上がり応答時間を平均
立ち下がり応答時間により除算した値より前記空燃比セ
ンサの劣化比較値を求め、この劣化比較値と予め設定さ
れる異常判定値とを比較して前記空燃比センサの劣化状
態を判定する制御手段を設けたことを特徴とする内燃機
関の空燃比センサ劣化判定制御装置。An air-fuel ratio sensor is provided in an exhaust passage of an internal combustion engine, a load sensor for detecting an engine load of the internal combustion engine is provided, and when a condition for determining deterioration of the air-fuel ratio sensor is satisfied, the air-fuel ratio sensor is provided. The cycle of the output signal, the rise response time, and the fall response time are measured, and while these values are being measured, an engine load is detected by the load sensor, and the cycle, the rise response time, and the fall response time are measured. Is corrected by the engine load being measured to obtain a correction cycle, a corrected rise response time, and a corrected fall response time, and these predetermined values are averaged at any time to obtain an average cycle, an average rise response time, and an average rise response, respectively. The fall response time is determined, and the average rise response time is averaged.
A control means for determining a deterioration comparison value of the air-fuel ratio sensor from a value obtained by dividing by the fall response time, and comparing the deterioration comparison value with a preset abnormality determination value to determine a deterioration state of the air-fuel ratio sensor. An air-fuel ratio sensor deterioration determination control device for an internal combustion engine, comprising:
答時間を平均立ち下がり応答時間により除算した値が
1.0以上の場合に、この値が1.0以上の場合におけ
る前記平均周期とこの平均周期の排気成分値による相関
値とを乗算した値を前記除算した値に加算して劣化比較
値を求めるとともに、前記平均立ち上がり応答時間を平
均立ち下がり応答時間で除算した値が1.0未満の場合
に、この値が1.0未満の場合における前記平均周期と
この平均周期の排気成分値による相関値とを乗算した値
を前記除算した値から減算して劣化比較値を求め、求め
られた劣化比較値と予め設定される最小異常判定値及び
最大異常判定値とを比較し、前記劣化比較値が最小異常
判定値越え且つ最大異常判定値未満である場合は前記空
燃比センサを正常と判定するとともに、前記劣化比較値
が最小異常判定値以下及び最大異常判定値以上のいずれ
かである場合は前記空燃比センサを異常と判定する制御
手段である請求項1に記載の内燃機関の空燃比センサ劣
化判定制御装置。2. When the value obtained by dividing the average rise response time by the average fall response time is equal to or greater than 1.0, the control means determines the average period and the average when the value is equal to or greater than 1.0. The value obtained by multiplying the value obtained by multiplying the correlation value by the exhaust component value of the cycle to the value obtained by the division is used to obtain a deterioration comparison value, and the value obtained by dividing the average rise response time by the average fall response time is less than 1.0. In this case, a value obtained by multiplying the average period when the value is less than 1.0 by a correlation value based on the exhaust component value of the average period is subtracted from the divided value to obtain a deterioration comparison value. The deterioration comparison value is compared with a preset minimum abnormality judgment value and a maximum abnormality judgment value. If the deterioration comparison value exceeds the minimum abnormality judgment value and is less than the maximum abnormality judgment value, the air-fuel ratio sensor is judged to be normal. And control means for determining that the air-fuel ratio sensor is abnormal when the deterioration comparison value is equal to or less than a minimum abnormality determination value and equal to or greater than a maximum abnormality determination value. Fuel ratio sensor deterioration determination control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15392795A JP3267104B2 (en) | 1995-05-29 | 1995-05-29 | Air-fuel ratio sensor deterioration determination control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15392795A JP3267104B2 (en) | 1995-05-29 | 1995-05-29 | Air-fuel ratio sensor deterioration determination control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08319869A JPH08319869A (en) | 1996-12-03 |
JP3267104B2 true JP3267104B2 (en) | 2002-03-18 |
Family
ID=15573126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15392795A Expired - Fee Related JP3267104B2 (en) | 1995-05-29 | 1995-05-29 | Air-fuel ratio sensor deterioration determination control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3267104B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1018886A (en) * | 1996-07-05 | 1998-01-20 | Mazda Motor Corp | O2-sensor degradation detection method and device for the same |
JP5141576B2 (en) * | 2009-01-27 | 2013-02-13 | トヨタ自動車株式会社 | Gas concentration detector |
US11959433B2 (en) * | 2022-07-19 | 2024-04-16 | Cummins Emission Solutions Inc. | Systems and methods for determining exhibited useful life of sensors in monitored systems |
-
1995
- 1995-05-29 JP JP15392795A patent/JP3267104B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08319869A (en) | 1996-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3074975B2 (en) | Catalyst deterioration determination device for internal combustion engine | |
US8069652B2 (en) | Control apparatus and method for internal combustion engine | |
US4993386A (en) | Operation control system for internal combustion engine | |
US7150144B2 (en) | Engine control apparatus | |
US5887421A (en) | Apparatus for detecting the deterioration of a three-way catalytic converter for an internal combustion engine | |
JPH07259613A (en) | Failure detecting device of air-fuel ratio sensor | |
US5379587A (en) | Apparatus for judging deterioration of catalyst of internal combustion engine | |
US20030196428A1 (en) | Exhaust gas purifying system for internal combustion engines | |
CA2153606C (en) | Catalyst deterioration-detecting device for internal combustion engine | |
JP3267104B2 (en) | Air-fuel ratio sensor deterioration determination control device for internal combustion engine | |
JP3221158B2 (en) | Air-fuel ratio sensor deterioration determination control device | |
JP3075025B2 (en) | Catalyst deterioration determination device for internal combustion engine | |
US20020099494A1 (en) | Catalyst deterioration detecting apparatus for internal combustion engine | |
JP3265945B2 (en) | Catalyst deterioration diagnosis device for internal combustion engine | |
JP3198770B2 (en) | Catalyst deterioration determination device for internal combustion engine | |
JP3067445B2 (en) | Catalyst deterioration determination device for internal combustion engine | |
JP3185336B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP3186186B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH1077883A (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0681632A (en) | Catalyst degradation judging device for internal combustion engine | |
JP3331684B2 (en) | Fuel system abnormality determination control device for internal combustion engine | |
JP3438536B2 (en) | Air-fuel ratio control device for internal combustion engine and its abnormality diagnosis device | |
JPH0996235A (en) | Air-fuel ratio control device for internal combustion engine | |
JP2008057461A (en) | Failure diagnostic device for fuel supply system | |
JPH08326525A (en) | Catalyst deterioration judging device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100111 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120111 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |