JP3261044B2 - Components for plasma processing equipment - Google Patents
Components for plasma processing equipmentInfo
- Publication number
- JP3261044B2 JP3261044B2 JP20156396A JP20156396A JP3261044B2 JP 3261044 B2 JP3261044 B2 JP 3261044B2 JP 20156396 A JP20156396 A JP 20156396A JP 20156396 A JP20156396 A JP 20156396A JP 3261044 B2 JP3261044 B2 JP 3261044B2
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- fluorine
- metal
- group
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Chemical Vapour Deposition (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、特にフッ素系腐食
性ガスおよびフッ素系プラズマに対して高い耐食性を有
する、プラズマ処理装置や半導体製造用又は液晶用プラ
ズマプロセス装置の内の内壁材や治具等として使用され
るプラズマプロセス装置用部材に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner wall material or a jig in a plasma processing apparatus, a semiconductor manufacturing or a plasma processing apparatus for a liquid crystal, which has a high corrosion resistance especially to a fluorine-based corrosive gas and a fluorine-based plasma. The present invention relates to a member for a plasma processing apparatus used as the above.
【0002】[0002]
【従来の技術】半導体製造のドライプロセスやプラズマ
コーティングなど、プラズマの利用は近年急速に進んで
いる。半導体におけるプラズマプロセスとしては、フッ
素系等のハロゲン系腐食ガスがその反応性の高さから、
気相成長、エッチングやクリーニングに利用されてい
る。2. Description of the Related Art In recent years, the use of plasma, such as a dry process for semiconductor manufacturing and plasma coating, has been rapidly advancing. As a plasma process in semiconductors, halogen-based corrosive gas such as fluorine is highly reactive,
It is used for vapor phase growth, etching and cleaning.
【0003】これら腐食性ガスに接触する部材には高い
耐食性が要求され、従来より被処理物以外のこれらプラ
ズマに接触する部材は、一般にガラスや石英などのSi
O2を主成分とする材料やステンレス、モネル等の耐食
性金属が多用されている。[0003] The members that come into contact with these corrosive gases are required to have high corrosion resistance. Conventionally, the members that come into contact with these plasmas other than the object to be processed are generally made of Si such as glass or quartz.
Materials containing O 2 as a main component and corrosion-resistant metals such as stainless steel and Monel are often used.
【0004】また、半導体製造製造時において、ウェハ
を支持固定するサセプタ材としてアルミナ焼結体、サフ
ァイア、AlNの焼結体、又はこれらをCVD法等によ
り表面被覆したものが耐食性に優れるとして使用されて
いる。また、グラファイト、窒化硼素をコーティングし
たヒータ等も使用されている。[0004] In the production of semiconductors, a sintered body of alumina, sapphire, AlN, or a surface-coated body thereof by a CVD method or the like is used as a susceptor material for supporting and fixing a wafer because of its excellent corrosion resistance. ing. Further, a heater coated with graphite or boron nitride is also used.
【0005】[0005]
【発明が解決しようとする課題】しかし、従来から用い
られているガラスや石英ではプラズマ中の耐食性が不充
分で消耗が激しく、特にフッ素プラズマに接すると接触
面がエッチングされ、表面性状が変化したり、光透過性
が必要とされる部材では、表面が次第に白く曇って透光
性が低下する等の問題が生じていた。However, the glass and quartz used conventionally have insufficient corrosion resistance in plasma and are intensely depleted. In particular, when they come into contact with fluorine plasma, the contact surface is etched and the surface properties change. In the case of a member that requires light transmissivity, there have been problems such as that the surface gradually becomes cloudy and the light transmissivity decreases.
【0006】また、ステンレスなどの金属を使用した部
材でも耐食性が不充分なため、腐食によって、特に半導
体製造においては不良品発生の原因となっていた。[0006] Further, even members made of metal such as stainless steel have insufficient corrosion resistance, so that corrosion causes a defective product, particularly in semiconductor manufacturing.
【0007】アルミナ、AlNの焼結体は、上記の材料
に比較してフッ素系ガスに対して耐食性に優れるもの
の、高温でプラズマと接すると腐食が徐々に進行して焼
結体の表面から結晶粒子の脱粒が生じ、パーティクル発
生の原因になるという問題が起きている。[0007] Alumina and AlN sintered bodies are more excellent in corrosion resistance to fluorine-based gas than the above materials, but when they come into contact with plasma at high temperature, the corrosion gradually progresses, and the surface of the sintered body crystallizes. There is a problem that particles are shed and cause particles to be generated.
【0008】[0008]
【課題を解決するための手段】本発明者らは、フッ素系
腐食ガス及びプラズマに対する耐食性を高めるための方
法について検討を重ねた結果、まず、フッ素系腐食ガス
又はプラズマとの反応が進行すると高融点のフッ化物が
生成されること、特に周期律表第3a族金属とAlとの
複合酸化物は、安価に入手できるとともに、そのフッ化
物が表面に安定なフッ化物層を形成し部材の腐食性が抑
制され、従来のアルミナやガラス、AlN、Si3N4な
どよりも優れた耐食性を実現できることを知見したもの
である。Means for Solving the Problems The present inventors have repeatedly studied methods for improving the corrosion resistance to a fluorine-based corrosive gas and plasma. The generation of fluoride having a melting point, in particular, a composite oxide of Group 3a metal of the periodic table and Al can be obtained at a low cost, and the fluoride forms a stable fluoride layer on the surface, thereby causing corrosion of members. It has been found that the corrosion resistance is suppressed, and the corrosion resistance superior to conventional alumina, glass, AlN, Si 3 N 4 and the like can be realized.
【0009】即ち、本発明のプラズマプロセス装置用部
材は、上記の知見に基づき完成されたものであり、フッ
素系腐食ガス或いはそのプラズマに曝される耐食性部材
における少なくとも前記腐食ガスやプラズマに直接接触
する部位が、周期律表3a族金属とAlとを含む複合酸
化物によって構成し、前記周期律表3a族金属が全金属
の30原子%以上、且つMo及びWが全量中1重量%以
下であるとともに、前記複合酸化物の厚みが10μm以
上であることにより、高温、高密度のフッ素系腐食雰囲
気において長時間の耐性を有する比較的安価な部材を提
供できるものである。That is, the member for a plasma processing apparatus of the present invention has been completed based on the above-mentioned findings, and has at least a direct contact with a fluorine-based corrosive gas or at least the corrosive gas or plasma in a corrosion-resistant member exposed to the plasma. Is formed of a complex oxide containing a Group 3a metal of the periodic table and Al, and the Group 3a metal of the periodic table is at least 30 atomic% of all metals, and Mo and W are 1% by weight or less of the total amount. In addition, when the thickness of the composite oxide is 10 μm or more, it is possible to provide a relatively inexpensive member having long-term resistance in a high-temperature, high-density fluorine-based corrosive atmosphere.
【0010】本発明によれば、フッ素系ガス及びプラズ
マに曝される部材として周期律表第3a族金属とAlを
含む複合酸化物材料を使用することにより、材料表面が
フッ素との反応によって安定なフッ化物層を生成し、幅
広い温度範囲で過酷なフッ素系腐食雰囲気への耐性向上
が達成される。さらに、フッ素と反応して容易に揮発し
てしまうようなSi、Ge、Mo、W等の元素化合物の
粒界への析出を抑え、その遍在を防ぐことにより、局部
的な耐食性の低下とそれを原因とした脱粒パーティクル
発生を防止し、更なる耐食性の向上を図ることが可能と
なる。これらの元素は腐食の初期段階で揮発していく
が、材料表面には第3a族を含むフッ化物が残留して、
次第に第3a族元素に富むフッ化物層が形成される結
果、腐食の進行を抑制することができる。According to the present invention, by using a composite oxide material containing a Group 3a metal of the periodic table and Al as a member exposed to a fluorine-based gas and plasma, the material surface is stabilized by a reaction with fluorine. A strong fluoride layer is generated, and resistance to severe fluorine-based corrosive atmosphere is improved over a wide temperature range. Further, by suppressing the precipitation of elemental compounds such as Si, Ge, Mo, W, etc. which are easily volatilized by reacting with fluorine at the grain boundaries and by preventing their ubiquity, local deterioration of corrosion resistance and It is possible to prevent the generation of particles that fall due to this, and to further improve the corrosion resistance. These elements volatilize in the early stage of corrosion, but fluoride containing Group 3a remains on the material surface,
As a result, a fluoride layer rich in Group 3a element is formed, so that the progress of corrosion can be suppressed.
【0011】しかも、周期律表第3a族金属とAlとを
含む複合酸化物は、周期律表第3a族金属酸化物に比較
して、PVD法、CVD法などの薄膜技術によって形成
するのに止まらず、緻密な焼結体として作製することが
できるために、あらゆる形状品に適合することが可能と
なる。Furthermore, the composite oxide containing Group 3a metal of the periodic table and Al is more difficult to form by a thin film technique such as PVD and CVD than the metal oxide of Group 3a of the periodic table. Since it can be manufactured as a dense sintered body without stopping, it can be adapted to all shaped products.
【0012】[0012]
【発明の実施の形態】本発明のプラズマプロセス装置用
部材は、フッ素系の腐食ガスまたはフッ素系プラズマに
曝される部材であり、フッ素系腐食ガスとしては、SF
6、CF4、CHF3、ClF3、HF等が挙げられ、これ
らのガスが導入された雰囲気にマイクロ波や高周波等を
導入するとこれらのガスがプラズマ化される。BEST MODE FOR CARRYING OUT THE INVENTION A member for a plasma processing apparatus according to the present invention is a member exposed to a fluorine-based corrosive gas or fluorine-based plasma.
6 , CF 4 , CHF 3 , ClF 3 , HF, and the like. When a microwave, a high frequency, or the like is introduced into an atmosphere in which these gases are introduced, these gases are turned into plasma.
【0013】本発明によれば、このようなフッ素系腐食
ガスあるいはそのプラズマに曝される部位を、少なくと
も周期律表第3a族金属とAlとを含む複合酸化物から
構成するものである。ここで、複合酸化物を構成する周
期律表第3a族金属としては、Sc、Y、La、Ce、
Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、Y
b、Luなどいずれかで使用されるが、特にY、La、
Ce、Nd、Dyがコストの点で望ましい。According to the present invention, the portion exposed to such a fluorine-based corrosive gas or its plasma is composed of a composite oxide containing at least a Group 3a metal of the periodic table and Al. Here, Sc, Y, La, Ce, and
Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Y
b, Lu, etc., but especially Y, La,
Ce, Nd, and Dy are desirable in terms of cost.
【0014】この複合酸化物の耐食性は周期律表第3a
族金属量に大きく影響され、周期律表第3a族金属は、
複合酸化物中の全金属元素中、30原子%以上含まれる
ことが重要であり、特に40原子%以上存在することが
望ましい。これは、周期律表第3a族金属量が30原子
%より少ないと、ハロゲン化ガスやそのプラズマ中での
初期の腐食が激しく次第に表面に保護層が形成されるも
のの、長時間を要するために実用的ではない。[0014] The corrosion resistance of this composite oxide is 3a of the periodic table.
Group 3a metal of the periodic table is greatly affected by the amount of group metal,
It is important that the total content of the metal elements in the composite oxide be 30 atomic% or more, and it is particularly desirable that the content be 40 atomic% or more. This is because when the amount of Group 3a metal of the periodic table is less than 30 atomic%, the initial corrosion in the halogenated gas or its plasma is severe and a protective layer is gradually formed on the surface, but it takes a long time. Not practical.
【0015】また、複合酸化物としては、上記の少なく
とも2種の金属元素を含むガラス、セラミック焼結体の
他、単結晶であってもよいが、セラミック焼結体の場合
には、粒界に析出した粒界相の耐食性が主結晶粒子より
著しく劣る場合、粒界相が選択的に腐食され、脱粒、パ
―ティクル発生の原因となる。そのため、フッ素に腐食
されやすいSi、Ge、Mo、Wの粒界中の含有量は全
量中1重量%以下に抑えることが重要である。これらの
フッ素に腐食されやすい元素が主結晶粒子内に固溶して
粒界に存在しない場合はこの限りでない。The composite oxide may be a single crystal in addition to the above-mentioned glass and ceramic sintered body containing at least two kinds of metal elements. When the corrosion resistance of the grain boundary phase precipitated in the steel is remarkably inferior to that of the main crystal grains, the grain boundary phase is selectively corroded, causing degranulation and generation of particles. Therefore, it is important to suppress the content of Si, Ge, Mo, and W, which are easily corroded by fluorine, in the grain boundaries to 1% by weight or less in the total amount. This does not apply when these elements which are easily corroded by fluorine are dissolved in the main crystal grains and do not exist at the grain boundaries.
【0016】複合酸化物は、望ましくは、結晶質を主体
とすることがよく、特にYAG(3Y2O3・5Al
2O3)などのガーネット型結晶、YAM(2Y2O3・A
l2O3)などの単斜晶型結晶、YAP(Y2O3・Al2
O3)などのペロブスカイト型結晶を主体とするものが
優れた耐食性を有する点で望ましい。これらの中でもガ
ーネット型結晶が焼結性と製造コストが安価である点で
最も望ましい。The composite oxide is desirably mainly composed of a crystalline material, particularly, YAG (3Y 2 O 3 .5Al).
Garnet type crystal such as 2 O 3 ), YAM (2Y 2 O 3 .A)
l 2 O 3) monoclinic type crystal such as, YAP (Y 2 O 3 · Al 2
O 3 ) and the like mainly composed of perovskite crystals are desirable in that they have excellent corrosion resistance. Among these, a garnet-type crystal is most desirable because of its sinterability and low production cost.
【0017】また、上記複合酸化物の焼結体は、例え
ば、周期律表第3a族金属酸化物とAl2O3粉末との混
合物を1100〜1900℃の酸化性雰囲気中又は真空
雰囲気中で焼成することにより作製することができる。
焼成方法としては、常圧焼成の他、ホットプレス法など
が採用される。The sintered body of the composite oxide may be prepared, for example, by mixing a mixture of a metal oxide belonging to Group 3a of the periodic table with Al 2 O 3 powder in an oxidizing atmosphere or a vacuum atmosphere at 1100 to 1900 ° C. It can be produced by firing.
As a firing method, a hot press method or the like is employed in addition to normal pressure firing.
【0018】また、本発明のプラズマプロセス装置用部
材としては、かかる焼結体にとどまらず、PVD法、C
VD法などの周知の薄膜形成法によって、所定の基体表
面に薄膜として形成したものであってもよい。また、周
知のゾルゲル法により液相を塗布し焼成した薄膜でもよ
い。これらの中では、粉末を成形し焼成した焼結体であ
ることが、あらゆる部材への適用性に優れることから最
も望ましいなお、この複合酸化物は、ハロゲン系腐食ガ
スまたはそのプラズマに曝される部位に形成されるもの
であるが、かかる金属酸化物は、少なくともその厚みが
10μm以上であることが、優れた耐食性を付与する上
で望ましい。つまり、その厚みが10μmより薄いと優
れた耐食効果が期待できないためである。Further, the members for the plasma processing apparatus of the present invention are not limited to such sintered bodies, but may be PVD,
It may be formed as a thin film on a predetermined substrate surface by a known thin film forming method such as a VD method. Further, a thin film obtained by applying and baking a liquid phase by a well-known sol-gel method may be used. Among these, a sintered body formed by molding and firing a powder is most desirable because of its excellent applicability to all members. Furthermore, this composite oxide is exposed to a halogen-based corrosive gas or its plasma. Although formed at the site, it is desirable that such a metal oxide has a thickness of at least 10 μm in order to impart excellent corrosion resistance. That is, if the thickness is less than 10 μm, excellent corrosion resistance cannot be expected.
【0019】[0019]
【実施例】各種酸化物粉末を用いて、表1に記載の各種
の材料を作製した。表1中、試料No.1、2は、表1
の希土類酸化物とSiO2との混合物を2000℃で溶
融した後、急冷してガラス化したものである。試料N
o.3〜8はY2O3とAl2O3との混合物からなる成形
体を1600〜1900℃の酸化性又は真空雰囲気で焼
成したものである。試料No.9、10は表1の希土類
酸化物とAl2O3との混合物からなる成形体を1400
〜1750℃で焼成したものである。試料No.11
は、Sc2O3とAl2O3をターゲットとしてスパッタ法
によって、試料No.12はCVD法によって作製した
ものである。なお、焼結体はいずれも相対密度95%以
上まで緻密化した。EXAMPLES Various materials shown in Table 1 were prepared using various oxide powders. In Table 1, sample no. Tables 1 and 2 are
A mixture of the rare earth oxide and SiO 2 was melted at 2000 ° C., then rapidly cooled and vitrified. Sample N
o. 3-8 is obtained by firing at Y 2 O 3 and Al 2 O 3 with an oxidizing or vacuum atmosphere a green body comprising a mixture of 1600 to 1900 ° C.. Sample No. Reference numerals 9 and 10 denote 1400 molded articles made of a mixture of the rare earth oxide and Al 2 O 3 shown in Table 1.
It was fired at 171750 ° C. Sample No. 11
The sample No. was formed by sputtering using Sc 2 O 3 and Al 2 O 3 as targets. Reference numeral 12 is produced by a CVD method. In addition, all the sintered bodies were densified to a relative density of 95% or more.
【0020】そして、表1の種々の材料をRIEプラズ
マエッチング装置内に設置し、CF4とO2との混合ガス
(CF4:O2=9:1)、ArとSF6との混合ガス
(Ar:SF6=2:3)のいずれかを導入するととも
に、マイクロ波を導入してプラズマを発生させた。この
プラズマ中で最高3時間保持して、処理前後の材料の重
量減少を測定し、その値から1分あたりのエッチングさ
れる厚み(エッチング速度)を算出した。また、試験後
の試料の表面状態を観察しその結果を表1に示した。Then, various materials shown in Table 1 were placed in an RIE plasma etching apparatus, and a mixed gas of CF 4 and O 2 (CF 4 : O 2 = 9: 1) and a mixed gas of Ar and SF 6 were used. (Ar: SF 6 = 2: 3) and a microwave were introduced to generate plasma. The material was kept in the plasma for a maximum of 3 hours, the weight loss of the material before and after the treatment was measured, and the thickness per minute (etching rate) was calculated from the value. The surface condition of the sample after the test was observed, and the results are shown in Table 1.
【0021】なお、比較例(試料No.11〜18)と
して、従来のBN焼結体、石英ガラス、Si3N4焼結
体、Al2O3焼結体、AlN焼結体についても同様に試
験を行った。As comparative examples (sample Nos. 11 to 18), the same applies to conventional BN sintered bodies, quartz glass, Si 3 N 4 sintered bodies, Al 2 O 3 sintered bodies, and AlN sintered bodies. Was tested.
【0022】[0022]
【表1】 [Table 1]
【0023】表1に示すように、従来の各種材料は、い
ずれもエッチング速度が70Å/min以上であり、し
かも表面状態も荒れがひどく、Si3N4焼結体では、表
面にパーティクルの発生が確認された。Al2O3やAl
Nの焼結体もエッチングによる窪みが多数観察された。As shown in Table 1, all of the conventional materials have an etching rate of 70 ° / min or more, and the surface condition is very rough. In the case of the Si 3 N 4 sintered body, particles are generated on the surface. Was confirmed. Al 2 O 3 or Al
Numerous depressions due to etching were also observed in the sintered body of N.
【0024】これらの比較例に対して試料No.1〜1
2の本発明の試料は、いずれもフッ素系プラズマに対し
て高い耐食性を示した。特に、試料形態がガラスからな
るものは、その表面に窪みの形成が確認されたが、焼結
体や薄膜からなるものは、いずれも表面状態も優れたも
のであった。また、本発明のいずれの試料にも試験後に
おいて周期律表第3a族金属に富むフッ化物層が表面に
形成されていることを確認した。For these comparative examples, sample Nos. 1 to 1
Each of the samples of the present invention No. 2 showed high corrosion resistance to fluorine-based plasma. In particular, when the sample was made of glass, the formation of dents on the surface was confirmed, but when the sample was made of a sintered body or a thin film, the surface condition was excellent. In addition, it was confirmed that a fluoride layer rich in a metal of Group 3a of the periodic table was formed on the surface of each of the samples of the present invention after the test.
【0025】[0025]
【発明の効果】以上詳述した通り、本発明によれば、フ
ッ素系腐食性ガス及びそのプラズマに曝される部材とし
て周期律表第3a族金属とAlとの複合酸化物により構
成することで、少なくとも材料表面が安定なフッ化物層
を生成し、過酷なフッ素系腐食雰囲気で高い耐食性が達
成される。しかも焼結体を容易に作製できることから、
あらゆる形状品に適用することができる。As described above in detail, according to the present invention, the member exposed to the fluorine-based corrosive gas and its plasma is made of a complex oxide of Group 3a metal of the periodic table and Al. In addition, a stable fluoride layer is formed on at least the material surface, and high corrosion resistance is achieved in a severe fluorine-based corrosive atmosphere. Moreover, since a sintered body can be easily manufactured,
It can be applied to all shapes.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/00 - 35/22 C04B 35/42 - 35/50 CA(STN) REGISTRY(STN)────────────────────────────────────────────────── ─── Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/00-35/22 C04B 35/42-35/50 CA (STN) REGISTRY (STN)
Claims (1)
される部位が、周期律表3a族金属とAlとを含む複合
酸化物からなり、前記周期律表3a族金属が全金属の3
0原子%以上、且つMo及びWが全量中1重量%以下で
あるとともに、前記複合酸化物の厚みが10μm以上で
あることを特徴とするプラズマプロセス装置用部材。A portion exposed to a fluorine-based corrosive gas or its plasma is made of a complex oxide containing a Group 3a metal and Al in the Periodic Table, and the Group 3a metal in the Periodic Table is 3% of all metals.
A member for a plasma processing apparatus, wherein 0 atomic% or more, Mo and W are 1% by weight or less of the total amount, and the thickness of the composite oxide is 10 μm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20156396A JP3261044B2 (en) | 1996-07-31 | 1996-07-31 | Components for plasma processing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20156396A JP3261044B2 (en) | 1996-07-31 | 1996-07-31 | Components for plasma processing equipment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001327655A Division JP4012714B2 (en) | 2001-10-25 | 2001-10-25 | Corrosion resistant material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1045467A JPH1045467A (en) | 1998-02-17 |
JP3261044B2 true JP3261044B2 (en) | 2002-02-25 |
Family
ID=16443135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20156396A Expired - Fee Related JP3261044B2 (en) | 1996-07-31 | 1996-07-31 | Components for plasma processing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3261044B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7462407B2 (en) | 2002-12-19 | 2008-12-09 | Shin-Etsu Chemical Co., Ltd. | Fluoride-containing coating and coated member |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2255983C (en) * | 1997-12-16 | 2007-10-23 | Konoshima Chemical Co., Ltd. | A corrosion resistant ceramic and a production method thereof |
US6123791A (en) * | 1998-07-29 | 2000-09-26 | Applied Materials, Inc. | Ceramic composition for an apparatus and method for processing a substrate |
US6383964B1 (en) | 1998-11-27 | 2002-05-07 | Kyocera Corporation | Ceramic member resistant to halogen-plasma corrosion |
DE69920152T2 (en) * | 1998-12-21 | 2005-09-22 | Shin-Etsu Chemical Co., Ltd. | Corrosion resistant mixed oxide material |
JP4544700B2 (en) * | 1999-07-29 | 2010-09-15 | 京セラ株式会社 | Vacuum container and method for manufacturing the same |
JP3510993B2 (en) | 1999-12-10 | 2004-03-29 | トーカロ株式会社 | Plasma processing container inner member and method for manufacturing the same |
JP4245771B2 (en) | 2000-03-21 | 2009-04-02 | 東京エレクトロン株式会社 | Plasma-resistant member, electromagnetic wave transmission window member and plasma processing apparatus |
JP2002249864A (en) * | 2000-04-18 | 2002-09-06 | Ngk Insulators Ltd | Halogen gas plasma resistant member and production method therefor |
JP4688307B2 (en) * | 2000-07-11 | 2011-05-25 | コバレントマテリアル株式会社 | Plasma-resistant member for semiconductor manufacturing equipment |
TWI293947B (en) * | 2001-03-26 | 2008-03-01 | Tosoh Corp | |
JP2002356387A (en) * | 2001-03-30 | 2002-12-13 | Toshiba Ceramics Co Ltd | Plasma resistant material |
JP4663927B2 (en) | 2001-08-29 | 2011-04-06 | 信越化学工業株式会社 | Rare earth-containing oxide member |
US7371467B2 (en) | 2002-01-08 | 2008-05-13 | Applied Materials, Inc. | Process chamber component having electroplated yttrium containing coating |
US7084084B2 (en) * | 2002-03-11 | 2006-08-01 | Tosoh Corporation | Highly durable silica glass, process for producing same, member comprised thereof, and apparatus provided therewith |
US7166200B2 (en) | 2002-09-30 | 2007-01-23 | Tokyo Electron Limited | Method and apparatus for an improved upper electrode plate in a plasma processing system |
US6837966B2 (en) | 2002-09-30 | 2005-01-04 | Tokyo Electron Limeted | Method and apparatus for an improved baffle plate in a plasma processing system |
US7204912B2 (en) | 2002-09-30 | 2007-04-17 | Tokyo Electron Limited | Method and apparatus for an improved bellows shield in a plasma processing system |
US6798519B2 (en) | 2002-09-30 | 2004-09-28 | Tokyo Electron Limited | Method and apparatus for an improved optical window deposition shield in a plasma processing system |
US7166166B2 (en) | 2002-09-30 | 2007-01-23 | Tokyo Electron Limited | Method and apparatus for an improved baffle plate in a plasma processing system |
US7137353B2 (en) | 2002-09-30 | 2006-11-21 | Tokyo Electron Limited | Method and apparatus for an improved deposition shield in a plasma processing system |
US7147749B2 (en) | 2002-09-30 | 2006-12-12 | Tokyo Electron Limited | Method and apparatus for an improved upper electrode plate with deposition shield in a plasma processing system |
TW200423195A (en) | 2002-11-28 | 2004-11-01 | Tokyo Electron Ltd | Internal member of a plasma processing vessel |
US7291566B2 (en) | 2003-03-31 | 2007-11-06 | Tokyo Electron Limited | Barrier layer for a processing element and a method of forming the same |
WO2004095530A2 (en) | 2003-03-31 | 2004-11-04 | Tokyo Electron Limited | Adjoining adjacent coatings on an element |
JP2005060827A (en) | 2003-07-29 | 2005-03-10 | Toshiba Ceramics Co Ltd | Plasma-resistant material |
US7329467B2 (en) | 2003-08-22 | 2008-02-12 | Saint-Gobain Ceramics & Plastics, Inc. | Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same |
WO2006023894A2 (en) | 2004-08-24 | 2006-03-02 | Saint-Gobain Ceramics & Plastics, Inc. | Semiconductor processing components and semiconductor processing utilizing same |
US7552521B2 (en) | 2004-12-08 | 2009-06-30 | Tokyo Electron Limited | Method and apparatus for improved baffle plate |
US7601242B2 (en) | 2005-01-11 | 2009-10-13 | Tokyo Electron Limited | Plasma processing system and baffle assembly for use in plasma processing system |
EP1780298A4 (en) | 2005-07-29 | 2009-01-07 | Tocalo Co Ltd | Y2o3 thermal sprayed film coated member and process for producing the same |
JP4571561B2 (en) | 2005-09-08 | 2010-10-27 | トーカロ株式会社 | Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same |
US7648782B2 (en) | 2006-03-20 | 2010-01-19 | Tokyo Electron Limited | Ceramic coating member for semiconductor processing apparatus |
US7850864B2 (en) | 2006-03-20 | 2010-12-14 | Tokyo Electron Limited | Plasma treating apparatus and plasma treating method |
WO2011122377A1 (en) * | 2010-03-30 | 2011-10-06 | 日本碍子株式会社 | Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor |
KR101371640B1 (en) | 2010-03-30 | 2014-03-06 | 엔지케이 인슐레이터 엘티디 | Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor |
-
1996
- 1996-07-31 JP JP20156396A patent/JP3261044B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7462407B2 (en) | 2002-12-19 | 2008-12-09 | Shin-Etsu Chemical Co., Ltd. | Fluoride-containing coating and coated member |
Also Published As
Publication number | Publication date |
---|---|
JPH1045467A (en) | 1998-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3261044B2 (en) | Components for plasma processing equipment | |
TWI695822B (en) | Method and apparatus which reduce the erosion rate of surfaces exposed to halogen-containing plasmas | |
US11373882B2 (en) | Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide | |
US7696117B2 (en) | Method and apparatus which reduce the erosion rate of surfaces exposed to halogen-containing plasmas | |
US6933254B2 (en) | Plasma-resistant articles and production method thereof | |
US10622194B2 (en) | Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance | |
US20100160143A1 (en) | Semiconductor processing apparatus comprising a solid solution ceramic of yttrium oxide and zirconium oxide | |
JPH104083A (en) | Corrosion resistant materials for semiconductor manufacturing | |
JPH1045461A (en) | Corrosion resistant materials | |
JP3527839B2 (en) | Components for semiconductor device manufacturing equipment | |
JP3488373B2 (en) | Corrosion resistant materials | |
JP2000086344A (en) | High-density fluoride sintered body, method for manufacturing the same, and member for semiconductor manufacturing apparatus using the same | |
JPH09295863A (en) | Corrosion resistant materials | |
JP2000159572A (en) | Corrosion resistant ceramic members | |
JP3716386B2 (en) | Plasma-resistant alumina ceramics and method for producing the same | |
JP3808245B2 (en) | Chamber component for semiconductor manufacturing | |
JP2001151559A (en) | Corrosion resistant materials | |
JP2001199762A (en) | Corrosion-resisting ceramic material | |
JP2000239066A (en) | Corrosion resistant member, method of manufacturing the same, and member for plasma processing apparatus using the same | |
JP4012714B2 (en) | Corrosion resistant material | |
JP2004315308A (en) | Corrosion-resistant member | |
JPH11278944A (en) | Silicon nitride corrosion-resistant member and method of manufacturing the same | |
JP2003137647A (en) | Materials for plasma process equipment | |
JP2001206764A (en) | Corrosion resistant ceramics and their manufacturing method | |
JP2003137648A (en) | Materials for plasma process equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081214 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091214 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101214 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |