JP3252248B2 - Non-contact diameter measuring device using speckle - Google Patents
Non-contact diameter measuring device using speckleInfo
- Publication number
- JP3252248B2 JP3252248B2 JP32305294A JP32305294A JP3252248B2 JP 3252248 B2 JP3252248 B2 JP 3252248B2 JP 32305294 A JP32305294 A JP 32305294A JP 32305294 A JP32305294 A JP 32305294A JP 3252248 B2 JP3252248 B2 JP 3252248B2
- Authority
- JP
- Japan
- Prior art keywords
- measured
- diameter
- measuring
- speckle
- dut
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、レーザー光等の干渉
性のよい光が被測定物の粗面で散乱したときに生じるス
ペックルパターンを利用して、円筒又は円盤状の被測定
物の直径を非接触で測定する装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a cylindrical or disc-shaped object by utilizing a speckle pattern generated when light having good coherence such as laser light is scattered on a rough surface of the object. The present invention relates to a device for measuring a diameter in a non-contact manner.
【0002】[0002]
【従来の技術】従来、半導体レーザーから出射されたレ
ーザー光を被測定物に照射し、その表面の微細な凹凸に
よって生じるスペックルを被測定物の回転に伴って変化
させ、このときのスペックルの変位量に基づいて被測定
物の直径を非接触で測定する技術が知られている。2. Description of the Related Art Conventionally, an object to be measured is irradiated with a laser beam emitted from a semiconductor laser, and the speckle caused by minute irregularities on the surface is changed with the rotation of the object to be measured. There is known a technique for measuring the diameter of an object to be measured in a non-contact manner based on the amount of displacement of the object.
【0003】図8は従来装置の測定原理を示す。円筒又
は円盤状の被測定物1が角度θ回転すると、スペックル
は角度2θ傾いた状態でCCDカメラ12によって撮像
される。このときのスペックル変位量Xは次式のように
表される。 X=ΔS’+(L+Δ )tan2θ ・・・(1式) ここで、Lは被測定物1とCCDカメラ12との距離、
Δ は被測定物1の回転に伴うCCDカメラ12との距
離の増加量、ΔS’は被測定物1の回転に伴うCCDカ
メラ12の受光面に平行な方向の移動量である。また、
被測定物1を角度θ回転したときにレーザー光が照射す
る点Aの移動距離ΔSは、次式のようになる。 ΔS=πD・θ/360 ・・・(2式) ここで、Dは被測定物1の直径である。更に、角度θが
微小であれば、次式のように近似できる。 ΔS’=ΔS ・・・(3式) (L+Δ )tan2θ=2π(L+Δ )・2θ/360 ・・・(4式) また、L>>Δ であるので次式のように近似できる。 L+Δ =L ・・・(5式) 従って、上記2式、3式、4式、5式より1式は、次の
ように表される。 X=(D+4L)π・θ/360 ・・・(6式) 上記6式より、被測定物1の直径Dは次式によって導く
ことができる。 D=((360・X)/(π・θ))−4L ・・・(7式)FIG. 8 shows the measurement principle of a conventional apparatus. When the cylindrical or disc-shaped DUT 1 rotates by an angle θ, the speckle is imaged by the CCD camera 12 in a state of being inclined by an angle 2θ. The speckle displacement X at this time is represented by the following equation. X = ΔS ′ + (L + Δ) tan2θ (1) where L is the distance between the DUT 1 and the CCD camera 12,
Δ is the amount of increase in the distance from the CCD camera 12 due to the rotation of the device 1, and ΔS ′ is the amount of movement in the direction parallel to the light receiving surface of the CCD camera 12 as the device 1 rotates. Also,
The moving distance ΔS of the point A irradiated with the laser light when the DUT 1 is rotated by the angle θ is as follows. ΔS = πD · θ / 360 (2) where D is the diameter of the DUT 1. Furthermore, if the angle θ is small, it can be approximated as in the following equation. ΔS ′ = ΔS (Equation 3) (L + Δ) tan2θ = 2π (L + Δ) · 2θ / 360 (Equation 4) Further, since L >> Δ, it can be approximated as the following equation. L + Δ = L (Equation 5) Accordingly, Equation 1 is expressed as follows from Equations 2, 3, 4, and 5 above. X = (D + 4L) π · θ / 360 (Formula 6) From the above Formula 6, the diameter D of the DUT 1 can be derived by the following formula. D = ((360 · X) / (π · θ))-4L (Equation 7)
【0004】[0004]
【発明が解決しようとする課題】上述した測定原理は上
記7式を用いて被測定物1の直径Dを算出するものであ
るから、その際に被測定物1とCCDカメラ12との距
離Lを計測する必要がある。ところが、被測定物1が工
作機械加工用のワークである場合、加工中はワークの直
径Dの変化によって距離Lが常に変動するため、従来装
置によっては、ワークの直径Dをインプロセスで測定で
きないという問題点があった。Since the measurement principle described above calculates the diameter D of the DUT 1 using the above equation (7), the distance L between the DUT 1 and the CCD camera 12 is calculated at this time. Need to be measured. However, when the workpiece 1 is a workpiece for machine tool processing, the distance L always fluctuates due to a change in the diameter D of the workpiece during the processing, so that the diameter D of the workpiece cannot be measured in-process by some conventional apparatuses. There was a problem.
【0005】本発明は、上述した事情に鑑みてなされた
ものであり、本発明の課題は、被測定物とCCDカメラ
等の撮像手段との距離を計測する必要がなく、そのこと
によって、工作機械加工用のワークであっても、その直
径をインプロセスで高精度に測定できるスペックル利用
非接触直径測定装置を提供することにある。The present invention has been made in view of the above circumstances, and an object of the present invention is to eliminate the need to measure the distance between an object to be measured and an image pickup means such as a CCD camera. It is an object of the present invention to provide a speckle-based non-contact diameter measuring device capable of measuring the diameter of a workpiece for machining with high accuracy in-process.
【0006】[0006]
【課題を解決するための手段】上記の課題を解決するた
めに、請求項1の発明は、レーザー光等によるスペック
ルを利用して被測定物の直径を非接触で測定する装置を
提供し、該装置は、レーザー光等を被測定物の円周面に
照射してスペックルを発生させる光源と、発生したスペ
ックルを受光する単一の撮像手段と、撮像手段を被測定
物に対し相対移動する手段と、撮像手段の位置を計測す
る手段と、被測定物の回転角度を検出する手段と、撮像
手段を複数位置に移動して被測定物を回転させた際の撮
像手段の出力に基づきスペックル変位量を算出して被測
定物の直径を演算する手段とから構成される。According to a first aspect of the present invention, there is provided an apparatus for measuring a diameter of an object to be measured in a non-contact manner using speckles such as a laser beam. The apparatus includes a light source that generates speckles by irradiating a laser beam or the like to a circumferential surface of the device under test, a single imaging unit that receives the generated speckles, and an image capturing unit that performs imaging with respect to the device under test. Means for relative movement, means for measuring the position of the imaging means, means for detecting the rotation angle of the object to be measured, and output of the imaging means when the imaging means is moved to a plurality of positions to rotate the object to be measured Means for calculating the amount of displacement of speckle based on the above and calculating the diameter of the object to be measured.
【0007】また、請求項2の発明によるスペックル利
用非接触直径測定装置は、レーザー光等を被測定物の円
周面に照射してスペックルを発生させる光源と、発生し
たスペックルを被測定物からの距離が異なる位置で受光
する複数の撮像手段と、各撮像手段の位置を計測する手
段と、被測定物の回転角度を検出する手段と、被測定物
を回転させた際の各撮像手段の出力に基づきスペックル
変位量を算出して被測定物の直径を演算する手段とから
構成される。A non-contact diameter measuring apparatus utilizing speckles according to the second aspect of the present invention includes a light source for generating speckles by irradiating a laser beam or the like to a circumferential surface of an object to be measured, and a speckle-emitting device for generating speckles. A plurality of imaging means for receiving light at different positions from the measurement object, a means for measuring the position of each imaging means, a means for detecting a rotation angle of the measurement object, and a method for rotating the measurement object Means for calculating the speckle displacement amount based on the output of the imaging means and calculating the diameter of the object to be measured.
【0008】[0008]
【作用】請求項1の発明によれば、単一の撮像手段を複
数位置に移動して各位置で被測定物を回転させること
で、複数のスペックル変位量が算出される。これらの算
出値は被測定物と撮像手段との距離を正確に特定するた
め、従来とは異なり、距離の計測値によらずとも、被測
定物の直径が精度よく求められ、工作機械におけるワー
ク直径のインプロセス測定も可能になる。According to the first aspect of the present invention, a plurality of speckle displacement amounts are calculated by moving a single imaging means to a plurality of positions and rotating the object at each position. Since these calculated values accurately specify the distance between the object to be measured and the imaging means, unlike the related art, the diameter of the object to be measured is accurately obtained without depending on the measured value of the distance. In-process measurement of diameter is also possible.
【0009】また、請求項2の発明によれば、複数の撮
像手段を異なる位置に配置して被測定物を回転させるこ
とで、一回の測定で複数のスペックル変位量が算出さ
れ、これらの算出値に基づいて被測定物の直径が短時間
に求められる。According to the second aspect of the present invention, a plurality of speckle displacements are calculated by a single measurement by rotating a device under measurement with a plurality of imaging means arranged at different positions. Is calculated in a short time based on the calculated value of
【0010】[0010]
【実施例】以下、本発明をNC旋盤におけるワーク直径
のインプロセス測定装置に具体化した実施例を図面に基
づいて説明する。図1は本発明の測定装置を装備したN
C旋盤の全体構成を示す概略図である。測定装置5は刃
物台7のタレット6に装備され、ボールネジ8を介して
モータ9によって駆動され、その位置が位置計測手段と
してのエンコーダ10によって計測される。なお、この
位置計測については、ドッグ等により測定装置5を既知
の固定点に固定することも可能である。一方、被測定物
1つまりワークはチャック2に保持され、ビルトインモ
ータ3で回転され、その回転角度が回転角度検出手段と
してのエンコーダ4によって検出される。この回転角度
検出についても、ドッグ等により被測定物1を既知の角
度だけ回転させることも可能である。図において、11
はNC旋盤の各部を制御するNC装置である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in an in-process measuring apparatus for a workpiece diameter in an NC lathe will be described with reference to the drawings. FIG. 1 shows N equipped with the measuring device of the present invention.
It is the schematic which shows the whole structure of C lathe. The measuring device 5 is mounted on a turret 6 of a tool rest 7, driven by a motor 9 via a ball screw 8, and its position is measured by an encoder 10 as position measuring means. In this position measurement, the measuring device 5 can be fixed to a known fixed point by a dog or the like. On the other hand, the workpiece 1 or the work is held by the chuck 2 and rotated by the built-in motor 3, and the rotation angle is detected by the encoder 4 as rotation angle detecting means. In this rotation angle detection, the DUT 1 can be rotated by a known angle using a dog or the like. In the figure, 11
Is an NC device for controlling each part of the NC lathe.
【0011】図2は第一実施例の測定装置5による測定
原理を示す説明図である。図において、12は撮像手段
としてのCCDカメラであって、測定装置5に格納され
ている。被測定物1の直径を測定する際には、まず、被
測定物1とCCDカメラ12との距離がLだけ離れた位
置1において、被測定物1を角度θ1回転させ、そのと
きのCCDカメラ12の出力に基づいてスペックル変位
量X1を算出する。続いて、相対移動手段としてのボー
ルネジ8及びモータ9によりCCDカメラ12を位置1
よりも任意の距離 だけ離れた位置2に移動し、ここに
おいても同様にして、スペックル変位量X2を算出す
る。すると、被測定物1とCCDカメラ12との距離L
は次式で表すことができる。 L=X1・ /(X2−X1) ・・・(8式) 従って、上記8式より前記7式は次のようになる。 D=((360・X1)/(π・θ))−((4・ ・X1)/(X2ーX1) ) ・・・(9式) 但し、θ=θ1=θ2とする。この9式には、7式とは
異なり、被測定物1とCCDカメラ12との距離Lが含
まれていないため、距離Lの計測値によらずとも、被測
定物1の直径Dを演算することができる。なお、この一
連の演算処理を実行する回路構成については後述する。FIG. 2 is an explanatory diagram showing the principle of measurement by the measuring device 5 of the first embodiment. In the figure, reference numeral 12 denotes a CCD camera as an image pickup means, which is stored in the measuring device 5. When measuring the diameter of the DUT 1, first, the DUT 1 is rotated by an angle θ1 at a position 1 where the distance between the DUT 1 and the CCD camera 12 is L, and the CCD camera at that time is rotated. Then, the speckle displacement amount X1 is calculated based on the output of T12. Subsequently, the CCD camera 12 is moved to the position 1 by the ball screw 8 and the motor 9 as relative moving means.
Is moved to a position 2 which is more arbitrarily distanced than above, and the speckle displacement X2 is calculated in the same manner. Then, the distance L between the DUT 1 and the CCD camera 12 is calculated.
Can be expressed by the following equation. L = X1 · / (X2−X1) (Equation 8) Accordingly, from the above Equation 8, the above Equation 7 is as follows. D = ((360 · X1) / (π · θ)) − ((4 ·· X1) / (X2−X1)) (Equation 9) where θ = θ1 = θ2. Since the equation 9 does not include the distance L between the DUT 1 and the CCD camera 12 unlike the equation 7, the diameter D of the DUT 1 is calculated regardless of the measured value of the distance L. can do. The circuit configuration for executing this series of arithmetic processing will be described later.
【0012】図3は第一実施例の測定装置5の構成を示
す概略図であり、被測定物1とCCDカメラ12との距
離がLだけ離れた位置において、光源としての半導体レ
ーザ13より出射されたレーザー光は、光度調整用フィ
ルタ14を通ってハーフミラー15に当たり、方向を変
えて被測定物1を照射する。被測定物1表面の凹凸粗面
で散乱して生じたスペックルは、ハーフミラー15、レ
ーザ波長透過フィルタ16を通りCCDカメラ12に受
光される。そして、被測定物1をビルトインモータ3で
回転させ、その回転角度θ1をエンコーダ4で検出し、
このときのスペックル変位量X1を算出する。続いて、
測定装置5をボールネジ8を介してモータ9によって任
意の距離 だけ移動し、ここでも被測定物1をビルトイ
ンモータ3で回転させ、その回転角度θ2をエンコーダ
4で検出し、このときのスペックル変位量X2を算出
し、9式を用いて被測定物1の直径Dを演算する。FIG. 3 is a schematic diagram showing the configuration of the measuring apparatus 5 of the first embodiment. In a position where the distance between the DUT 1 and the CCD camera 12 is L, the light is emitted from a semiconductor laser 13 as a light source. The emitted laser beam passes through the luminous intensity adjustment filter 14 and strikes the half mirror 15 to irradiate the DUT 1 in a different direction. The speckles generated by scattering on the rough surface of the surface of the DUT 1 are received by the CCD camera 12 through the half mirror 15 and the laser wavelength transmission filter 16. Then, the device under test 1 is rotated by the built-in motor 3, and the rotation angle θ1 is detected by the encoder 4,
The speckle displacement X1 at this time is calculated. continue,
The measuring device 5 is moved by a motor 9 via a ball screw 8 by an arbitrary distance, and the device under test 1 is again rotated by the built-in motor 3, and the rotation angle θ2 is detected by the encoder 4, and the speckle displacement at this time is detected. The quantity X2 is calculated, and the diameter D of the DUT 1 is calculated using equation (9).
【0013】図4は第二実施例の測定装置5の構成を示
す概略図であり、ここでは撮像手段として2台のCCD
カメラ12,19が受光軸線を直交させた状態で異なる
位置に設置されている。第一実施例と同様にして発生し
たスペックルは、長光路用ハーフミラー17で方向を変
えるものと直進するものに分かれる。直進するスペック
ルは長光路用ハーフミラー17から距離L1離れたCC
Dカメラ12に受光され、方向を変えたスペックルは長
光路用ハーフミラー17からL1よりも任意の距離 だ
け長い距離L2離れた長光路用CCDカメラ19に受光
される。そして、被測定物1をビルトインモータ3で回
転させ、その回転角度θをエンコーダ4で検出し、この
ときのCCDカメラ12,19の出力に基づいてスペッ
クル変位量を算出する。こうすれば、光路が だけ異な
る2つのスペックル変位量X1、X2を一回の測定で算
出でき、第一実施例と同じ9式を用いて被測定物1の直
径Dを短時間に演算することができる。なお、第一実施
例及び第二実施例の測定装置5は、ワークの加工個数、
許容計測時間、コスト等に応じて選択することができ
る。FIG. 4 is a schematic diagram showing the configuration of the measuring device 5 of the second embodiment. In this case, two CCDs are used as image pickup means.
The cameras 12, 19 are installed at different positions with the light receiving axes orthogonal to each other. The speckles generated in the same manner as in the first embodiment are divided into those that change directions by the half mirror 17 for a long optical path and those that go straight. The speckle which goes straight is CC which is a distance L1 away from the half mirror 17 for long optical path.
The speckles which are received by the D camera 12 and whose direction is changed are received by the long optical path CCD camera 19 which is separated from the long optical path half mirror 17 by an arbitrary distance longer than L1 by a distance L2. Then, the device under test 1 is rotated by the built-in motor 3, the rotation angle θ is detected by the encoder 4, and the speckle displacement amount is calculated based on the outputs of the CCD cameras 12 and 19 at this time. In this way, two speckle displacements X1 and X2 whose optical paths differ only by one measurement can be calculated by one measurement, and the diameter D of the DUT 1 can be calculated in a short time by using the same nine equations as in the first embodiment. be able to. In addition, the measuring device 5 of the first embodiment and the second embodiment calculates the number of processed workpieces,
It can be selected according to the allowable measurement time, cost, and the like.
【0014】図5は上記各実施例の測定装置5における
演算手段の構成を示すブロック図である。測定装置5に
はCCDカメラ12及び初段アンプ21が組み込まれ、
NC装置11にはサンプルホールド回路22、ゲイン制
御アンプ23、2値化回路24、相関器25及びマイク
ロコンピュータ26が共通の処理用基板27上に実装さ
れた状態で装備されている。FIG. 5 is a block diagram showing the configuration of the calculating means in the measuring device 5 of each of the above embodiments. The measuring device 5 incorporates a CCD camera 12 and a first-stage amplifier 21,
The NC device 11 is equipped with a sample-and-hold circuit 22, a gain control amplifier 23, a binarization circuit 24, a correlator 25, and a microcomputer 26 mounted on a common processing board 27.
【0015】図6はNC旋盤のインプロセス測定方法を
示す説明図であり、ワークの直径測定にあたり、NC装
置11は、まず、加工個数、許容寸法範囲及び計測動作
挿入個数を入力して加工を開始する。そして、加工個数
が計測動作挿入個数に到達すると、加工が停止され、N
C装置11より計測指令が出力され、タレット6が旋回
され、測定装置5が取り付けられた計測器付工具ポット
が割り出される。次に、半導体レーザ13がレーザー光
を発光し、被測定物1で散乱して発生したスペックルが
CCDカメラ12に受光される。FIG. 6 is an explanatory view showing an in-process measuring method of the NC lathe. In measuring the diameter of the work, the NC apparatus 11 first inputs the number of processing, the allowable dimension range and the number of measuring operation insertions, and performs the processing. Start. When the number of processing reaches the number of measurement operation insertions, the processing is stopped, and N
A measurement command is output from the C device 11, the turret 6 is turned, and a tool pot with a measuring device to which the measuring device 5 is attached is determined. Next, the semiconductor laser 13 emits laser light, and speckles generated by scattering on the device under test 1 are received by the CCD camera 12.
【0016】CCDカメラ12は初段アンプ21を介し
てサンプルホールド回路22に接続され、ここにおい
て、CCDカメラ12の出力信号に含まれる特有のノイ
ズが除去される。サンプルホールド回路22の出力はゲ
イン制御アンプ23を介して2値化回路24へ送られ、
ここでスペックルのイメージ信号が2値化され、更にこ
の2値化信号が相関器25へ送られて、被測定物1の回
転に伴うスペックルの移動前後の相互相関関係が計算さ
れ、この計算結果がマイクロコンピュータ26に送られ
る。マイクロコンピュータ26は相互相関関数のピーク
位置からスペックルの変位量を算出し、前記演算式を用
いて被測定物1の直径Dを演算する。The CCD camera 12 is connected to a sample-and-hold circuit 22 via a first-stage amplifier 21. Here, a specific noise contained in an output signal of the CCD camera 12 is removed. The output of the sample hold circuit 22 is sent to a binarization circuit 24 via a gain control amplifier 23,
Here, the speckle image signal is binarized, and the binarized signal is sent to the correlator 25, and the cross-correlation between before and after the movement of the speckle accompanying the rotation of the DUT 1 is calculated. The calculation result is sent to the microcomputer 26. The microcomputer 26 calculates the amount of displacement of the speckle from the peak position of the cross-correlation function, and calculates the diameter D of the DUT 1 using the above-mentioned equation.
【0017】そして、演算された直径DはNC装置11
内のNCパネル28に表示されるとともに、この演算値
が先に入力した許容寸法範囲外であるか否かが判定され
る。演算値が許容寸法範囲外でなければそのまま加工を
再開し、許容寸法範囲外のときは、マイクロコンピュー
タ26が補正値を演算して、NC装置11内の工具オフ
セットに入力した後に加工を再開する。そして、加工個
数が先に入力した個数に到達した時点で加工を終了す
る。The calculated diameter D is calculated by the NC unit 11
Is displayed on the NC panel 28, and it is determined whether or not the calculated value is outside the allowable dimension range previously input. If the calculated value is not out of the allowable dimension range, the machining is resumed as it is. If the calculated value is out of the allowable dimension range, the microcomputer 26 calculates the correction value and inputs it to the tool offset in the NC device 11, and then resumes the machining. . Then, when the number of processed pieces reaches the previously input number, the processing is terminated.
【0018】なお、被測定物と撮像手段との距離の計測
値によらない直径の測定方法は上記各実施例の開示技術
に限定されるものではなく、図7に示す測定原理を採用
することによっても可能である。この測定原理によれ
ば、被測定物1の中心(主軸中心)とCCDカメラ12
との距離がLLになるように、測定装置5がセットされ
る。すると、被測定物1とCCDカメラ12との距離L
は次式のように表すことができる。 L=LL−D/2 ・・・(10式) 従って、上記8式より7式は次のようになる。 D=((360・X)/(π・θ))−4(LL−D/2)・・・(11式) この11式には、被測定物1とCCDカメラ12との距
離Lが含まれていないため、距離Lの計測値によらずと
も、被測定物1の直径Dを求めることができ、しかも、
図2に示した第一実施例と同じ光学系を用いて1回の測
定で被測定物1の直径Dを計測することができる。しか
しながら、加工中における主軸等の熱変位により被測定
物1の中心とCCDカメラ12の距離LLが変化する可
能性があるため、この測定原理を採用する場合には、被
測定物1の直径Dを測定する前に、予め基準となるワー
クを計測しておき、その基準値で測定値を補正する面倒
がある。The method of measuring the diameter, which does not depend on the measured value of the distance between the object to be measured and the imaging means, is not limited to the disclosed technology of each of the above embodiments, but employs the measuring principle shown in FIG. Is also possible. According to this measurement principle, the center of the DUT 1 (center of the main axis) and the CCD camera 12
The measuring device 5 is set so that the distance from the measuring device 5 is LL. Then, the distance L between the DUT 1 and the CCD camera 12 is calculated.
Can be expressed as: L = LL−D / 2 (Equation 10) Therefore, from the above equation 8, equation 7 is as follows. D = ((360 · X) / (π · θ)) − 4 (LL−D / 2) (Equation 11) In this equation, the distance L between the DUT 1 and the CCD camera 12 is calculated. Since it is not included, the diameter D of the DUT 1 can be obtained without depending on the measured value of the distance L.
The diameter D of the DUT 1 can be measured by one measurement using the same optical system as the first embodiment shown in FIG. However, since the distance LL between the center of the DUT 1 and the CCD camera 12 may change due to thermal displacement of the spindle or the like during processing, when this measurement principle is adopted, the diameter D of the DUT 1 is changed. Before measuring, there is a trouble that a work serving as a reference is measured in advance, and the measured value is corrected with the reference value.
【0019】[0019]
【発明の効果】以上に詳述したように、請求項1の発明
によれば、単一の撮像手段を複数位置に移動して各位置
で被測定物を回転させることで、複数のスペックル変位
量を算出し、これらの算出値で被測定物と撮像手段との
距離を正確に特定して、距離の計測値によらずとも、被
測定物の直径を精度よく測定でき、工作機械におけるワ
ーク直径のインプロセス測定にも適用できるという優れ
た効果を奏する。As described above in detail, according to the first aspect of the present invention, a plurality of speckles can be obtained by moving a single imaging means to a plurality of positions and rotating the object to be measured at each position. Calculate the amount of displacement, accurately specify the distance between the object to be measured and the imaging means with these calculated values, and can accurately measure the diameter of the object to be measured, regardless of the measured value of the distance. It has an excellent effect that it can be applied to in-process measurement of the workpiece diameter.
【0020】請求項2の発明によれば、複数の撮像手段
を異なる位置に配置して被測定物を回転させることで、
一回の測定で複数のスペックル変位量を算出し、これら
の算出値に基づいて被測定物の直径を短時間に測定でき
るという効果がある。According to the second aspect of the present invention, by arranging a plurality of imaging means at different positions and rotating the object to be measured,
There is an effect that a plurality of speckle displacement amounts are calculated by one measurement, and the diameter of the measured object can be measured in a short time based on the calculated values.
【図1】本発明の測定装置を装着したNC旋盤の概略図
である。FIG. 1 is a schematic view of an NC lathe equipped with a measuring device of the present invention.
【図2】第一実施例の測定装置の測定原理を示す説明図
である。FIG. 2 is an explanatory diagram showing a measurement principle of the measurement device of the first embodiment.
【図3】第一実施例の測定装置の構成を示す概略図であ
る。FIG. 3 is a schematic diagram showing a configuration of a measuring device of the first embodiment.
【図4】第二実施例の測定装置の構成を示す概略図であ
る。FIG. 4 is a schematic diagram illustrating a configuration of a measuring apparatus according to a second embodiment.
【図5】第一及び第二実施例の測定装置における演算手
段を示すブロック図である。FIG. 5 is a block diagram showing a calculating means in the measuring apparatus of the first and second embodiments.
【図6】NC旋盤におけるワーク直径のインプロセス測
定方法を示す説明図である。FIG. 6 is an explanatory view showing an in-process measuring method of a workpiece diameter in an NC lathe.
【図7】本発明の関連技術による測定原理を示す説明図
である。FIG. 7 is an explanatory diagram showing a measurement principle according to the related art of the present invention.
【図8】従来の測定原理を示す説明図である。FIG. 8 is an explanatory diagram showing a conventional measurement principle.
1‥被測定物、2‥チャック、3‥ビルトインモータ、
4‥回転角度検出用エンコーダ、5‥測定装置、6‥タ
レット、7‥刃物台、8‥ボールネジ、9‥モータ、1
0‥位置計測用エンコーダ、11‥NC装置、12‥C
CDカメラ、13‥半導体レーザ、14‥光度調整用フ
ィルタ、15‥ハーフミラー、16‥レーザ波長透過フ
ィルタ、17‥長光路用ハーフミラー、18‥長光路用
レーザ波長透過フィルタ、19‥長光路用CCDカメ
ラ、21‥初段アンプ、22‥サンプルホールド回路、
23‥ゲイン制御アンプ、24‥2値化回路、25‥相
関器、26‥マイクロコンピュータ、27‥処理用基
板、28‥NCパネル。1 ‥ DUT, 2 ‥ chuck, 3 ‥ built-in motor,
4 ‥ rotation angle detection encoder, 5 ‥ measuring device, 6 ‥ turret, 7 ‥ turret, 8 ‥ ball screw, 9 ‥ motor, 1
0 ° position measuring encoder, 11 ° NC device, 12 ° C
CD camera, 13 ‥ semiconductor laser, 14 ‥ luminosity adjustment filter, 15 ‥ half mirror, 16 ‥ laser wavelength transmission filter, 17 ‥ long optical path half mirror, 18 ‥ long optical path laser wavelength transmission filter, 19 ‥ long optical path CCD camera, 21 ‥ first stage amplifier, 22 ‥ sample hold circuit,
23 ‥ gain control amplifier, 24 ‥ binarization circuit, 25 ‥ correlator, 26 ‥ microcomputer, 27 ‥ processing board, 28 ‥ NC panel.
Claims (2)
て被測定物の直径を非接触で測定する装置であって、レ
ーザー光等を被測定物の円周面に照射してスペックルを
発生させる光源と、発生したスペックルを受光する単一
の撮像手段と、撮像手段を被測定物に対し相対移動する
手段と、撮像手段の位置を計測する手段と、被測定物の
回転角度を検出する手段と、撮像手段を複数位置に移動
して被測定物を回転させた際の撮像手段の出力に基づき
スペックル変位量を算出して被測定物の直径を演算する
手段とからなるスペックル利用非接触直径測定装置。1. An apparatus for measuring the diameter of an object to be measured in a non-contact manner using speckles generated by a laser beam or the like, and generating speckles by irradiating a laser beam or the like to a circumferential surface of the object to be measured. A light source to be emitted, a single imaging unit for receiving the generated speckles, a unit for moving the imaging unit relative to the object to be measured, a unit for measuring the position of the imaging unit, and detecting a rotation angle of the object to be measured. Means for calculating the speckle displacement based on the output of the imaging means when the imaging means is rotated by moving the imaging means to a plurality of positions and calculating the diameter of the measurement object. Use non-contact diameter measuring device.
て被測定物の直径を非接触で測定する装置であって、レ
ーザー光等を被測定物の円周面に照射してスペックルを
発生させる光源と、発生したスペックルを被測定物から
の距離が異なる位置で受光する複数の撮像手段と、各撮
像手段の位置を計測する手段と、被測定物の回転角度を
検出する手段と、被測定物を回転させた際の各撮像手段
の出力に基づきスペックル変位量を算出して被測定物の
直径を演算する手段とからなるスペックル利用非接触直
径測定装置。2. An apparatus for measuring the diameter of an object to be measured in a non-contact manner using speckles generated by a laser beam or the like, and generating a speckle by irradiating a laser beam or the like to a circumferential surface of the object to be measured. A light source to be emitted, a plurality of imaging means for receiving the generated speckles at different positions from the object to be measured, a means for measuring the position of each imaging means, and a means for detecting the rotation angle of the object to be measured, A speckle-using non-contact diameter measuring apparatus, comprising: a unit for calculating a speckle displacement amount based on an output of each imaging unit when the device to be measured is rotated and calculating a diameter of the device to be measured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32305294A JP3252248B2 (en) | 1994-12-26 | 1994-12-26 | Non-contact diameter measuring device using speckle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32305294A JP3252248B2 (en) | 1994-12-26 | 1994-12-26 | Non-contact diameter measuring device using speckle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08178628A JPH08178628A (en) | 1996-07-12 |
JP3252248B2 true JP3252248B2 (en) | 2002-02-04 |
Family
ID=18150568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32305294A Expired - Fee Related JP3252248B2 (en) | 1994-12-26 | 1994-12-26 | Non-contact diameter measuring device using speckle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3252248B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190142803A (en) * | 2018-06-19 | 2019-12-30 | 재단법인 인천테크노파크 | Measuring apparatus for golf ball |
-
1994
- 1994-12-26 JP JP32305294A patent/JP3252248B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190142803A (en) * | 2018-06-19 | 2019-12-30 | 재단법인 인천테크노파크 | Measuring apparatus for golf ball |
KR102067631B1 (en) * | 2018-06-19 | 2020-01-17 | 재단법인 인천테크노파크 | Measuring apparatus for golf ball |
Also Published As
Publication number | Publication date |
---|---|
JPH08178628A (en) | 1996-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6689812B2 (en) | Coordinate measuring device with optical sensor and corresponding method | |
JP6600254B2 (en) | Wafer processing method | |
US10712147B2 (en) | Measurement system and method of manufacturing shaft with hole | |
JPH0599617A (en) | Method and device for detecting edge section and hole by optical scanning head | |
JP4571256B2 (en) | Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method | |
WO2012035883A1 (en) | Machining method | |
WO2016031935A1 (en) | Surface shape measuring device | |
JP2001153632A (en) | Method and device for detecting medical object, especially model of tooth specimen | |
JP6600928B1 (en) | X-ray diffractometer | |
WO2015122060A1 (en) | Surface shape measurement device, machine tool provided with same, and surface shape measurement method | |
JP2004114203A (en) | Apparatus for measuring profile of workpiece and profile measuring system using the same | |
JP3252248B2 (en) | Non-contact diameter measuring device using speckle | |
JP5389613B2 (en) | Method for managing consumption of cutting blade in cutting apparatus | |
JP5038481B2 (en) | Measuring device for multi-axis machine | |
JPH071294A (en) | Optical type work shape measuring device in numerically controlled machine tool | |
JP2015131303A (en) | Operation characteristic detection method for processing feeding mechanism in laser processor, and laser processor | |
JPH07286845A (en) | Method and instrument for measuring three-dimensional shape | |
JP7199256B2 (en) | Pass/Fail Judgment Method for Output Measurement Units | |
CN102814871A (en) | Processing device | |
JP4159809B2 (en) | Non-contact measuring method and measuring apparatus | |
JP3638639B2 (en) | Position detection device | |
JP2004066365A (en) | Device for measuring apparent outer diameter of cutter | |
JPS63163205A (en) | Automatic tool measuring instrument for numerically controlled machine tool | |
JPH10111107A (en) | Method and device for measuring distance | |
JP2023030636A (en) | Calibration method and calibration program for contact-type tool sensor in machine tool, and machine tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |